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1 Introduction

Recently, a line of investigation has been proposed by Avdeev and Chizhov [1] that
consists in treating skew-symmetric rank-2 tensor fields as matter rather than gauge
degrees of freedom. The model studied in Ref[l] has been further reassessed from
the point of view of renormalization in the framework of BRS quantization [2]. In
view of the potential relevance of matter-like tensor fields for phenomenology [1], it
is our purpose in this paper to discuss some facts concerning the formulation of an
N =1 supersymmetric Abelian gauge model realizing the coupling of gauge fields
to matter tensor fields and their partners. One intends here to present a super-
space formulation of the model and exploit the possible relevance of extra bosonic
supersymmetric partners (complex scalars) for the issue of symmetry breaking.

The present work is outlined as follows: in Section 2, one searches for the super-
multiplet that accomodates the matter tensor field and discusses its self-coupling;
the coupling to the gauge supermultiplet is pursued in Sections 3 and 4; in Section 5,
one couples the well-known O Raifeartaigh model [5] to the tensor-field supermulti-
plet and discusses some features concerning spontaneous supersymmetry breaking.
Finally, general conclusions are drawn in Section 6.

2 Supersymmetrizing the tensor field

Adopting the spinor algebra conventions and the superspace parametrization of
Ref.[6], the superfield that accomodates the skew-symmetric rank-2 tensor amongst
its components is a spinor multiplet subject to the chirality constraint:

Yo = e+ 0°Ap + O2F, — i6°01:0°0,1),

o ‘ 2.1)
—z@caﬁéecaﬂb/\ba — 50202@6%@,
Libeon 000, 0,A0, — 102620, |
DY, = DY, =0, (2.3)
where ¢, and F, are chiral spinors and Ay, A;, are decomposed as:
Npw = €ap + 0p0 A
S (2.4)

. — L LA ]
Npy = —€iap Uéa)‘w'
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According to the chiral properties of the superfield X, the A, tensor corresponds to
the (1,0)-representation of Lorentz group.On the other hand, A7, yields the (0,1)-
representation. We then write:

A =Ty —iT,,

-~ (2.5)
)‘fw =T + 11,
where Tw = %ewagTaﬁ. Notice also that S\W =1\, and (Xf;) = —i\y,.
The canonical dimensions of the component fields read as below:
d(y) = d(y) =}
d(p) = d(Aw) =1 (2.6)

Based on dimensional arguments, we propose the following superspace action for

the X, superfield:

S = /d‘{f d20d*0 ;—;{D“Eaﬁ-jd + gy, ST (2.7)

To check whether such an action is actually the supersymmetric extension of the
model that treats T}, as a matter field [1], we have now to write down eq(2.7) in
terms of the component fields ¢, p, A, and F:

S = [d% (+ 08, p* — 169"\ DN + i F 5% 0, F* — i 5 0,070, 1°
— g2 (p? — AW A ) (72 — AN NP) AN N, T+ AgA N, o,
—2qF " pFautd" — qp*Fatd" — q(p")* F %o + 100", 00, (0 0)")
—iqp oty 0,(0" p*) + Aqpy ol 05X ) — 4gX,p0° (p7b, )T b,

—16@'quaﬁ(A*ﬁ%d)5w¢G) .

) (2.9
Using A,y = $(Ty — iT,), we have that:

1
160% Ny, 05\ = 20°T,,, 051" — 50 T 0T (2.9)

The action above displays the terms proposed by Avdeev et al. in Ref.[1]; besides
the anti-symmetric tensor, there appear a complex scalar and a pair of spinors as its
supersymmetric partners (i, is a non - physical fermion, whereas F, corresponds
to a physical Weyl spinor).



-3 - CBPF-NF-054/95
3 The gauging of the model

In order to perform the gauging of the model described by eq(2.7), one proceeds
along the usual lines and introduces a chiral scalar superfield, A, to act as the gauge

parameter:
. 1
A= (1—i0%"0°0, — 19292@&“)(«5 + 6%w, + 0°7) (3.1)
e —a 1 o= -
A=(1+i6°"0"0, — 10202@8“)(45* 4O, +0°F). (3.2)
The infinitesimal gauge transformations of the superfields ¥ and X are:
0¥, =1hA X,
— R (3.3)
52@ = —2hA Zd,
and the behaviour of (D*Y,) and (D, ﬁ) under finite tranformations read:
D Y =M (DY, +ihD*AY,)
(3.4)

D T% = ND, S — ihD; A ).

