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Abstract

We consider the �
4!('

4
1 + '4

2) model on a d-dimensional Euclidean space, where all but one of

the coordinates are unbounded. Translation invariance along the bounded coordinate, z, which

lies in the interval [0; L], is broken because of the boundary conditions (BC's) chosen for the

hyperplanes z = 0 and z = L. Two di�erent possibilities for these BC's boundary conditions

are considered: DD and NN , where D denotes Dirichlet and N Newmann, respectively. The

renormalization procedure up to one-loop order is applied, obtaining two main results. The �rst

is the fact that the renormalization program requires the introduction of counterterms which are

surface interactions. The second one is that the tadpole graphs for DD and NN have the same z

dependent part in modulus but with opposite signs. We investigate the relevance of this fact to

the elimination of surface divergences.
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1 Introduction

In this paper we consider an interacting quantum �eld theory model in the presence of boundaries.

We shall assume that the system is �nite along one dimension z 2 [0; L], and in�nitely extended

along the remaining (d� 1) directions.

The presence of geometric restrictions on the domain of one of the coordinates of the system,

demands the introduction of classical boundary conditions, to be satis�ed by the �elds on the

two hypersurfaces at z = 0 and z = L. If we restrict ourselves to a real scalar �eld, Hermiticity

of the Hamiltonian leads us to �ve di�erent (inequivalent) choices for the BC's, namely: DD,

NN , DN , periodic and anti-periodic. The last two choices are usual in the �nite-temperature

literature, and shall not be dealt with here, since they don't break translation invariance, which

is the phenomenon we are concerned with.

Physical systems will be, in general, �nite along several directions. For the sake of simplicity

we will consider a d-dimensional layered geometry. Although the highly idealized case of planar

boundaries misses a whole series of features that are present in the general, curved boundary

case, for more general shapes the multiple re
ection method can be used to �nd the correlation

functions of the model [1].

Most of the papers in the literature deal with periodic or anti-periodic boundary conditions,

where translation symmetry is maintained, and surface e�ects avoided. Moreover, in quantum

systems where translation symmetry is broken, the renormalization procedure is more involved

than for translation invariant systems, either bounded or unbounded.

The diagrammatic expansion and the renormalization program for an unbounded system is

conveniently performed in momentum space. On the other hand, when DD or NN BC's are

implemented, one may still work with Green's functions at �xed (d�1) dimensionalmomenta, since

there is translation symmetry along those dimensions. As discussed by many authors, associated
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with the breaking of translational invariance, a new feature emerges: the existence of one particle

reducible primitively divergent diagrams. For example, the bare two-point function G0(x; x0) of the

scalar model with zero, one or two points on the surfaces have di�erent renormalization constants,

respectively.

In this paper we will consider a scalar theory subject to two di�erent classical BC's: DD and

NN . Besides the lack of translational invariance, we shall face the problem of surface divergences.

One way to avoid them is to smooth out the plates surface. But in this case an ambiguity appears,

since loop-graphs will depend on an ad-hoc model assumption, namely, the particular features of

the smooth walls. Consequently, we prefer to maintain the hard walls assumption. In the context

of the Casimir energy of minimally coupled scalar �elds, many authors used soft, hard and semi-

hard BC's [2]. Di�erent questions sometimes require more complicated BC's, like the quantum

mechanical treatment of the boundary conditions presented by Ford and Svaiter [3], a device

implemented to solve a long standing paradox concerning the renormalized energy of minimally

and conformally coupled scalar �elds.

Besides the above mentioned e�ects due to the existence of surfaces and the breaking of trans-

lation symmetry, we do also have, of course, �nite size e�ects, which are of a di�erent nature.

Various investigations have been made on this subject, mostly from the quantum statistical me-

chanics point of view, and we present a short review here. Pathria and co-workers studied the

Bose-Einstein condensation of an ideal relativistic Bose-gas con�ned to a rectangular box of sizes

L1; L2 and L3 with periodic boundary conditions on all the walls [4]. A systematic study of �nite

size systems and phase transitions was developed by Brezin and Zinn-Justin [5]. These authors

studied the O(N) model in two di�erent geometries: the periodic cube and the cylinder along one

dimension (the time) and �nite and periodic in the (d � 1) remaining dimensions. Nemirovsky

and Freed considered the same model but in a `complementary' situation regarding the boundary

conditions, namely, (d � 1) dimensions are unbounded, and periodicity along the only �nite di-
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mension, and [6]. Afterwards, Singh and Pathria studied the O(N)d model con�ned to geometries

with periodic boundary conditions in all directions [7]. The same model in the presence of one

mirror localized at z = 0 was also studied by many authors [8].

Another ingredient, important in �nite size systems at criticality, is the concept of �nite size

scaling. Let us consider a �nite system of linear size L and suppose a thermodynamic quantity

PL(t) (where t is the reduced temperature) becomes singular as t ! 0. De�ning PL(t)
P (t)

= g(L; t),

where P (t) is the bulk value of PL(t), the statement of �nite size scaling is that g(L; t) = f(L=�(t)),

where �(t) is the correlation length. In other words, �nite size scaling predicts that, for large L,

the dependence on L of the singular contributions to thermodynamics functions scales with the

correlation length, and is described by universal scaling functions. It may be pointed out that

�nite size systems must be classi�ed in two distinct groups with respect to �nite size scaling,

depending on whether the B.C.'s break translation invariance or not. For �nite size systems where

translation invariance is maintained (for example, a periodic cube, or a cylinder in�nite along one

dimension, and �nite and periodic in the (d � 1) other dimensions), �nite size scaling is easily

understood.

