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Abstract

The prescription proposed by Komar in order to calculate the total gravitational mass

acting on a test particle in a given stationary asymptotically 
at spacetime is generalized

to stationary asymptotically anti-de Sitter spacetimes. It is shown that this generalized

Komar mass is di�erent from the total gravitational energy calculated by Henneaux and

Teitelboim for the Kerr-anti-de Sitter spacetime. This last total energy agrees, however,

with the total charge-energy calculated using the Brown-York action formalism.
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1 Introduction

In General Relativity, the total mass-energy of a stationary asymptotically 
at spacetime

can be calculated in di�erent ways which can be divided in two categories.

The �rst involves the hamiltonian[1, 2] or action[3] formalism and can be interpreted

as the total gravitational energy of the spacetime in question. It is analogous to the

evaluation of the energy of an electromagnetic �eld in a volume using its hamiltonian.

Their algebraic expressions coincide, asymptotically, with earlier de�nitions coming from

the Landau-Lifshitz and the Einstein energy-momentum pseudo-tensors[4, 5] in suitably

chosen coordinates in the asymptotic region.

The second uses the notion of forces or geodesics[6, 7], and the total gravitational

mass is de�ned by its e�ect on the motion of a test particle. In fact, what is evaluated in

this approach is the source of the gravitational �eld acting on a test particle (analogous

to the charge for the electromagnetic �eld): the gravitational mass. In the asymptoti-

cally 
at region, however, this mass must be equal to the total energy contained in the

stationary asymptotically 
at spacetime. The expression obtained with this method is a

generalization of the one derived from the M�ller[8] energy-momentum pseudo-tensor.

Although the general expressions for the gravitational mass-energy calculated from

these two distinct points of view were indeed completely di�erent (in the former, terms

with g00 do not appear), it is a mathematical coincidence, physically reasonable as ex-

plained above, that these two types of expression give the same �nal result.

A natural question to ask at this point is whether the two methods described above

and used to calculate the total mass-energy of a given asymptotically 
at spacetime yields

the same result for other asymptotic structures. The aim of this paper is to show that,

for certain asymptotically anti-de Sitter spacetimes, this coincidence no longer exists. In

particular, we will show that suitable generalizations of these prescriptions give di�erent

values for the mass-energy of the gravitational �eld of the Kerr-anti-de Sitter spacetime.

This paper is organized as follows.

In section 2 we present the Kerr-anti-de Sitter spacetime and the results of Henneaux

and Teitelboim[9] for its gravitational energy using the hamiltonian formalism. After-
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wards, we show that the same result is obtained using the action formalism of Brown and

York[3]. In this way, the calculation of the energy of this gravitational �eld following the

�rst point of view is completed.

In section 3, the expression of Komar[7] for the gravitational mass of a stationary and

asymptotically 
at spacetime is generalized to stationary spacetimes which are asymptot-

ically anti-de Sitter. The interpretation of Wald[6] to this mass in terms of forces on test

particles can also be suitable generalized. This `gravitational mass' is calculated for the

Kerr-anti-de Sitter spacetime yielding a di�erent result from the one obtained in section

2.

We conclude in section 4 with some comments and discussions.

2 The gravitational energy of the Kerr-anti-de Sit-

ter spacetime in the hamiltonian and action for-

malisms

The anti-de-Sitter metric is:

d
�
s
2

= �[1 + (
r

R
)2]dt2 + [1 + (

r

R
)2]�1dr2 + r2d
2 (1)

where R is the radius of curvature of such space, related to the cosmological constant �

by R = (�3=�)1=2.
At spatial in�nity, the Kerr-anti-de Sitter spacetime can be written as:

ds2 = d
�
s
2

+ h��dx
�dx� (2)

where h�� are deviations from the background anti-de Sitter metric d
�
s
2

.
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The explicit values of these deviations are[9]:8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

htt = 2m
r
[1� �2sin2�]�5=2 +O(r�3)

ht� = �2amsin2�
r

[1� �2sin2�]�5=2 +O(r�3)

h�� = 2ma2sin4�
r

[1� �2sin2�]�5=2 +O(r�3)

hrr = 2mR4

r5
[1� �2sin2�]�3=2 +O(r�7)

hr� = �2mR2a2

r4
[1� �2sin2�]�5=2 sin � cos � +O(r�6)

h�� = 2ma4

r3
[1� �2sin2�]�7=2sin2�cos2� +O(r�5)