To gauge-covariantize the superspace derivatives, one introduces a gauge connection

superfield:
D, —V,=D,+hl,, (3.5)
in such a way that I', transforms like
I =T, — D,A. (3.6)
This yields: '
(VeE,) = " (Ven,). (3.7)

To achieve a U(1)-invariant action, one proposes
S = / d d29d25(vaza eV v—dﬁ), (3.8)

where V is the real scalar superfield [9] that accomplishes the gauging of supersym-
metric QED [10]:
Vi=V4i(K=A). (3.9)

At this point, the gauge sector displays more degrees of freedom that it is actually
required to perform the gauging. There are component vector fields in I', and V.
However, we notice that the superfield I'; is not a true independent gauge potential.
Indeed,

r,=—-D,V (3.10)

reproduces correctly the gauge tranformation of I', and, at the same time, eliminates
the redundant degrees of freedom that would be otherwise present, if we were to keep
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I'y, and V as gauge superfields. Therefore, the locally U(1)- invariant action takes
over the form:
S = [dwd0 + %(E2(6—VD“6V)E2(6—VDaeV))
. (3.11)
+ [ d% d*0d* 3} (vaza EA VS SR qzazaewidi“),

where
Ve, =DY, +hDV 3,

_ o (3.12)
Vixt = D%t + hD,V Xf,

The #-expansion for the superfield V' brings about the following component fields:
V. o=+ 0%, + 058" + 0°0" 0", A,

I 2_2 (3.13)
FO2N 4 ON 4 020,75 + 02097, + 020°A,

where C, A, X and A are scalars b, and v, are spinors and A, is the U(1)-gauge
field. The gauge transformation of these fields read as below:

§C =i(¢* — @), 6\ = —im, 6\ =7,

ob, = —iwa, 55@ = 10,

A = 50" 0,6 — ¢7), 6A" = —0"(6 + ¢7),

1 _pu a = _ 1— a
0Va = 50,:0,W0", 07y = —504,0,0".

(3.14)

As already known, for the sake of component-field calculations, one usually works in
the so-called Wess-Zumino gauge, where C, b, and A are gauged away. The expansion
of the exponential of the gauge superfield simplifies, in this gauge, according to:

MV =14 h0"" 0 A, + hO20, 7 + KO0, + hOX0 A + ih202§2A“AM. (3.15)
Using this gauge, the transformations of the matter fields are:
e =ithob,, 6p=1ihop, oA, = thor,,, 6F, = ih(oF,); (3.16)
we get thereby the following transformations for the components 7, and TW:
6Ty = hoTyy, 6T, = —hoT,, (3.17)

These are precisely the Abelian gauge transformations for the tensor field as firstly
proposed in Ref.[1].
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4 Component-field action in the Wess-Zumino
gauge.

Having adopted the component fields as defined in the previous sections, lengthy
algebraic computations yield the following action in the Wess-Zumino gauge:

S = [d% ( - iFWFM A% 4 iTTE D"+ 0 pdp” — 160N, Du AT
T T O, F — i 50,0700 — i pA,p” + ik p AL, p”
F2hpAp* + B pAF A, p* — hy " Fup® — hp7, F — ik pyol 00"
—ib T 9,00 4 k0, ot T — b0y ot — Bprot, A,070,0"
I AL D ThN T, D00 ihA¢“a“- B — B AT 0,0
19, A0 0, + EF ot AT — k(075 0%) 44 Fl Dt
+L0, (0570 )i Fual + hp*FW)\“” + hpF, A
F2ih (4D NH Ny AY — 40PN 1y AN
i (0757 0 ) ai Ay Al + B (0750 i T INT, — 20,0 (07T 0 )i N T
il (50°5%) 10 A b N — B (0°570M) 030 s + Ly (07570 ) ai Aap b
+29,4 (05" o )i Ay Oath’ + L9005 0 )i Ay Oath’
+20,0% (04570 oz Ay Ol +h2A¢“a A"+ £ (0500 Py Aalh
i (07T 0% s Fay A — 155907570 iAo A
—¢%§au¢ﬂ(auavaa;m/1z4a¢ — 20,0675 %) 5 A, A
i A A (07T %) i Oat A i Ay A (07T )i O]
(0750 )aa A A Al — B2 0T 0"+ AR2AY AL, s A
—q5(p? = AN N ) (072 = AN AT) AN, F G Agh X Fo,
—2gF Tl — P Tl — )2 F by + 500,070, (030"
—igpioly0u(F p7) + Agpiral; 0P (N5, 0°) — dgAusd” (o8, )T,
—16iq A0 Da (X, )54, — gh A p, 5, — iq R A . 0" (P o)
Figh AL ()" — gl AP A B — qhpy 0a B — qhp T b,
—ghy ol P A + qh Y U“QAZU@/J'W% — qhpvt ol A
—2iqhpy A (05”0 ) Ao + 2ighp b (0757 0" 0z Ao