The renormalization group equations are insensitive to �nite size e�ects (since the renormaliza-

tion is related to short distance singularities) and must, accordingly, be maintained in such �nite

size geometries. However, the solutions to those equations must be di�erent from those for the

unconstrained systems, because correlation functions can depend on the additional dimensional

quantities (the lengths of the compacti�ed dimensions) and �nite size scaling is present.

For the cases of DD, NN or DN B.C.'s, the situation is quite di�erent, since it is much more

di�cult to decide if a given interaction is relevant, irrelevant or marginal, the reason being that

the propagator of the critical theory satis�es B.C.'s which can interfere with the power counting.

Finite size e�ects have also been extensively studied in the quantum �eld theory context

during the last twenty years. In 
at spacetime with one compacti�ed dimension, the mass can
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depend upon the periodicity length [9]. This phenomenon is of particular interest in theories with

broken symmetry, as it allows topological e�ects to play a role in the restoration of symmetry.

An equivalent mechanism is at work when we assume that the �elds are in thermal equilibrium

with a reservoir at temperature ��1 [10]. Finite size e�ects in quantum �eld theory with periodic

boundary conditions in the spatial section at �nite temperature was analyzed by many authors.

See, for example, [11], and references therein.

In the context of non-Abelian gauge �eld theories at zero temperature, cavity QCD was studied

by many authors [12]. Hanson and Ja�e and also Hanson, Jonhson and Peterson dealt with

quantum �elds in bounded domains with broken translation invariance. Regarding Abelian gauge

theories, quantum electrodynamics in the presence of conducting plates has also been the focus

of research [13]. Based on the fact that the B.C.'s for the electron �eld could lead to additional

contributions to the Casimir force, Bordag et al. and also Robaschik et al. adopted the following

model. A photon �eld obeys classical B.C.'s on perfectly conducting plates, while the B.C's for

the fermion �eld are free. These authors assumed that the electromagnetic �eld also exists in the

region outside the plates (two simple connected domains). Chodos and Thorn investigated the

self-energy of fermions used di�erent B.C's (the slab-bag), where the fermionic �eld is con�ned

between two parallel plates and the photon �eld is uncon�ned. In 
at spacetime, for systems where

some dimensions are compacti�ed but translational invariance is maintained, Toms [14] and also

Birrel and Ford [15] have shown that all the counterterms are independent on the compacti�ed

spatial size. A more general discussion has been given by Banach [16]. This author proved that a

topological identi�cation (periodic or anti-periodic B.C.'s) does not introduce new counterterms

into the theory. As stressed by many authors, were this not the case there would be a catastrophe

in the renormalizability of the model.

For translation invariant systems, because of Poincar�e invariance, one should expect that over-

lapping divergences will not obstruct the implementation of the renormalization program [17]. In



{ 5 { CBPF-NF-052/99

systems where Poincar�e invariance does not hold, these proofs do not apply, and one must show

that it is still possible to implement such program. A technical di�culty is also met here, since the

presence of geometric restrictions makes Feynman diagrams harder to compute than is ordinary

quantum �eld theory in unbounded systems. An crucial work on this subject has been presented

by Symanzik [18]. Of particular importance are also the papers by Nemirovsky and Freed, and

Krech and Dietrich [19].

In this work we shall consider an anisotropic scalar model, in a d-dimensional Euclidean space,

where the �rst (d � 1) coordinates are unbounded and the last one lies in the interval [0; L]. We

analyze two di�erent translation symmetry breaking B.C.'s: DD and NN on the plates. We �rst

present a rederivation of the fact that to renormalize the theory one has to introduce counterterms

as surface interactions. We also show that the tadpole graphs for DD and for NN B.C.'s have

the same modulus for their z-dependent parts, but their signs are opposite. We study the possible

use of this property to get rid of the surface divergences.

The organization of the paper is as follows: In section II we present the general formalism. In

section III we discuss the slab con�gurations, dealing with the two-point and four-point functions,

both for DD and NN b.c. In section IV we analyze the divergences of the translational invariant

part of the tadpoles. Section V deals with the analysis of the ultraviolet and infrared divergences

of the z-dependent part of the tadpoles. Finally, section VI contains our conclusions. Throughout

this paper we use �h = c = 1.

2 General formalism and the scalar anisotropic model

Let us consider Z[J ], the generating functional of complete Green's functions for a scalar �eld
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in a d-dimensional Euclidean space

Z[J ] =

Z
D' e�S[']+

R
J(x)'(x) (1)

where

S['] =

Z
ddx[L('(x); @'(x))] ; (2)

D' is the appropriate measure, and S['] is the classical action associated with the scalar �eld.