(3)

where � = a=R and a is related to the angular momentum per unit mass. The non-

vanishing components of the gravitational canonical momentum are:8><
>:

�r� = �3am sin �
r2

[1� �2sin2�]�5=2 +O(r�4)

��� = O(r�5)
(4)

Using the hamiltonian formalism, Henneaux and Teitelboim[9] calculated the mass-

energy of the Kerr-anti-de Sitter spacetime in the following way. They showed that the

hamiltonian must be suplemented by surface terms in order to be consistent with the

equations of motion. These surface terms yield conserved charges associated with the

Killing vectors of the anti-de Sitter asymptotic geometry. They are:

JA =
1

16�

Z
B
d2Si[

�
G
ijkl

(�?A
�
rjgkl � hkl

�
rj�

?
A ) + 2�kA�

i
k] (5)

where
�
G
ijkl

= 1

2

�
g
1=2

(
�
g
ik �
g
jl

+
�
g
il �
g
jk

� 2
�
g
ij �
g
kl

), d2Si =
1

2!
�ijkdx

j ^ dxk, �ijk = 1;�1; 0 being

the three-dimensional (metric independent) totally antisymmetric object, B is a 2-sphere

at spatial in�nity where the integral is performed, �?A is the component of the killing

vector �A in the direction of the unit normal u� to the hypersurfaces t = const, hkl is the

deviation from the anti-de Sitter metric
�
gkl, �kl is its canonical momentum and

�
rj is the

covariant derivative with respect to the background metric
�
gkl.

The total energy is the charge associated with the timelike Killing vector �eld @
@t

of

the anti-de Sitter spacetime, and is calculated to be:

E =
m

(1� �2)2
(6)

Note that, as R goes to in�nity (� goes to zero), this energy goes to its value for

asymptotically 
at spacetime, as should be expected.
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In the calculation of the conserved charge by Henneaux and Teitelboim, there is an

implicit assumption that the anti-de Sitter background metric is �xed with respect to

variations that lead to the equations of motion. This procedure eliminates an in�nite

term corresponding to the energy of the anti-de Sitter background yielding the �nite

expression given in equation (6).

In the action formalism of Brown and York[3], a quasi-local energy is de�ned in terms

of a surface energy-momentum tensor. They considered a manifold M foliated by space-

like hypersurfaces �. The manifold is spatially bounded by a three-dimensional timelike

surface 3B whose intersection with � gives the two-dimensional surface B where this

surface energy-momentum tensor is de�ned. This de�nition is based in an analogy with

the de�nition of energy in classical mechanics using the action and the Hamilton-Jacobi

equation. If the spacetime has a Killing vector �eld, a total conserved charge can be

de�ned and it is given by:

QA =
Z
B
d2x
p
�(�ui + ji)�Ai (7)

where ui is the unit normal to the hypersurfaces � (de�ned by t = const), �Ai a killing

vector �eld and d2x
p
� is the proper surface element of the 2-boundary B. Also � =

1

8�
(k� �

k) is the expression for the energy surface density, where k = ����D�n� is the trace

of the extrinsic curvature of the boundary surface B with unit normal n� as embedded

in the hypersurface t = const, ��� being the induced metric on this surface and D�

the covariant derivative on this hypersurface. The quantity
�
k is the trace of the extrinsic

curvature of a two-dimensional surface with the same induced metric ��� but which is now

immersed in a �xed spacelike hypersurface of a �xed spacetime, called the reference space.

It comes from the arbitrariness in the de�nition of the action and, if we choose the anti-de

Sitter spacetime as the reference space, it serves to eliminate the in�nite charge-energy

coming from the anti-de Sitter background1. In the terminology of Brown and York, this

corresponds to the reference space subtraction. In general, a superscript (�) denotes a
geometrical quantity of this reference space. Finally, ji = �2(�iknl�kl=

p
h� �

�
i

k

�
nl

�
�
kl
=

q�
h)

is the corresponding momentum surface density.