_I_Qqhﬁ)a(o-o‘ﬁﬁa"y?“o—y)ad)\ozﬁA'y)‘wad) .
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We should stress here a remarkable difference with respect to the case of the chi-
ral and anti-chiral scalar superfields (Wess-Zumino model [3]), namely, the minimal
coupling of ¥ and ¥ to the gauge sector necessarily affects the ¥ - superfield self-
interaction terms as one reads off from eq (3.11). The gauging of the U(1) - sym-
metry enriches the self-interactions of the tensor field not only through its fermionic
supersymmetric partners, but also through the introduction of the gauge boson and
the gaugino among the matter self-interaction terms. This is so because the model
presented here is based on a single spinor superfield. Had we introduced a couple of
spinor superfields, ¥, and 7,, with opposite U(1) charges:

thA

S = Ay
—thA

/ — e ! Zm

a

(4.2)

a self-interacting term of the form (Z“’];idTa) would automatically be invariant
whenever the symmetry is gauged, and there would be no need for introducing
the vector superfield to ensure local invariance. Such a mixed self-interacting term
could, in principle, be thought of as a possible source for a mass term for the spinor
superfields, whenever the physical scalar component p develops a non-trivial vacuum
expectation value. Nevertheless, by analysing the p - field interactions in the scalar
potential, one concludes that there is no room for spontaneous symmetry breaking
as induced by the component field ( and, similarly, for its counterpart inside 7 ).
On the other hand, we could think to introduce a gauge-invariant mass term of the
form

o= A (@20 i lxer, — 27 ST, 1)
S /  ( 116 116 ); (4.3)

however, a mixed mass term like the one above introduces two massive excitations of
the type k* = m* that are simultaneously present in the spectrum. So, regardless the
sign of m?, a tachyon shall always be present; hence such a mass term is disregarded.

5 Supersymmetry Breaking

Due to the spinorial character of the superfield ¥,, it cannot be used to accomplish
a spontaneous supersymmetry breaking. Indeed, Lorentz invariance is lost whenever
Y, acquires a non-trivial vacuum expectation value. The idea in the present section
is to couple, in a gauge invariant manner, the well-known O Raifeartaigh model [5]
to the spinor superfield ¥,, so as to understand the issue of mass generation for
Y, via spontaneous supersymmetry breakingdown. The model we adopt to discuss
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such a matter is defined by the action below:
S = [d% d20d2§(5q§ + o eV, + qb__e_thﬁ_)

It 20( Smd? 166~ + Fo+ 90046+ N Tad_6

[t @B( 3+ g+ [5+ g9946 + GNEG 6 (5.1)
+ [ ded? L (Ez(e_vD“ev)Ez(e_vDaev))

+ [ dY 20420 =L (vaza MV VS 4 qZ“Zae%Vidid),

where the chiral scalar superfields ¢, ¢, and ¢_ are parametrized as follows:

¢ = (1—i0°6"0"0, — 1020°0,0")(A + 6°¢, + 0°b)
6r = (1—i0°0"0'9, — 10%20°0,0")(Ay + 0%y, + 020y (5.2)
6 = (1—i0°0"0"0, — 10%0°0,0")(A_ + 06_, + 0%b_).

m and g are mass parameters, f has dimension of mass?, whereas g and G are
dimensionless coupling constants. ¥, and ¢_ have opposite U(1) - charges. This
action in terms of components reads:

S = [d% 4(4{6“%1*8“%1 +OMAT DAL+ 0P AT DALY+ A{bTh+ bl + b b
IETLOE +E T + T
+ [ d% (16hA1AA+ +8IhAT " A, Ay + ARPAL AP ALA, — ShATY €y,
—8hE, T Ay + AhET I ALE + 16ih8“A1AMA+)
+ [ d% ( —16hAT AA_ — SihA 9" A, A_ + AhPA* AP A, A_ + ShATE_,
+8hE_ T A_ — dhtot AL — 16ih8“A*_AMA_)
+ [ d% (m(—4bA +E08) A+ m(—4b AT 4 EE) — Afb— 4fb*)

+ [ d% z(ﬂ(—zmA_ —20_ Ay +E7 L) + (=200 AT — 207 AT+ Zd+Zi))
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+[d%2 (g(—ZbA+A_ —2Aby A — 2AALD. 4 AELE, + A_E9E, + ALEYE, )
Fg(—2b" AT AT — 2ATDL AT — 2ATATE 4+ A, &+ ATEE + ATEE ))
G (=25 4 D AAL) (I 4+ (A
P2y (—Ab_ AL+ €26,) + 2050 (—4b2 AT +€,_E)

Bt — o A oo )+ 2T L TTNE A1)