The quantity Z[J ] can be regarded as a functional integral representation for the imaginary time

evolution operator h'2jU(t2; t1) j'1i with the boundary conditions: '(t1; x) = '1(~x) and '(t2; x) =

'2(~x). The quantity Z[J ] gives the transition amplitude from the initial state j'1i to the �nal state

j'2i in the presence of some scalar source J(x), of compact support. Regarding the Lagrangian

density L, we shall assume it to be

L(') = 1

2
(@')2 +

1

2
m2'2 +

1

4!
�'4 : (3)

The n-point correlation functions are given by the expectation value with respect to the weight

e�S(') de�ned as

G(n)(x1; x2; ::; xn) =< '(x1):::'(xn) > =
1

Z(J)

�nZ(J)

�J(x1)�J(x2)::�J(xn)
jJ=0

=

Z
D''(x1):::'(xn)e�S['] : (4)

As usual, W (J), the generating functional for connected correlation functions of the elementary

�elds shall be given by W (J) = lnZ(J). Thus

G(n)
c (x1; x2; ::; xn) =

�nW (J)

�J(x1)�J(x2)::�J(xn)
jJ=0 =< '(x1):::'(xn) >c : (5)

Finally, �('0), the generating functional of connected one-particle irreducible correlation functions

is introduced by performing a Legendre transformation on W [J ],

�('0) = �W (J) +

Z
ddx'(x)J(x) (6)
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and

�(n)(x1; x2; ::; xn) =
�n�('0)

�'0(x1)�'0(x2)::�'0(xn)
j'0=0 (7)

where

'0(x) =
�W

�J(x)
: (8)

If � = 0 the partition function Z(J) can be calculated exactly i.e.

Z0(J) = exp

�
1

2

Z
ddxddy J(x)D(x� y;m2)J(y)

�
; (9)

where

(��x +m2)D(x � y;m2) = �d(x� y): (10)

For � 6= 0 it is not possible to �nd exactly Z(J) and perturbation theory is mandatory. This

expansion stems from the formal identity:

Z(J) = exp

"
� �

4!

Z
ddx

�
�

�J(x)

�4
#
Z0(J): (11)

>From now on, we shall consider a generalization of the previous case, namely, the anisotropic

Landau-Ginzburg model for a N = 2 component order parameter with a Lagrange density L =

L0 + Lint, where

L0('1; '2) =
1

2
(@'1)

2 +
1

2
(@'2)

2 +
1

2
m2'2

1 +
1

2
m2'2

2 (12)

and

Lint =
�

4!
('4

1 + '4
2): (13)

To generate the n-point functions we have to introduce two scalar sources J1(x) and J2(x) coupled

linearly with the �elds '1(x) and '2(x) respectively. Integrating out the �elds, we obtain Z(J1)

and Z(J2) and the total partition function of the model factorizes: Z(J1; J2) = Z(J1)Z(J2), where

Z(J1;2) =
1

N1;2
exp

 
� �

4!

Z
ddx

�
�

�J1;2(x)

�4
!
Z0(J1;2): (14)
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and

Z0(J1;2) = exp

�
1

2

Z
ddxddy J1;2(x)G

(2)
1;2(x� y;m2)J1;2(y)

�
; : (15)

In the above equation, G
(2)
1 (x� y;m2) and G

(2)
2 (x � y;m2) are the free propagators, solutions of

the inhomogeneous equations (i = 1; 2).

(��x +m2)G
(2)
i (x� y;m2) = �d(x� y): (16)

The partition function applies to arbitrary geometries, and classical B.C.'s must be implemented

on the Green's functions. As discussed before, we will assume that the system is con�ned between

two parallel plates localized at z = 0 and z = L, and use the Cartesian coordinates x� = (~r; z)

where ~r is a (d � 1) dimensional vector perpendicular to the z direction. A question that arises

in such a model is related to the renormalization conditions. It is well known that for �elds inter-

acting with a thermal bath de�ned in manifolds where the spacelike sections are non-compact the

mass and coupling constant counterterms are temperature independent. Using dimensional regu-

larization [20] it was proved that for �elds de�ned on manifolds where the spacelike sections are

non-compact, or compact in at least one dimension, but with the other dimensions noncompact-

i�ed, the mass and coupling constant counterterms are size and temperature independent at the

two-loop level. In a perturbative scheme, the renormalized theory is �xed by the renormalization

conditions for the super�cially divergent vertex functions (the one particle irreducible parts of the

connected Green's functions). In other words, in the conventional renormalizable (translational

invariant) theory the ultraviolet divergences can be absorbed by counterterms related to the �eld,

mass and coupling constant. A question of fundamental importance is how the renormalization

program can be implemented in systems where translational invariance is broken. The purpose of

the next section is to analyze this question for the case of the anisotropic model at the one-loop

approximation.
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3 Finite size e�ects and classical boundary conditions

For the cubic anisotropic model, we de�ne the boundary conditions over the plates for the

�elds '1(x) and '2(x). For the '1(x) �eld we assume Dirichlet-Dirichlet boundary conditions i.e:

'1(~r; z)jz=0 = '1(~r; z)jz=L = 0; (17)

and for the '2(x) we will assume Newmann-Newmann boundary conditions, i.e.:

@

@z
'2(~r; z)jz=0 =

@

@z
'2(~r; z)jz=L = 0: (18)

It is well known that 4He �lms close to the � transition satis�es DD b.c. Another well known

example of such kind of boundary conditions is the electromagnetic �eld. It was shown that

for an electromagnetic �eld con�ned in a perfectly conducting cavity, it is possible to treat the

electric and magnetic modes separately, where each one satis�es Dirichlet and Newmann B.C.'s,

respectively [21]. Going back to our discussion, since the translational invariance is not preserved,

let us use a Fourier expansion of the �elds in the following form:

