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Abstract

From a particularly simple solution of the Ernst equation, we build a solution

of the vacuum stationary axisymmetric Einstein equations depending on three pa-
rameters. The parameters are associated to the total mass of the source and its

angular momentum. The third parameter produces a topological deformation of
the ergosphere making it a two-sheet surface, and for some of its values forbids the
Penrose process.
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1 Introduction

We propose a new solution of the Ernst equation. This solution is symmetric in the pro-
late spheroidal coordinates and depends on one parameter, called q1. The construction of
the corresponding gravitational potentials, with the help of the Boyer-Linquist transfor-
mation, shows that this solution has not a good asymptotical behaviour for its dragging.
But, by an Ehlers transformation followed by an unitary transformation, which intro-
duces two more parameters, an asymptotically 
at solution can be easily built. So, the
obtained solution, in Boyer-Linquist coordinates, depends on three parameters, which are
connected, as in the Kerr case, to the total mass of the source and its angular momentum.
However, we did not succeed to relate directly this solution to the Kerr solution, but we
know that such a linck does exist by reason of the uniqueness theorem for the solution
with a good asymptotical behaviour and without naked singularity [1]. Only the extreme
black hole of Kerr appears as a limit of the proposed solution, and this latter does not
present a naked singularity. Varying the q1 parameter allows to show its role in the er-
gosphere shape. The ergosphere, which initially has a torus shape, continuously looses its
form and �nally separates into a two-sheet toroidal surface, progressively exposing more
and more the event horizon. Then the Penrose process [2] is no longer able to take place
in a domain of the azimuthal angle, for some range of the q1 parameter values.

2 Brief recall on the resolution of the Ernst equation

The line element of a general axisymmetric stationary spacetime is the so called Papa-
petrou metric, which in the cylindrical coordinates, �, z and �, reads

ds2 = f(dt� !d�)2 � f�1[e2
(d�2 + dz2) + �2d�2]; (1)

where the gravitational potentials, f , ! and 
 are functions of � and z only. The canonical
coordinates of Weyl, � and z, can be given in terms of prolate spheroidal coordinates, �
and �, by the relations

� = k(�2 � 1)1=2(1� �2)1=2; z = k��; (2)

with
� � 1; �1 � � � 1; k = constant: (3)

The metric (1) with relations (2) can be rewritten like

ds2 = f(dt� !d�)2

�k2

f

"
e2
(�2 � �2)

 
d�2

�2 � 1
+

d�2

1� �2

!
+ (�2 � 1)(1 � �2)d�2

#
; (4)

where the potentials are now functions of � and �. The Ernst equation is [3]

(��� � 1)r2� = 2��r� � r�; (5)
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where r and r2 are the gradient and the three-dimensional Laplacian operators respec-
tively, �� is the conjugated complex potential of �, and in general its solution can be
expressed as

�(�; �) = P (�; �) + iQ(�; �); (6)

where P and Q are real functions of � and �. Among the classical solutions of the Ernst
equation, we can cite the well known Kerr solution [3],

�K = p� + iq�; (7)

where p nd q are real constants satisfying

p2 + q2 = 1; (8)

and the Tomimatsu-Sato solution,

�TS =
�(�; �; p; q; �)

�(�; �; p; q; �)
; (9)

where � and � are two complex polynomials depending on the Kerr parameters p and q
and a parameter � assuming integer values describing the deformation of the source [4].
To determine the potentials f , ! and 
 of the metric (4), the method consists to use the
following relation between f , the twist potential � and �,

f + i� =
� � 1

� + 1
; (10)

which implies with (6),

f =
P 2 +Q2 � 1

R2
; � =

2Q

R2
; (11)

or, equivalently,

f = 1� @

@P
[ln(R2 +Q2)]; � =

@

@Q
[ln(R2 +Q2)]; (12)

where
R2 = (P + 1)2 +Q2: (13)

In (10), � is the twist potential de�ned up to a constant and related to the dragging !
by the following di�erential equations,

@!

