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Analysis of Maxwell Equations in a Gravitational Field
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In a gravitational field, we analyze the Maxwell equations, the correponding electromagnetic wave

and continuity equations. A particular solution for parellel electric and magnetic fields in a grav-

itational background is presented. These solutions also satisfy the free-wave equations and the

phenomenology suggested by plasma physics.
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I Introduction

Plasma and Astrophysical Plasma physicists sup-
port the possible existence of electromagnetic station-
ary waves with parallel E and B fields and consequently
having a null Poynting vector [1, 8]. K.R. Brownstein
[1] points out that these waves may emerge as solutions
of the vector equation VxV=kV ((7 is a vector field
and k is a positive constant). Brownstein considers this
equation for the vector potential A as

V xA=kA, (1)
with a particular solution
A=a [z sin kz + j cos kz] cos wt (2)

and takes the associated electric and magnetic field as

n 1 94 . . ,
E=- vy = ka [zsmkz—i—jcoska] sinwt  (3)

and

—

B

VxA=ka [ismkz + jcos kz] coswt . (4)

The Brownstein fields (1.3) and (1.4) satisfy Maxwell
equations and the_usual vacuum free-wave equation.
Moreover, fields, ¥ and B and the vector potential,

f_l’, are parallel everywhere. The associated electromag-
netic wave has a null Poynting vector and, so, does not
propagate energy. The behavior of this wave 1s just
like the phenomenology suggested by Plasma and As-
trophysical Plasma Physics.

But it is pointed out [9] that this model is not com-
plete, at least for Astrophysical Plasma. There it is ar-
gued that in an Astrophysical Plasma, gravitation must
be taken into account in a way that the gravitational
background can break the parellelism between the fields
E and B. Consequently, the corresponding eletromag-
netic wave does not have a null Poynting vector. It is
not a stationary wave and propagates energy.

In this work, we consider the electromagnetic and
gravitional coupling and we analyze, in a gravitational
background, the corresponding Maxwell equations. We
get the associated free-wave equation for fields E and
B and discuss the corresponding electrostatic regime.
That is, the situation in a gravitational background in
which the field £ does not induce the field B and vice-

versa.

And we show that, in a particular situation, electric
field £ may depend on time but does not induce mag-
netic field B with or without sources. Finally we show
particular electrostatic and magnetostatic solutions for
Maxwell equations without sources in a gravitational
background. These solutions are such that the elec-



tric field, Eo and the magnetic field, éo, both satisfy
the corresponding free-wave equations. Moroever these
fields behave as the phenomenology in Plasma Astro-
physics has suggested, that is, Eo and Bo are paral-
lel fields. Thus, the assoc1ated electromagnetic wave
is stationary, has a null vector Poynting and does not
propagate energy.

II Electromagnetic and Gravita-
tional Coupling

The action for the gravitaional and electromagnetic
coupling is written as

S = /\/—_g (- i FWFW) d*s (1)

requiring stationary action (65 = 0) the corresponding
Maxwell inhomogeneous equations in a gravitational
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background are
DyFr =J4 | (2)
where the covariant derivative above is given as:
D F" = 0, " + TS 4+ T D =77 . (3)
The corresponding homogeneous Maxwell equations are

DMFVp+DVFpu +DpFuy :0 . (4)

The connection terms of this equation cancel each other
in such a way that this equation is the usual homoge-
neous Maxwell equation

auFI/p—i—aVFpu—i—apFuy :0 . (5)

Finally, to analyse these equations we adopt the F.R.W.
cosmological metric

ds? = dt* — (a(t))” { (1= 4r%) ™ dr? 4 r?d0% + 17 sin® 0d” | | (6)

where the term a(?) is the scale factor and the con-
stant A may assume values A = 1,0, —1. Each value
represents the associated curvature of F.R.W. spatial
metric.

The second term T, of the covariant derivative
equation (2.3) can be written as

oh
e ()

FZA = -

where
h=1In\/—g (8)
and g is the metric determinant. In terms of the electric

field, £* = F% and the magnetic field B! = Eiijjk,
the Maxwell eq. (2.4) and (2.3) are explicitly given by

6~E_’:p(5)+6h~E_’, (9)

V-B=0, (10)
S 0B

E=-2— 11

V x 5 (11)

S = o OE  Oh
VxB=J@)+——-—E+VhxB. (12
. @)+ g0~ PV (12)
Taking the divergence of equation (2.12) and using eq.
(2.9) we get the continuity equation in a gravitational

background
dp Oh - - o -
- - = V- J-Vh-J=0. 13
ot o P (13)

which is expressed in a covariant way as
Dyt =0, (14)

where the covariant derivative is D, = 0, — d,h.