'(~r; z) =
1

(2�)
d�1

2

Z
dd�1p

X
n

�n(~p)e
i~p:~run(z): (19)

where the un(z) are the normalized eigenfunctions of the operator � d2

dz2
satisfying the completeness

and orthonormality relations, i.e.,

X
n

un(z)u
�
n(z

0) = �(z � z0); (20)

Z L

0

dz un(z)u
�
n0(z) = �n;n0 ; (21)

and �nally

� d

dz2
un(z) = k2nun(z); (22)
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where kn =
n�
L
, n = 1; 2:: for DD b.c and n = 0; 1; 2:: for NN b.c.

It should be noted that this kind of expansion in an orthonormal set corresponding to the

eigenfunctions of the Hermitian operator � d2

dz2
de�ned on a �nite interval could be quite straight-

forwardly generalized to di�erent anisotropic models. For example, we might consider a scalar

�eld de�ned on Euclidean space with all the coordinates unbounded, but with a mass having an

anisotropy along the z coordinate. Namely, the Lagrangian density could be

L =
1

2
(@')2 +

1

2
(m2 + �2(z))'2 +

�

4!
'4 ; (23)

which is, of course, non invariant under translations in z, except for the trivial case of a constant

�(z). If now we assume the un(z)'s to denote the normalized eigenfunctions of the Hermitian

operator

h = � d2

dz2
+ �(z) ; (24)

with

hun(z) = �2nun(z) ; (25)

the expansion (19) still holds. We assume � to be a non negative function, so that h is de�nite

positive.

We see that the case of Dirichlet B.C.'s could be obtained starting from an unbounded z

coordinate, and using the anisotropic mass �(z) = �( z
L
)n, with n ! 1, and � a (positive)

constant. For a study of Dirac fermions with a space dependent mass see for example ref. [22].

Coming back to the case of DD and NN boundary conditions, the eigenfunctions are, respec-

tively,

un(z) =

r
2

L
sin(

n�z

L
) n = 1; 2:: (26)

and

un(z) =

r
2

L
cos(

n�z

L
) n = 1; 2; � � � : (27)
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For NN B.C.'s, we also have the zero mode u0(z) =
1p
L
. The free propagator can be expressed in

the following form:

G
(2)
0 (~r; z; z0) =

1

(2�)d�1

Z
dd�1p

X
n

ei~p:~run(z)u
�
n(z

0)G0;n(~p); (28)

where is not di�cult to show that G0;n(~p) is given by

G0;n(~p) = (~p 2 + k2n +m2)�1: (29)

For the anisotropic mass case, we would have instead:

G0;n(~p) = (~p 2 + �2n +m2)�1: (30)

As we discussed before, for translational invariant systems we have G
(2)
0 (x; x0) = G

(2)
0 (x � x0)

and from coordinate space Feynman rules we can go to momentum space representation, which is

the more convenient framework to analyze the divergences of the theory. Translation invariance is

re
ected in momentum conservation conditions. Since our system possesses translation invariance

along the direction parallel to the plates, the parallel momentum, ~p, is conserved. In this case

a convenient representation is a mixed (~p; z) space. The Feynman rules for di�erent boundary

conditions was derived in many references and we will not repeat the rules here. For a careful

study of Feynman rules in such systems see for example Ref. [23]. Let us study the one-loop

correction to the bare two-point function G
(2)
0 (x; x0), both for the DD and NN cases. Using the

Feynman rules (see �g.(1)) we have:

G
(2)
0 (�; ~r1; z1; ~r3; z3) =

�

2

Z
dd�1r2

Z L

0

dz2G
(2)
0 (~r1; z1;~r2; z2)G

(2)
0 (~r2; z2;~r2; z2)G

(2)
0 (~r2; z2;~r3; z3):

(31)

or

G
(2)
0 (�; ~r1; z1; ~r3; z3) =

�

2

Z
dd�1r2

Z L

0

dz2G
(2)
0 (~r1 � ~r2; z1; z2)G

(2)
0 (~0; z2)G

(2)
0 (~r2 � ~r3; z2; z3): (32)
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. ..

Figure 1: The two point function for '1(x)

(~r1; z1) (~r2; z2) (~r3; z3)

Each of these expressions can, for the case of DD B.C.'s, be expanded as

G
(2)
0 (~r1 � ~r2; z1; z2) =

2

L

1

(2�)d�1

1X
n=1

sin(
n�z1
L

) sin(
n�z2
L

)

Z
dd�1p

ei~p:(~r1�~r2)

(~p 2 + (n�
L
)2 +m2)

: (33)

G
(2)
0 (~r2 � ~r3; z2; z3) =

2

L

1

(2�)d�1

1X
n0=1

sin(
n�z2
L

) sin(
n�z3
L

)

Z
dd�1p

ei~p:(~r2�~r3)

(~p 2 + (n
0�
L
)2 +m2)

; (34)

and �nally

G
(2)
0 (~0; z2) =

2

L

1

(2�)d�1

1X
n00=1

sin2
n00�z2
L

Z
dd�1p

1

(~p 2 + (n
00�
L
)2 +m2)