@�
=

k(1� �2)

f2
@�

@�
;
@!

@�
= �k(�2 � 1)

f2
@�

@�
: (14)

The potential ! is obtained by integration of (14), and 
 is determined by quadratures.
Any solution of the Ernst equation is a solution of the Einstein equations.
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3 A particular new solution

It is easy to verify that a particular rational solution of the Ernst equation (5) is obtained
when (6) has the following expressions for P (�; �) and Q(�; �),

P = �q1(�+ �); Q =
1 + ��

� + �
; (15)

where q1 is an arbitrary real parameter. In (15) we note a symmetry between � and �.
However, it can be proved, it has not an axymptotically 
at behaviour for the potentials
f and !. To obtain a 
at asymptotical behaviour, a �rst step is to introduce a second real
parameter, �1, by means of the following particular Ehlers transformation [5] on (15),

�1 =
c1� + d1
�d1� + �c1

; (16)

where
c1 = 1 + i�1; d1 = i�1; (17)

satisfying  
c1 d1
�d1 �c1

!
2 SU(1; 1); jc1j2 � jd1j2 = 1: (18)

But, again, it can be proved, the solution (16) has still not the suitable asymptotical

atness. Then, a second step consists to perform an unitary transformation on �1,

�2 = ei�0�1 = (m+ in)�1; m2 + n2 = 1; (19)

with �0 an arbitrary complex constant, and m and n real constants. Then (19) with (16)
and (17) becomes

�2 =
P (m� �1n)�Q(�1m+ n)� �1n+ i[P (�1m+ n) +Q(m� �1n) + �1m]

�(�1Q+ 1) + i�1(P + 1)
: (20)

Considering

�1 = � n

2(1 +m)
(21)

and applying the method recalled in section 2, we �nd the potentials corresponding to
the solution (20) of the Ernst equation

f =

(
(1 + ��)2 + (�+ �)2[q21(�+ �)2 � 1]

(1 + ��)2 + (� + �)2[q1(� + �) + 1]2]

)
cos�2

�0
2
; (22)

� = �2
(

(1 + ��)(� + �)

(1 + ��)2 + (� + �)2[q1(�+ �) + 1]2

)
cos�2

�0
2
; (23)

! =
2k

q1

(
(1� �2)(�2 � 1)[1 + q1(�+ �)]

(1 + ��)2 + (�+ �)2[q21(�+ �)2 � 1]

)
cos2

�0
2
: (24)

More, from (20) with (19), we �nd for 
 in (1),


 =
1

2
ln

"
q2
1
� (�2 � 1)(1 � �2)

(� + �)4

#
: (25)
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Furthermore, the factor cos�2(�0=2) in (22) can be absorbed by a rescaling process of
the metric into a conformal metric, like ds22 = cos2(�0=2)ds2. Now introducing spherical
coordinates r and �, through the Boyer-Lindquist transformation [6],

� =
r �M

k
; � = cos �; (26)

into (22) and (24), we obtain asymptotically r !1,

f � 1� 2
k

q1

1

r
+O

�
1

r2

�
; (27)

! � 2

 
k

q1

!2

cos2
�0
2

1 � �2

r
+O

�
1

r2

�
: (28)

We see from (27) and (28) that the solution now has the good asymptotic behaviour
allowing us to interpret the parameters q1, �0 and k as

k

q1
= M; cos2

�0
2
=

J

M2
=

a

M
; (29)

where M and J are, respectively, the mass and the angular momentum of the source,
and a = J=M the angular momentum per unit mass. In the Kerr solution (7) there are
two parameters linked by the condition (8). The asymptotical behaviour of this solution
imposes [7]

p =
k

M
; q =

a

M
; (30)

and the condition (8) �xes k,
k2 = M2 � a2: (31)

In our solution, the asymptotical relations (27) and (28) impose (29), but q1, �0 and k
are arbitrary, as can be seen from (15), (19) and (26). Of course, it is always possible to
compare our parameters to those of Kerr by putting

a

M
= q = cos2

�0
2
;

k

M
= p = q1; (32)

and assuming 0 � q1 � 1. So, we would have also from (8),

q21 + cos4
�0
2
= 1: (33)