+ [ d*% ( — iF“”FW + 2A% 17T 0t + 04 p0,up” — 160" X, 0N

T T O, F T — i 50,0700 — i pA,p* + ik pARD,p”

+2hpAp* + L p AP A, p* — by Fop* — hp7, F' — i%pvaa“- 0,0

—igﬂ*Tdﬁ“ D + LD, p ot 7t — k8, py ot — Bt 4,070,

I A0 D, + ihAE D m“ﬂ'hmaa O — LY AT,
410, Ao 0" + EF 0l AT — (075 0%) 44 a3

+L0, (050" Yo oD + hp*FMw + hpl A

2 R(AD N Ny A — AN, AN

—i (0T 0 A Al + B0 (T )TN, — 0 (0T 0 )N T
HETH (700 )1 ANy — Ly (097 0) a0 Xag 0 + 2y (0770 )i Map 0"
0, (045 0oz Ay D + L0, (07T %) A, 0,

+L0,0 (0770 )0 A Dol +hw% A+ R0 T 0" )i B Ant
I (0740 )i oy A — 124 (09770 )i Aap A

B (01T 0 )i Ay A — i, (07T 0 )i A A

FiZ0 Ay A (075 0%) Do D+ 1207 A A (07504100

A (07T 0" ) Ay Aa A" — W2y P70 + ARPAY AL, X

=750 = A M) J5(p7 — AN AT) + 4G N Tl A+ AgA N, Fo,
~2F W Fal — P Fid" — q(p7 P F ba + 20°00,0" 0,8,
—iqp otu 0,0 p7) + dqpp ol 0P (N5, ) — AqAs0 (7, )T b,
—16ig N0 D5 (X7, )T, — qh AP P, — iqh A b, 0 (5,47
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+iq§Au9“(¢“¢aWﬂa - qu“Au@ba%baEaEa — qhpy a0 — qhp 0 e,
Vb T8 =MV Yy x —b a a WA

—qhy ol PP N A AT N D b — qhpptall A p

—2iqhp" A, (04507 ) N2+ 2iqhp (075 0" ) s AyAagh

+2qh¢a(go‘ﬁﬁoﬁﬁuoﬂ)ad)\ozﬁA’y)‘wad) .
(5.3)

In the scalar sector of this component-field action there is room for spontaneous
supersymmetry breaking, the broken phase being characterized by a non-trivial vac-
uum expectation value [11]. One then sees that, due to the appearance of a coupling
term of the type p* A2, whenever supersymmetry and the U(1)-symmetry are broken
by (A_) # 0, the p-field and the tensor field acquire a physical mass, being therefore
split from the fermionic degrees of freedom present in 3,. The mass splitting that
occurs for ¥, takes place at the expenses of a supersymmetry breaking triggered by

the superfield ¢_.

6 Conclusions

The supersymmetrization of the matter tensor field first investigated in Ref.[1] has
been worked out here in terms of a spinor chiral superfield, ¥,, whose kinetic and
self-interacting terms have been found in N = 1 - superspace. The gauging of the
model reveals some peculiarities, such as the need of gauge fields appearing in the
matter self-interactions.

Extra bosonic degrees of freedom that accompany the fermionic partners cannot
be the source for spontaneous symmetry or supersymmetry breaking, as it could
in principle be thought. The reason is that Lorentz invariance prevents ¥, from
developing non-trivial vacuum expectation value. Mass for the tensor field and its
partners may be generated by spontaneous supersymmetry breaking.

7 Conventions

ot=(1,0), T =(l,—-0), T =o". (7.1)

Where o = (01,02, 03) are the Pauli matrices

0, 1 0, —i (1,0
01 = (17 0)7 09 = (l, 0)7 03 = (07 _1) (72)
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In addition the matrices o*” and @ are given by

Ugdﬁydb — nuu&(lb o Z’(O.;w)ab (7 3)
gty = gt i)

and the trace is

O.S«dﬁudbo.;;ﬁﬁba =9 (nuunaﬁ _ nuanyﬁ + nuﬁnya T Z'EMUOZB), (74)
where %1% =1,
The summation convention is:
On = 0%y, 07 = 077" (7.5)
Where lowering and raising of indices are effected through
0" = "0y, 0, = et (7.6)
with e,5 = —&pq, (the same for dotted indices). Differentation with respect to the
anticommuting parameters 8, 8 is defined by
0 0 i '
0 =6, —0 =6y 7.7
90 a — a ( )
Covariant derivatives with respect to the supersymmetry transformations are:
D, =2 —ic"0"0
o (7.8)
D, = —= 10%0),0,,
and they obey the anticommutation relations
D, (7.9)

{Da,ﬁd} = 21'0'5@8# {Da,Db} = 0 = {Ea,Dd}.
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