1In the case of the total quasi-local energy itself, given by the surface integral
R
B
d2x
p
��, this sub-

traction woud give a null total energy, like in the Schwarzschild-anti-de Sitter spacetime[10].
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For the timelike Killing vector �eld @
@t

of the Kerr-anti-de Sitter spacetime, the above

conserved charge evaluated on a surface at spatial in�nity2 de�nes the Brown-York total

mass-energy of this gravitational �eld. We have chosen the surface de�ned by r = const.

Its unit normal 1-form components n� are n� = �r�
1p
grr

= �r�
1q

�

g
rr

+hrr
. For the reference

space we have
�
n�= �r�

1p
�

g
rr .

Asymptotically, the value of the energy surface density is:

� =
1

8�
(k � �

k) =
1

8�
[(1 + (

r

R
)
2

)3=2
2mR4

r6
(1� �2sin2�)�3=2 +

+ (1 + (
r

R
)
2

)1=2
3ma2

r4
sin2�(1 � �2sin2�)�5=2] (8)

The total charge-energy turns out to be:

E � QE = �
Z

B
d2xN

p
�� (9)

where N = u��
�, yielding the result

E =
m

(1� �2)2
(10)

which agrees with the result obtained by Henneaux and Teitelboim given in equation

(6). We remark that equation (9) is exactly the hamiltonian energy in the Brown-York

formalism.

It may also be checked[12] that this value coincides with the total gravitational energy

calculated from the Einstein and Landau-Lifshitz pseudo-tensors calculated on a 2-sphere

at spatial in�nity.

In sum, the Henneaux-Teitelboim energy (obtained from the hamiltonian formalism),

the Brown-York energy (obtained from the action formulation), and the Einstein and

Landau-Lifshitz energy all agree for the asymptotically non-
at Kerr-anti-de Sitter space-

time. In the next section, we will perform analogous calculations for a generalization of

the Komar de�nition of energy to asymptotically anti-de Sitter spacetimes based on the

notion of geodesics and `forces' on test particles.

2For �nite regions of Kerr-like spaces, this calculation would be more involved. As an example, see

reference [11].
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3 The generalized Komar mass of the Kerr-anti-de

Sitter spacetime

When an asymptotically 
at spacetime has a timelike Killing vector �eld ��, the total

Komar[7] mass is de�ned as:

MK = � 1

8�

Z
B
� d� (11)

where �d� is the dual to the two-form d�, � being the timelike Killing one-form � = ��dx
�,

and B is a closed two-dimensional spacelike surface where this integral is performed.

The exterior derivative of this two-form is given by:

d � d� = 2

3
R�
��

�d3�� (12)

where d3�� = 1

3!
�����dx

� ^ dx� ^ dx� is the three-form volume element3 and R�
� is the

spacetime Ricci-tensor. Thus, in empty space and assuming Einstein's equations, the

two-form �d� is closed and, using Stokes's theorem, it follows that the Komar mass MK

is independent of the two-surface B.

In a coordinate frame we have:

MK = � 1

8�

Z
B
(r��� �r��� )d2S�� (13)

where d2S�� = 1

2!
�����dx

� ^ dx�, r� = g��r� and r� is the covariant derivative with

respect to the metric g�� .

This mass can be interpreted as the total force needed to keep in place a unit surface

mass density distributed over B[6]. Also, using again Stokes's theorem and Einstein's

equations, the Komar mass can be written as:

MK = 2
Z

�

(T�� � 1

2
Tg��)u

���dv (14)

which is the total Whitakker's e�ective mass[13] for static spacetimes.