However, it is not necessary for us to choose (32) and (33). In general, our solution presents
three independent free parameters, q1, �0 and k, whereas the Kerr solution presents only
one independent parameter, either p or q. Furthermore, imposing (32) and (33), does
not reduce our solution to the Kerr solution. The di�erences between both solutions are
further studied in the next section. Besides, we note that the solution (22)-(24) does not
belong to the usual Tomimatsu-Sato solutions [4].
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4 Horizons, ergospheres and singularities

The expression (22) can be written like

f =
N

D
cos�2

�0
2
; (34)

with

N = (1 + ��)2 + (�+ �)2[q21(�+ �)2 � 1]; (35)

D = (1 + ��)2 + (� + �)2[q1(�+ �) + 1]2: (36)

4.1 Horizons

The horizons correspond to the solution of f = 0 for � = �1 which is, from (35),
� = �1, or from (26), rh = M � k. These horizons split into the Cauchy horizon, with
radius rch = M � k, and the event horizon, with radius reh = M + k. These results are
satisfactory since, for any stationary axisymmetric metric, the horizons depend only on
the spacetime symmetries.

4.2 Ergospheres

The equation of the ergosphere surfaces, from (34), is N = 0, and two cases have to be
distinguished.

4.2.1 �+ � = 0

In this case N = 0 if, in addition,
1 + �� = 0; (37)

which imposes two solutions, describing two points,

� = �1; � = 1; (38)

� = 1; � = �1: (39)

These points, (38) and (39), are the intersections of the z axis with the event horizon,
r = reh = M + k, and Cauchy horizon, r = rch = M � k, respectively, belonging to the
ergospheres. It has to be noted that (38) and (39) produce, from (36), D = 0 as well,
hence there is an indetermination for the ratio N=D. This indetermination can be raised
by studying the limits � !�1 which produce

lim
�!�1

f(� = 1) = lim
�!1

f(� = �1) = 0: (40)

The limits (40) are �nite and zero, hence these points belong to the ergospheres.
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4.2.2 �+ � 6= 0

In this case, (� + �)2 can be factorized in (35), and the equation for N = 0 becomes

 
1 + ��

� + �

!2

+ q21(� + �)2 = 1; (41)

which is the equation for the ergosphere surfaces. It is a fourth degree surface, and for the
representation of this surface, it is useful to express it through a parametric representation
with the help of a parameter � , such that, 

1 + ��

� + �

!2

= cos2 �; q2
1
(�+ �)2 = sin2 �: (42)

We can see from (42) that it is a bounded closed surface for any value of the q1 parameter.
We have plotted some curves, which are intersections of this surface by the meridian plane
� = 0, for di�erent values of the parameter 1 � q1 > 0, as shown in �gs. 1-10. These
curves present the following interesting features.

� When q1 ! 0 the aspect of the ergospheres and horizons tends towards the aspect
of the Kerr extreme black hole (e.g. see �g.4 of [8]), as shown in �g.1.

� When q1 increases its value the aspect of the ergospheres remarkably di�ers from
this of a Kerr black hole, as shown in �gs. 2-5. Specially, we can notice, the
surface of the exterior ergosphere becomes double, presenting some thickness being
a two-sheet torus. It is the same for the interior ergosphere.

� For a de�ned value of q1, near q1 � 0:5, the exterior ergosphere opens itself on the
axis � = 0 (� = �=2), as shown in �gs. 6-8. Then the event-horizon becomes naked
in a certain angular aperture, whereas the Kerr event-horizon is always dressed by
the exterior surface of the ergosphere. Thus, on this spatial portion, the Penrose
process [2] is no longer able to take place. This special topology of the ergosphere
indicates, also here, a di�erence with the Kerr metric.

