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ABSTRACT

In D=6 the gauge superfield V has a higher gauge freedom  than
in D=4, 1In the Wess~-Zumino gauge there are no.term with less than
two Grassmann variables of each type. Wé find all its tensor com-
ponents and compute also the chiral superfield strength which con-
tains the linearized curvature tensor of a "Qraviton“ field, . as
well as the field intensities of a "gravitino”, a "photon", a "pho-
tino", and a tri-vector whose field strength is a second rank an-
tisymmetric tensor. The gauge invariant interaction with a chiral

field is given and expressed as a function of the components.

Key-words: Supersymmetry; Higher dimensions; Gauge superfield.



CBPP-NF-052/88
1 INTRODUCTION

It has already been pointed. out that the order of the differ-
ential equations of motion could be related to the dimensionélity

(11

of space-time Working with higher order equations presents
considerable difficulties, both of mathematical technicalities as
well as of physical interpretation. However, for the particular
case of plane waves (only one space coordinate and time) a mathe-
tical procedure exists which allows a satisfactory treatment of
the problem[S].

In guantum theory, a supersymmetric model seems appropriate
mainly‘because of the improvement in the ultraviolet beﬁaviour of
the amplitudes.

For these reasons, we chocose as our simplest model, the real
U(l) gauge superfield V in six dimensions. The pecularities a-
rising from the fact that D/2 =3, odd number, are of technical’ or-
igin and do not change substantially - as we will see - the  dis-
cussion. of reference[1} where we choose D=4n. The properties of
spinors in D=6 are taken from Elie Cartan's book[al.

In D=6 Weyl spinors have four components and so, the products
of Grassmann variables of the same type can only contain up to
four factors (as compared with two in D=4).

The chiral superfield which has the field strengths associated
with V is now a bi-spinor Wal’az[Sl whosg structure shows that in
addition to the usual gauge invariance (i.e. adding a chiral plus
anti-chiral fields to V) is also invariant under the addition of
a superfield whose covariant derivative (Da) is chiral. This in-

variance allows us to adopt the Wess-Zumino gauge in which VvV has

no component with less than two spinor indices of each type. It
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.
is in this gauge that the physical meaning of V can be most easily
recognized.

The components of the gauge superfield can be named according
to their tensor character. We will see that we have a  tensor field
("gréviton"), a vector-spinor field ("gravitino") a vector  field.
(“pﬁoton"), a spinor field ("photino"}. It is amusing to see also
the appearance of a ‘tri-vector .(totally antisymmetric in its three
indices) whose field strength is a second rank antisymmetric.  tensor.

The bi-spinor Wo‘l’az is explicitly evaluated arr;l also the corresponding
lagrangian. |

Finally, the interaction of the gauge field V with a chiral sg'

perfield is computed in the usual way.

2 SPINORS IN SIX DIMENSIONS

For the construction of Dirac matrices Fu(u==0,...,5) we take

: : 0 o,
the six 4x4 hermitian matrices Yy with y, = Lrﬂl)(i=1'2'3)’ Y, =

- 0
(0 1) L4 Y5=Y1Y2Y3Y4! and Y0=]]-'

We have the 8x8 matrices:

0 v . _ '
H

where ?u= Yy for p=1,...,5%5 and ?O= -y - 1. The "transposition"

o]
matrix € is defined by:

¢ , ¢?=1 {2)
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T ' _|0o c N 3)

In D=6, unlike in four dimensions, the conjugate of a - Weyl
spinor is another Weyl spinor of the same type. The conjugate

spinor 1s defined by[4]

o¢ = co* ; 3 = ¢%C {4)

According td{4] {(pag.114) the scalar product of two Weyl spinors

of different type is defined by
¢ C¢ = scalar ; (5)

Therefore, in order to construct a chiral field with  Weyl
spinors of the first type we take the Grassman variables as spinors
of the second type &; and B&+. -

Then, if we take the scalar product between a sPinor Y, of the
first type and the conjugate $& of the second type we have:

Jov = ~gTcey = 9378y = 9o V? (6}

(6]

where we have introduced a contravariant spinor
T " (n
Analogously ¢u= Gaa¢a .

We will take as generators of the supersymmetry algebra act-

ing on superfields
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Q =1 —-E--.r e-*yga‘a

* 9% @ &
. 3. lla o
Q = 1 " +YG ] 31’
BB&+

with

*0y a
{Q,Q"% = 213

and the corresponding covariant derivatives

D= L.i0%y¥s

36 u
pt= - + iYuﬁ ?
33"‘ .M

which anticommute with Q and QY.

3 THE GAUGE SUPERFIELD

A real superfiéld V has the general form

& . . o'&- a 0'.
VvV = 2 B&f... G&ffkal as 3] 1 g t
s,t=0 71 s t
with

- - * - -

Ny JAN o

Aal as - Aal t

1’ t 1 8

We shall definefthe gauge transformation of V by

(8)

9

(10)

(§51)
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V' = V+ i(9-9) (12)

where
D-*D** =0 and D _D_ ¥ =0 (13)
Oy T, - a0, _

(double chiral fields)
We shall justify below this definition.
Using (12) we can go over to the Wess-Zumino gauge in which

all components with less than two indices of each class are absent

4 - - S R o
_ ALt 1 B 1 RV
vV = g B ene 837 A . 6 "...0 - (14)

=2 s 1_.--0.

o
we shall first analyze the lowest component Aalaz
172 .