When the time coordinate is chosen such that �� = ��0 the above expression reduces

to the M�ller energy

EM =
Z

B
gi�g0�(g�0;� � g�0;�)

p�gd2Si (15)

3����� =
p
�g����� where ����� is the four-dimensional (metric independent) completely antisym-

metric object.
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This expression also coincides asymptotically with the gravitational mass experienced

by a test particle (via a Newtonian potential) following a geodesic d2xi

ds2
+ �i00

dx0

ds
dx0

ds
= 0

(supposing that dxi

ds
<< 1) in the asymptotic region and given by:

Mg = � 1

4�

Z
B

d2xi

ds2
d2Si (16)

For asymptotically 
at spacetimes, this Komar mass agrees with the gravitational

energy calculations described in section 2, even being a completely di�erent algebraic

expression, which depends on g00. Is this also true for asymptotically non-
at spacetimes?

Let us take the Kerr-Anti-de Sitter spacetime. It is clear that if we take naively the

above expression as the Komar mass of this spacetime, two problems will arise: the mass

will be in�nite and surface dependent. In�nite because the anti-de Sitter background will

give an in�nite contribution. Surface dependent because the exterior derivative of the

2-form which is integrated in equation 13 will no longer be zero in the vacuum region:

d � d� = 2

3
���d3�� (17)

where � is the cosmological constant, d3�� the volume element of the Kerr-anti-de Sitter

metric and �� is its Killing timelike vector �eld. The solution to these two problems is

to use a procedure analogous to the one used by Brown and York[3] described in the

previous section, and subtract a term corresponding to the Komar mass of a reference

spacetime. The metric of the reference spacetime is the one which characterizes the

asymptotic region, namely, the anti-de Sitter metric. For operational simplicity we choose

the coordinate system of the anti-de Sitter reference spacetime by taking the limit m = 0

of the Kerr-anti-de Sitter metric in a �xed coordinate system, just like in equations (1),

(2) and (3).

We de�ne the generalized Komar mass as:

MK = � 1

8�

Z
B
� d(��

�
�) (18)

where
�
�=

�
��dx

� is the timelike Killing one-form of the reference spacetime, assuming that

the surface B can be immersed in the reference spacetime.

In a coordinate frame, equation (18) is written as:

MK = � 1

8�

Z
B
[(r��� �r��� )� (

�
r

�

�� � �
r

�

�� )]d2S�� (19)
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We used that 8><
>:

�� =
�
�
�

p�g =
q
� �
g

(20)

for the Kerr-anti-de Sitter and the anti-de Sitter metrics.

Thus, equation (19) says that the generalized Komar mass MK is the usual Komar

mass contained in a surface B in the Kerr-anti-de Sitter spacetime minus the Komar mass

contained in the same surface B in the anti-de Sitter spacetime.

Now, due to equations (17) and (20), the exterior derivative of the quantity which is

integrated in equation (18) is zero in the region without matter: d � d(��
�
�) = 0. Thus,

we can use Stokes's theorem to show that the generalized Komar mass given in equation

(19) is surface independent in this region. It is clearly a conserved quantity because it

is just the usual Komar mass, which is conserved, minus a constant term, which is the

`Komar mass' of the anti-de Sitter background.

Using Wald's interpretation[6], this can be viewed as a total generalized `force' (be-

tween quotes because we no longer have a Newtonian limit) needed to keep in place a

unit surface mass density distributed over B in the Kerr-anti-de Sitter spacetime minus

the same `force' in the anti-de Sitter background.

It can also be viewed as an Whitaker's e�ective mass as given in equation (14).

In the coordinate system where �� = ��0 , this generalized Komar mass reduces to the

M�ller energy of the Kerr-anti-de Sitter spacetime contained in the surface B minus the

M�ller energy of the anti-de Sitter background contained in the same surface B. In the

asymptotic limit, this generalized M�ller energy can be interpreted as a `mass' obtained

by `measuring' the deviation of the coordinate acceleration of a test particle following

a geodesic of the Kerr-anti-de Sitter spacetime from the coordinate acceleration of the

same test particle following a geodesic of the anti-de Sitter reference spacetime in the

Newtonian like approximation dxi

ds
<< 1 and dxi

d
�

s
<< 1:

M = � 1

4�

Z
B
(
d2xi

ds2
� d2xi

d
�
s
2
)d2Si (21)

with (keeping only �rst order terms in h�� ,
dxi

ds
and dxi

d
�

s
)

d2xi

ds2
� d2xi

d
�
s
2
� ��i00(

dx0

ds
)2 +

�
�
i

00(
dxi

d
�
s
)2 �
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� �(�i00 �
�
�
i

00)
1
�
g
00

+
�
�
i

00

h00
�
g
2

00

(22)

where s and
�
s are, respectively, the proper time along a geodesic of the Kerr-anti-de Sitter

metric and the proper time along a geodesic of the anti-de Sitter reference spacetime. It

can be veri�ed that, in the asymptotic limit, the integrand in equation (19) reduces to

the right-hand-side of equation (22). This is a generalization of the mass calculated in

terms of geodesic motion in asymptotically 
at spacetimes given in equation (16).

Thus, the generalized Komar mass de�ned in equation (19) is a coordinate and surface

independent conserved quantity which can be interpreted as a suitable generalization of

the concept of mass given in asymptotically 
at spacetimes in terms of forces and geodesics

of test particles. When the cosmological constant is zero, it agrees with the usual Komar

mass. It is a mass as good as the ones de�ned in section 2 and can be used to calculate

the total mass-energy of the Kerr-anti-de Sitter spacetime.

Taking the surface B to be the two sphere r = const., using equations (1), (2), (3)

and (19), and taking the limit r!1, we obtain for the generalized Komar mass:

MK =
m(1 + �2)

(1� �2)2
(23)

which is a di�erent result from the one obtained in section 2 and given in equation (10)

(or (6)).

Thus, for an asymptotically non-
at spacetime, the notion of a total mass-energy of a

given gravitational �eld is not unique.

4 Conclusion

In the last two sections, we have shown that the total hamiltonian energy of the gravi-

tational �eld of the Kerr-anti-de Sitter spacetime is di�erent from a suitable extention of

the total gravitational mass concept based on a generalization of the Komar mass. These

two values are, respectively:

E =
m

(1� �2)2
(24)

MK =
m(1 + �2)

(1� �2)2
(25)
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Thus, the equivalence between the total gravitational mass and the total gravitational

energy may not be necessarily true in an asymptotically non-
at spacetime (where there

is no asymptotic Poincar�e group).

We can also calculate the Casimir invariant of the anti-de Sitter group (which is

O(3; 2)) related to the mass, the Casimir mass[9]. It is given by:

Mc =

s
E2 + (

J

R
)2 (26)

where J is the total angular momentum of the Kerr-anti-de Sitter metric. This angular

momentum can be calculated from equations (5) or (7) by taking �A = @
@�
. It is given by:

J = � ma

(1� �2)2
(27)

yielding the following value for the Casimir mass:

MC =
m
p
1 + �2

(1� �2)2
(28)

which is also di�erent from the other two masses given in equations (24) and (25).

Note that, when � = a
R
= 0, the three masses are equal (like in the Schwarzschild-anti-

de Sitter spacetime, an example showing that a non-
at asymptotic structure is necessary

but not su�cient to yield the aforementioned ambiguity among masses). Thus, it is

the combination of the anti-de Sitter asymptotic structure and the angular momentum

per unit mass a of the Kerr-anti-de Sitter spacetime that gives rise to the di�erences

in the masses. A clue for a physical interpretation of the above results may be given by

expanding the Komar mass in terms of the Casimir mass for small values of the parameter

a. We obtain that MK �MC + 1

2
MC

a2

R2
. This means that the total gravitational mass is,

for small a, the Casimir mass MC plus the rotational energy of a ring of mass MC , radius

R and angular momentum aMC . If we had expressed MK in terms of the energy E, we

would have obtained a di�erent result with a similar interpretation.

Certainly this issue deserves further study. The understanding of this ambiguity in

the de�nition of the total mass-energy of the Kerr-anti-de Sitter spacetime will give us

a better comprehension of the cosmological constant and its consequences to the most

basic concepts we have in General Relativity. One good step forward would be to study

these de�nitions of mass for other asymptotically anti-de Sitter spacetimes with angular

momentum, including 2 + 1 dimensional spacetimes.
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