: (35)

Although the functions G
(2)
0 (~r1� ~r2; z1; z2) and G

(2)
0 (~r2� ~r3; z2; z3) are singular at ~r1 = ~r2, z1 = z2

and ~r2 = ~r3, z2 = z3, the singularities are integrable (for points outside the plates), consequently

only the tadpole is divergent and needs a regularization and renormalization procedure. A straight-

forward calculation yields the order � correction to the bare two-point function in the one-loop

approximation :

G
(2)
0 (�; ~r1 � ~r3; z1; z3) =

2

L2

1

(2�)d�1

Z L

0

dz2

1X
n;n0=1

sin(
n�z1
L

) sin(
n�z2
L

) sin(
n0�z2
L

) sin(
n0�z3
L

)

Z
dd�1p

ei~p(~r1�~r3)

(~p 2 + (n�
L
)2 +m2)(~p 2 + (n

0�
L
)2 +m2)

TDD(L;m; d; z2) (36)

where, since we will use dimensional regularization, we introduce a dimensional parameter �, and

de�ne g = ��4�d. The expression for the tadpole TDD(L;m; d; z) is then:

TDD(L;m; d; z) =
2g

L

1

(2�)d�1

1X
n=1

sin2(
n�z

L
)

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

: (37)
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The tadpole graph in the case of N-N B.C.'s can be also easily found, and it is given by

TNN(L;m; d; z) =
g

L

1

(2�)d�1

Z
dd�1k

1

(~k2 +m2)

+
2g

L

1

(2�)d�1

1X
n=1

cos2(
n�z

L
)

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

: (38)

Note that both TDD(L;m; d; z) and TNN(L;m; d; z) diverge in their continuum momenta integrals

and also in the n summation. In the next section we will analyze the ultraviolet behaviour of

the bare two-point functions i.e TDD(L;m; d; z) and TNN(L;m; d; z) . Before dealing with the

renormalization of the one-loop two point function, let us, by the sake of completeness, discuss

the bare four-point function. The expression for the bare four-point function is given below,

and the same analysis of the divergences can be done. In this paper we will not implement the

renormalization program of the four point-function (which follows using the same procedure used in

the two-point function). Our object of interest is the two-point function, since it is the fundamental

quantity that measures the vacuum activity. Using the Feynman rules, G(4)
0 (�; x1; x2; x3; x4), the

order �2 correction to the bare four-point function, is given by

G
(4)
0 (�; ~r1; z1; ~r2; z2; ~r5; z5; ~r6; z6) =

1

2

Z
dd�1r3

Z
dd�1r4

Z L

0

dz3

Z L

0

dz4 G
(2)
0 (~r1 � ~r3; z1; z3)

G
(2)
0 (~r2 � ~r3; z2; z3)[G

(2)
0 (~r3 � ~r4; z3; z4)]

2G
(2)
0 (~r4 � ~r5; z4; z5)G

(2)
0 (~r4 � ~r6; z4; z6): (39)

Figure 2: The four point function for '1(x)

(~r1; z1)

(~r2; z2)

(~r6; z6)

(~r5; z5)

(~r3; z3) (~r4; z4)

Again, all G0's are singular at the same points, but the singularities are integrable, except for

G
(2)
0 (~r3; z3; ~r4; z4), consequently, to renormalize the bare four-point function we have the regularize
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the 1PI four-point function �(4)(�; ~r3�~r4; z3; z4) = [G
(2)
0 (�; ~r3�~r4; z3; z4)]2, which, for DD B.C.'s,

is given by

G
(2)
0 (~r3 � ~r4; z3; z4) =

2g

L

1

(2�)d�1

1X
n=1

sin(
n�z3
L

) sin(
n�z4
L

)

Z
dd�1p

ei~p:(~r3�~r4)

(~p 2 + (n�
L
)2 +m2)

: (40)

A convenient way to express G0(~r3�~r4; z3; z4) is the following. Let us de�ne ~� = ~r3�~r4, and also

z3 � z4 = u, z3 + z4 = v then it is possible to write

G
(2)
0 (~r3 � ~r4; z3; z4) = G

(2)
0 (~�; u) +G

(2)
0 (~�; v); (41)

where

G
(2)
0 (~�; u) =

g

L

1

(2�)d�1

1X
n=1

cos(
n�u

L
)

Z
dd�1p

ei~p:~�

(~p 2 + (n�
L
)2 +m2)

; (42)

and also

G
(2)
0 (~�; v) = � g

L

1

(2�)d�1

1X
n=1

cos(
n�v

L
)

Z
dd�1p

ei~p:~�

(~p 2 + (n�
L
)2 +m2)

: (43)

For simplicity let us choose m = 0 and ~� = 0. Using the fact that dd�1p = pd�2dp d
d�1 andR
d
d�1 =

2�
d�1

2

�( d�1

2
)
, a straightforward calculation yields

G
(2)
0 (~�; u; v)j�=0 = B1(d; L; u) +B2(d; L; v) +B3(d; L; v) +B4(d; L; u); (44)

where

B1(d; L; u) =
2g

L
h2(d)

Z
dk kd�3 cothLk cosh ku: (45)

B2(d; L; v) = �2g

L
h2(d)

Z
dk kd�3 coth kL cosh kv: (46)