� The evolution of the interior part of the ergosphere, for increasing values of q1, looks
intricate, with, particularly, the advent from the center of a new curve, as shown
in �gs. 3-4, with a four-leaved clover shape, which grows up until to pass beyond
the Cauchy horizon, as shown in �gs. 8-9, which of course vanishes when q1 = 1
(M = k), as shown in �g. 10. This complicated behaviour presents, also here, an
important di�erence with the Kerr metric, because in this last case, the Cauchy
horizon always covers the interior ergosphere.

Figs. 1{10 show the parametric plots of the curves describing the intersections of
the interior and exterior ergospheres,de�ned by eq.(4.1), with the meridian plane � = 0
for di�erent values of the parameter q1 in the range [10�2; 1]. The vertical axis is z.
The ergospheres are the axisymmetric surfaces which can be generated by rotation of the
curves around the z-axis. The event-horizon and Cauchy-horizon are also represented
(circles of radius reh = M + k, rch = M � k, respectively). The mass M has been �xed
to the value M = 4. k is given by eq.(29).
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4.3 Singularities

The singularities correspond, when they exist, to curves or surfaces de�ned by D = 0
from (36). We see that D is a sum of squares and it can vanish only in two cases:

4.3.1 1 + �� = 0 and �+ � = 0

This system of equations is the same as studied in 4.2.1, and corresponds to the two points
(38) and (39) of the horizons where N = 0. Since, after raising the indetermination of
the ratio N=D, the limit (40) is �nite and zero, these two points are not singular.

4.3.2 1 + �� = 0 and q1(� + �) = �1
Or, equivalently,

� = �1

�
; (43)

q1�
2 + � � q1 = 0: (44)

The polynomial (44) always has two roots,

�� =
�1�p�

2q1
; � = 1 + 4q21; (45)

that gives the two solutions,

�+ =
�1 +p�

2q1
; �+ = � 1

�+
; (46)

and

�� = �1 +
p
�

2q1
; �� = � 1

��
: (47)

The �rst solution, (46), produces 0 � �+ � 1, while the second, (47), produces j��j > 1,
hence it has to be rejected. From (46) with (26), we have

r+ = M

 
1 +

2q21
1�p�

!
; (48)

which gives r+ < rch = M � k, hence the two ring singularities (48), which are the
solutions for �+ = cos(��+), are inside the Cauchy horizon and so, a fortiori, inside the
event horizon. There are no naked singularities.

5 Conclusion

It has been proposed a new axially symmetrical stationary vacuum solution (15) of Ernst
equation. Unfortunately, this solution does not satisfy the aymptotical 
atness. Only after
performing an Ehlers transformation and an unitary transformation, the solution (22)-(24)
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achieves the appropriate physical asymptotical 
atness. Three arbitrary parameters were
introduced in this process and interpreted from the asymptotical properties of the solution
related to the total mass of its source and its angular momentum. We did not succeed
to obtain the Kerr limit of the solution, however we know that it does exist because
of the uniqueness theorem, since this new solution has asymptotical 
atness and does
not present naked singularities. One of the parameters introduced shapes the ergosphere
demonstrating big di�erences to the Kerr solution. When this parameter vanishes the
solution becomes the extreme Kerr black hole. We might conjecture that the solution
(22)-(24) represents a distorted stationary black hole as obtained in the static case [9].
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Figure 1: q1 = 0:01, reh = 4:04, rch = 3:96.
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Figure 2: q1 = 0:04, reh = 4:16, rch = 3:84.
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Figure 3: q1 = 0:1, reh = 4:4, rch = 3:6.
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Figure 4: q1 = 0:25, reh = 5, rch = 3.
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Figure 5: q1 = 0:4, reh = 5:6, rch = 2:4.
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Figure 6: q1 = 0:5, reh = 6, rch = 2.
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Figure 7: q1 = 0:6, reh = 6:4, rch = 1:6.
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Figure 8: q1 = 0:75, reh = 7, rch = 1.
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Figure 9: q1 = 0:9, reh = 7:6, rch = 0:4.
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Figure 10: q1 = 1, reh = 8, rch = 0.