Without electromagnetic sources (p = 0 ; J = 0)
the free electromagnetic field equations in a gravita-
tional background are:

V-E=Vh-E, (15)
V.B=0, (16)
- - 0B
VxE=—"" 17
X o (17)
- - OFE 0h 2 = =
B="2_-""FE+VhxB. 1
v x =~ 5 E+Vhx (18)

Taking the curl of equation (2.17), using equations
(2.15) and (2.18) and, since Vh does not depend ex-
plicitly on time, we get the free-wave equation in a
gravitational background for the electric field:
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Similarly, taking the curl of eq. (2.18), and using
eq. (2.16) and, since 5 does not depend explicitly on

the spatial coordinates, we get the free-wave equation
in a gravitational background for the magnetic field:

ot ot

i B s en i
VB——:—VX(thB)—

— . (20)

III Analysis of Maxwell Equa-
tions in a Gravitational
Background

Now we analyze the necessary conditions to obtain
electrostatic and magnetostatic solutions in the grav-
itational background, that is, the conditions that the
electric field £ and the magnetic field B must satisfy
in order that the electric field E does not induce the
magnetic field B and vice-versa.

Fromeq. (2.11) it is clear that the gravitational field
does not modify the Faraday’s law and so it is simple
to conclude that the magnetic field B must be station-
ary in order not to induce an electric field E. On the
other hand, the Ampére Law (2.12) has been modified
by gravitation. Thus, it is simple to see that even if the

—

. . . oF . .
electric field 1s stationary (E = 0) it may induce a

magnetic field B from the gravitation term —— E. For

example, if we have a non-null stationary electric field

E -
(%t =0; E + 0) and no current density (j = 0), eq.
I how - .
2.18) becomes V x B = — 6—E—|—Vh><Bandsoit
Jt

implies that we necessarily have a non-null magnetic
field B since B = 0 is not solution for this equation.
From eq. (2.12) it is clear that even if the electric field
E depends on time it shall not induce a magnetic field
B provided the condition below is satisfied:

OE  Oh -
— - — EF=0. 1
ot ot 0 (1)
From condition (3.1) and from eq. (2.9) it is simple
to verify that the electric field E(# t) and the charge
density p(t) can be written as:

3
(G7)
ot = - o
e —Vhx (V x E) (19)
|
and

(a(t)*)po(7) ; (3)

where Eo(ﬁ is a stationary vector field and pg(F) is
stationary “charge density”. Furthermore the current
density J must satisfy the equation:

p(7 1) =

V-J=Vh-J=0 (4)
If the conditions (3.1)-(3.4) are verified and if the mag-

netic field B is static, the electrostatic and magneto-
static field-equations become

V-B=0, (5)
VxB=j+VhxB, (6)
V- Eo=po(F)+ Vh-Ey (7)
VxEy=0. (8)

Any solution of equation (3.4)-(3.6) for the charge
current density f(f’, t) and for the magnetic field,
B(7,t), can be combined with any solution of equations
(3.2), (3.3), (3.7) and (3.8). So under these conditions
the magnetic field, B(7,1), does not induce the electric
field, E(7,t), and vice-versa. This way we call these
equations magnetostatic and electrostatic, but we must
remember the electric field is not static but depends on
time according to eq. (3.2).

IV  Solutions for Maxwell Equa-
tions without Sources in a
Gravitational Scenery

We now consider the Maxwell equations (2.9)-(2.12)
without sources (p = 0 ; J= 0) with the condition that
the electric field E(F,t) satisfies eq. (3.1) and that the
magnetic field B does not depend explicitly on time.
The Maxwell equations for the electrostatic and mag-
netostatic field-equations without sources in a gravita-

tional field (3.5)-(3.8) are given by:

ol

V-B=0, (1)

hxB, (2)

<

VxB=



V-Ey=Vh- By, (3)
VxEy=0. (4)
A particular solution in spherical coordinates is

— Brny=a YO o

rsinf

"~ 7 osind
and

=, r R

B =0 o )
where o and § are constants and ¢ is the unit azimutal
vector: ¢ = (—ising + jcos ®).

A simple substitution show that these fields satisfy
all the Maxwell equations without sources (2.15)-(2.18).
It is interesting to point out that the electric and mag-
netic fields are parallel and satisfy the free-wave eq.
(2.19) and eq. (2.20). The electromagnetic wave has
parallel electric and magnetic fields, has a null Poynt-
ing vector, it is a stationary wave and it does not prop-
agate energy as suggested by the Astrophysical Plasma
phenomenology.

The term Vh and the unitary azimutal vector ¢ are
perpendicular vectors, so (¢, 6/1, @ % ﬁh) form a com-
plete set and any vector can be written as:

V =Vop+ VaVh+ Vor(p x V) (7)

The vector components V,,, V5 and V,, may de-
pend on time and spatial coordinates. General solutions
E(7,t) and é(f’,t) for Maxwell equations in a gravi-
tational background using the ansatz (4.7) are being
considered.

We conclude that in astrophysical plasma it 1s im-
portant to consider electromagnetic and gravitational
coupling and this coupling modifies the free-wave equa-
tions for electric and magnetic fields.
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