B3(d; L; v) =
2g

L
h2(d)

Z
dk kd�3 sinh kv: (47)

and �nally

B4(d; L; u) = �2g

L
h2(d)

Z
dk kd�3 sinh ku: (48)

It is worth mentioning that the structure of the divergences of Eqs.(45-48) are the same as for the

tadpoles, as we will see. In the next section we will analyze the renormalization program for the

two-point functions in both cases of DD and NN boundary conditions.
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4 Analysis of the ultraviolet divergences of TDD(L;m; d; z)

and TNN (L;m; d; z)

The aim of this section is to analyze the structure of the divergences of the bare two-point functions

for both cases DD and NN boundary conditions. Let us start from the expression of the vacuum

activity for the case of DD boundary conditions, i.e.,

TDD(L;m; d; z) =
2g

L

1

(2�)d�1

1X
n=1

sin2(
n�z

L
)

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

: (49)

Using trigonometric identities and also the relation [24]

1X
n=1

cos nx

n2 + a2
= � 1

2a2
+

�

2a

cosh a(� � x)

sinh �a
(50)

which is valid for 0 � x � 2�, it is easy to show that the vacuum activity in the case of DD b.c.

is given by

TDD(L;m; d; z) =
g

2L

1

(2�)d�1

1X
n=�1

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

� gf2(d; L;m; z) (51)

where

f2(L;m; d; z) =
1

2

1

(2�)d�1

Z
dd�1p

1

(~p 2 +m2)
1

2

cosh((L� 2z)(~p 2 +m2)
1

2 )

sinh(L(~p 2 +m2)
1

2 )
: (52)

In an analogous way, it is also possible to calculate the vacuum activity for the NN b.c. i.e.

TNN(L;m; d; z) and we obtain

TNN(L;m; d; z) =
g

2L

1

(2�)d�1

1X
n=�1

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

+ gf2(L;m; d; z): (53)

Since TDD(L;m; d; z) and TNN(L;m; d; z) have the same functional form, both have the same kind

of ultraviolet divergences. Let us de�ne f1(L;m; d) by:

f1(L;m; d) =
1

2L

1

(2�)d�1

1X
n=�1

Z
dd�1p

1

(~p 2 + (n�
L
)2 +m2)

: (54)
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The equation above has ultraviolet divergences, but it is (formally) proportional to the tadpole

in �nite temperature �eld theory, after the identi�cation: � � 2L. To deal with the divergences

of the one-loop two-point function at �nite temperature we have to do frequency sums and (d �

1) dimensional integrals for the continuum momenta. The most popular method to deal with

Matsubara sums is to analytic extension away from the discrete complex energies down to real axis

with the replacement of the energy sums by contour integrals [25]. We prefer to use dimensional

regularization in the continuum [20], and afterwards to analytically extend the modi�ed Epstein

zeta function which appear after the dimensional regularization [26]. Since the formalism has

already been developed by Malbouisson and Svaiter in [27], we will only sketch the procedure

here. First we have to use a well known result of dimensional regularization, i.e.

Z
ddk

(k2 + a2)s
=

�
d

2

�(s)
�(s� d

2
)

1

a2s�d
; (55)

and let us de�ne the modi�ed Epstein zeta function �(z; a) by:

�(z; a) =
1X

n=�1

1

(n2 + a2)z
a2 > 0; (56)

which is analytic for Re(z) > 1
2 . It is possible to analytic extend the modi�ed Epstein zeta function

where the integral representation is valid for Re(z) < 1, [28]:

1X
n=�1

�
n2 + a2

��z
= a1�2z

"
p
�
�(z � 1

2
)

�(z)
+ 4 sin �z

Z 1

1

(t2 � 1)�zdt

e2�at � 1

#
: (57)

Using Eqs.(55) and (57) in Eq.(54), we get a polar part (size independent) plus a size dependent

analytic correction. It is clear that the mass counterterm generated by f1(L;m; d) is size indepen-

dent, as the �nite temperature �eld theory has no temperature dependent counterterm. The �rst

interesting result of the paper is given by Eqs.(51) and and (53). The tadpole graphs expressed by

TDD(L;m; d; z) and TNN(L;m; d; z) have the same z dependent part in modulus but with opposite

signs. From the above discussion it is possible to understand the �niteness of the renormalized
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stress-tensor of an electromagnetic �eld near a 
at prefectly conducting plate. Although the ex-

pectation value of the squared electric and magnetic �eld are divergent, a delicate cancellation

makes the renormalized stress-tensor �nite. As the size-dependent parts of TDD(L;m; d; z) and

TNN(L;m; d; z) have the same functional form and opposite signs, and recalling that it is possible

to treat the electric and magnetic modes separately (where one obeys DD and the other NN b.c.,

we automatically obtain a �nite result for the vacuum expectation value of the stress-tensor of the

electromagnetic �eld. It is important to stress that when the conducting boundary is curved, the

energy density diverges on the boundary [29].

To shall deal with the renormalization program in the one-loop approximation in the next

section, also discussing, for the sake of completeness, the issue of IR divergencies in di�erent

numbers of dimensions.

5 Analysis of the ultraviolet and infrared divergences of

the z-dependent part of the tadpoles

We will again use the fact that dd�1p = pd�2dp d
d�1 and
R
d
d�1 =

2�
d�1

2

�( d�1

2
)
. It should be noted

that, had we chosen m2 = 0, the ultraviolet divergences would have kept the same polar structure.

Consequently, for simplicity let us choose again m = 0, and for reasons that will become evident

latter, we �rst assume d > 3. The special case d = 3 is discussed at the end of this section.

De�ning h2(d) by:

h2(d) =
1

2d�2
1

�
d�1

2

1

�(d�12 )
; (58)

it is possible to write f2(L;m; d; z)jm=0 as

f2(L;m; d; z)jm=0 =
1

2
h2(d)

Z 1

0

dk kd�3 coth kL cosh 2kz

� h2(d)

Z 1

0

dk kd�3 cosh kz sinh kz: (59)
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In a general way, the regularization process is achieved introducing exponential cut-o� regulators

and after this the identi�cation of the poles of the regularized quantity by means of the Laurent

series expansion around some point i.e. the negative power portion of such series. Note that

instead of imposing renormalization conditions over the 1PI correlation functions we can simply

subtract the singular part of the Laurent series around some point, by the introduction of the

counterterms. Let us assume z 6= 0 and z 6= L. A straightforward calculation gives

f2(L;m; d; z)jm=0 =
1

2
h2(d)

�Z 1

0

dk kd�3(coth kL� 1) cosh 2kz

+

Z 1

0

dk kd�3(cosh 2kz � sinh 2kz)

�
: (60)

In the �rst integral for large z, (coth kL� 1) has the behavior: (coth kL� 1) � e�2kL. Moreover,

the second integral in the above equation is ultraviolet �nite for z 6= 0. Let us de�ne x = kL and

q = kz in the �rst and second integrals above respectively. Then Eq.(60) becomes:

f2(L;m; d; z)jm=0 =
1

2
h2(d)

1

Ld�2

Z 1

0

dxxd�3(cothx� 1) cosh(
2z

L
x)

+
1

2
h2(d)

1

zd�2

Z 1

0

dq qd�3(cosh 2q � sinh 2q): (61)

The second term in the above equation gives us the well known result that for a massless minimal

coupled scalar �eld < '2(x) > diverges as 1
z2

if we approach the plate [30]. In order to analyze

the polar part of f2(L; 0; d; z), we use the de�nition of the Gamma function. Let us de�ne I1(�; �)

and I2(�; �) by

I1(�; �) =

Z 1

0

dxx��1e��x =
1

��
�(�); Re(�) > 0; Re(�) > 0 (62)

and

I2(�; �) =

Z 1

0

dxx��1e��x(cothx� 1) = 21���(�)�(�;
�

2
+ 1) Re(�) > 0; Re(�) > 1; (63)

where �(z; a) is the Riemman zeta function de�ned by [24]

�(z; a) =
1X
n=0

1

(n + a)z
; Re(z) > 1; a 6= 0;�1;�2::: (64)
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Then, using Eqs. (62), (63) and (64) in Eq. (61) we have that:

f2(L;m; d; z)jm=0 =
1

2
h2(d)

1

Ld�2

h
22�d�(d � 2)

�
�(d � 2;

z

L
+ 1) + �(d � 2;� z

L
+ 1)

�i
+

1

(2z)d�2
h2(d)�(d � 2): (65)

Using the de�nition of the zeta function, it is evident that:

1

Ld�2

�
�(d � 2;

z

L
+ 1) + �(d � 2;� z

L
+ 1)

�
=

1

Ld�2

1X
n=0

1�
n+ (1 + z

L
)
�d�2 + 1

(L� z)d�2
+

1

Ld�2

1X
n=1

1�
n + (1� z

L
)
�d�2 : (66)

We see that the regularized f2(L; 0; d; z) has two poles of order (d � 2) in z = 0 and in z = L.

Note that the residues of the poles in z = 0 and in z = L are L-independent. Since the domain

of analyticity of the zeta function is d > 3, the case d = 3 must be studied separately. Di�erent

treatments for d = 3 and d = 4 simply express the fact that infrared divergences are more severe

in lower dimensions.

We will go back to Eq.(52), studying the case m2 6= 0, to see how the IR divergences pop

up in the m2 ! 0 limit. It is important to stress that, only in the N-N B.C.'s case we have IR

divergences for massless �elds, coming from the term n = 0, i.e., equations (51) and (52) are IR

�nite for m = 0. A straightforward calculation yields

f2(L;m; d; z) =
1

2
h2(d)

Z 1

0

d�
�d�2

(�2 +m2)
1

2

cosh((L� 2z)(�2 +m2)
1

2 )

sinh(L(�2 +m2)
1

2 )
: (67)

De�ning � = (�2 +m2)
1

2 and using the fact that d = 3, we have:

f2(L;m; d; z)jd=3 =
1

2
h2(3)

�Z 1

m

d� (coth�L� 1) cosh 2�z

+

Z 1

m

d� (cosh 2�z � sinh 2�z)

�
: (68)

The second integral in the above expression is convergent for z 6= 0, and de�ning v = 2�z, it

becomes:

1

4z
h2(3)

Z 1

2mz

dv e�v =
1

4z
h2(3)�(1; 2mz); (69)
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where �(a; x) is the incomplete gamma function. Consequently, we have a simple pole for z = 0.

Again, the residue of this pole is L-independent. To complete the regularization procedure we

have now to analyze the �rst integral of Eq.(68):

1

2
h2(3)

Z 1

m

d� (coth�L� 1) cosh 2�z =
1

4L
h2(3)

Z 1

mL

du
e
z

L
u

eu � 1
+

1

4L
h2(3)

Z 1

mL

du
e�

z

L
u

eu � 1
: (70)

The second integral in the right side of Eq.(70) is convergent and the �rst one has a simple pole

at z = L, again with an L-independent residue.

>From the discussion above, we can conclude that, in order to eliminate the ultraviolet diver-

gences of the theory we have to introduce counterterms as surface interactions, and consequently

the full action will have the following form for both �elds '1 and '2:

S(') =

Z L

0

dz

Z
dd�1r(

1

2
(@')2 +

1

2
m2'2 +

1

4!
�'4) +

Z
dd�1r(c1'

2(~r; 0) + c2'
2(~r; L)): (71)

As we have already taken care of the ultraviolet divergences, let us study the infrared divergent

piece (for m = 0) of f2(L;m; d; z)jd=3. Let us call this piece f�2 (L;m; d; z)jd=3. Note that we

introduce an ultraviolet cut-o� in order to use the Bernoulli representation of the integrand.

f�2 (L;m; d; z)jd=3 =
1

4L
h2(3)

�Z 2�

mL

du
e
z

L
u

eu � 1
+

Z 2�

mL

du
e�

z

L
u

eu � 1

�
: (72)

Writing the integrand using the Bernoulli polynomials it is not di�cult to show that

f�2 (L;m; 3; z) =
1

2L
h2(3)B0(

z

L
)ln(

2�

mL
) + regular part (f�2 (L;m; z)): (73)

When m! 0 we have a logarithmic divergence which is z dependent.

Going back to the case of the ultraviolet divergence, some authors claimed that the introduction

of surface counterterms is against the spirit of the renormalization program. In our case, however,

it is possible to change the model, by adding a new interaction term, in such a way that the

ultraviolet divergences coming from the f2(L;m; d; z) contributions corresponding to each �eld are

compensated. One possibility is to consider the O(2) symmetric model with a '2
1'

2
2 interaction
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term. Then the z-dependent part of each tadpole cancel each other out. The situation is similar to

the case of supersymmetric theories, where the �niteness of some correlation functions is achieved

by a balance between bosonic and fermionic loops. The O(2) symmetric model with an interaction

term '2
1'

2
2 (DD and NN B.C.'s) developes a size dependent mass �m2 proportional to gL�2, as

the '4 model at �nite temperature. In the same way as temperature can solve the IR problem in

some QFT models, �nite size e�ects can also cure these divergences, when a resummation can be

implemented.

As stressed by many authors, in the electromagnetic case, the origin of the unboundedness

renormalized stress-tensor near a curved surface has the origin in the unphysical nature of classical

"perfect conductor" boundary condition. Let us suppose the following physical situation. For the

low energy modes the manifold is [0; L]�<d�1 and for the high energy modes we have S1�<d�1,

i.e. let us assume a sharp cut-o� and for kn < � we have DD boundary conditions and for

kn � � we have periodic B.C.'s. The high frequencies do not "see" the mirror at z = 0, and

translational invariance is maintained only for these modes. If the collapse of the renormalization

program (removing in�nities from perturbative calculations using only "bulk" counterterms) is

related with the break of translational invariance, our improved model must be renormalizable. A

further study of this model may be of interest. A di�erent possibility is to construct an e�ective

action for the slow-modes and after this imposing the DD or NN b.c. [31][32].

6 Conclusions

In this paper we studied �nite size e�ects in an interacting �eld theory, with broken translation

invariance. We calculated the vacuum activity for an anisotropic model, between two parallel plates

in a d dimensional Euclidean space. It has been possible to obtain closed expressions for < '2
1(x) >

and < '2
2(x) >, for �elds satisfying DD and NN B.C.'s, respectively. For di�erent shapes,
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the complexity and the number of technical di�culties increase enormously, but the multiple

scattering method can be used in these cases [1], at least for small curvatures of the boundaries.

We presented a model having the interesting property that the z-dependent part of the tadpole

graphs for DD and NN B.C.'s have the same modulus and opposite signs. This fact could explain

the boundedness of the renormalized vacuum expectation value of the energy-stress tensor of the

electromagnetic �eld in the Casimir-like con�guration.

We have also seen that, to renormalize the theory, counterterms corresponding to surface

interactions are required. One can, however, avoid this di�culty by equipping the model with a

'2
1'

2
2 interaction. Then, the z dependent pieces of each tadpole cancel each other out, and the

two �elds develop a size dependent mass �m2 proportional to gL�2, as for the single '4 model at

�nite temperature.

There are several directions in which the �nite size e�ects for systems with breaking of trans-

lational invariance which may deserve further research. To mention a few of them: the study

of interacting fermions, the non-linear � model in domains with one �nite direction and (d � 1)

in�nite directions [33], and �nally as a straightforward extension of this work, the study of the

O(2) symmetric model at the two-loop approximation.

As discussed in the Introduction, one should prove that the the renormalization program can

be implemented beyond the one-loop approximation, where overlapping divergences emerge.
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