symmetric in both types of indices. According to Cartan in ref.
[4] the product of two spinors of the same type is reduced to the
“sum of a vector and of a tri-vector. Further the vector is anti=-

symmetric in the spinor indices and the tri-vector is 'SYmmetriCe'

So, in our case, we have

L ae.
a_lch,_l_z

- L]

®1%, u
A“1“z = Auv(Y C)u

{15)
which shows that the lowest component is eguivalent to a second
rank tensor whose symmetric and traceless part'we may call "gravi

ton". We now take the next "diagonal" component.

pl1%2% o M1%%% T (16)
0. 0,0 _ala-2a3a4 (14

17273

which is anti-
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But now Ag is neither symmetric nor antisymmetric, so we must have

both terms in the already mentioned reduction:

: . 3 0
o ~Ho _ =V ¥y Mg
A = A Y + 1A (x Y <y 2f, 14"
& u'a VyV,yVgq I (SN B
where Av'v v .1is a completely antisymmetric real self-dual tensor.
17273

The real vegtor Au can be called "photon field".

The highest component is equivalent to a scalar:

- m o X i L 5"
A 1 4 _ ¢ 1 45 D (D=D¥*, auxiliary field) (18)
a1 - .- .(14 ' alc I.“A ]

Rs=
Re

Let us go over to the off diagonal components:

= ' %Ak (y.ey. (19)
(&4 ' 0132. '

Ag is a vector-spinor which we may call “gravitino". Now

Oy e e a & ...0
H 4 1 TN |
A = e A AYCY (20)
%2 H *1%2
where Au is a complex vector field. Finally
& ..‘& & I..& a
S . (21)
17273 1°°°74

The spinor field A%* may be called "photino".
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4 THE FIELD STRENGTH SUPERFIELD

We shall take as the chiral superfield strength, (see ref.ts]{

the following bi-spinor:

4 |
+ . .
W = - W =Dd'D_ DV (22)
0'.1_0'.2 (.].2(].‘I (11 az
where
4+ 1 +.1 +.4
p* = L e, Lptloip (23)
4y Y%y :
W, , 1s obviously chiral. Further, it is invariant under  the
1%2

gauge transformation (12}, (13). The proof is direct for y. The
invariance of (22) under the addition to V of ¢ (being (13)) can

be easily seen using the anticommutation relations between D and

p*.
Direct evaluation of (22), for 6*=0, gives:
;1 ;tla s B &r & & & . .
Wo o = €5 o |, tee! -213{: Aallg 3 213B Aalaz )
1%2 1% 2%y 2 %31Fy 1 %2%
& B -& ; 3 '8 ) & . . . a a .' (l
P B/ Y O 1,72 %3 %1% 403 5 %%
+6A f + 8 70 -9 8 A a
a,0,8, o, o, By B Iaz 1162
&, O, & G O Qad ®, O, 0,0 & -
+38133 A 3.5 - 313[: 113 g . siaB4 araie. - 1At o8
2 %% 2 Mth P "1 %215, 1%251%2
B, B, B 8, @, &, 0 R
w6 1o 253 .aasa 4381328 33843 355a} 2, 3 33345h1a23.
| | 1 273 172 7118,84 By By 0,08y
&, O 0% a £ 90 B:;.. B
-413[3 Ad}jg 3a* 12:.3B “u1a233e + 8 Tg 4
11°1P2%y 1 2%
&, &, 4.6 G, by GG, % G, &y -
IR VL 43843{2 A, ]g B8 . saB3aB‘aa1u28 . (24)
1 % F1re-Fy 1 %% 3P4 - Py B2 2% PaFy
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(Compare.with the four-dimensional case, see [7]).

As the lowest component, (24) has the complex vector field A
(see eq.(20})). The highest component contains second derivatives
of A;. The next to lowest component contains what we.called' the
gravitino (eq.(19}) and photino (eg.(21)) fields, whose coﬁplex¢
conjugates appear in. the next to highest component.  The "middle"”
component Qés the tensor field (eq.(15)), the real vector ard tri-

vector fields (eq.(17)), and the auxiliary field (eq.(18)}.

5 THE LAGRANGIAN

We obtain the Lagrangian by first taking the scalar = vproduct

SRR T o
£ W W ?
%10y %%y

(which is supersymmetric}.

Gyen o
p[ =g ! bW we

and then looking for the highest ¢-coamponent

+ h.c. (25)

elr
We shall not write down‘l;explic1tly, but we will point out
some results which we think interesting.

The product of the lowest component of Wa times the. highest component

o
172
of W& o gives the Lagrangian for the complex vector field:
374
1 © 1% % Re .8, * 8% BB
2 1 3 74 "1 4 1 3 4
é é4 Blaz ‘0‘.1...(14 BIDOU_B4- ! )
+ 3B BB Aa . B.R £ £ £ . bB é
2 473P3P, al...o:l' 1-.- 4

And now, using eq. (20):
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.Cl = 2A“a 2 Vaz - a“m* (26)
Consider now the Lagrangian'corresponding to the tensor field
(Cf.eq.(15)) which we take, for simplicity, to be symmetric' and

traceless. From (24) and (25) this Lagrangian is:

. L - L I . . . . . l ]

a. o a, o
2 4,73 1 2 1 3 4
L, - -3, 33 v 43500 78 %4 s .

b8 By B B R, BB BB a8,

—B 3 + 43 3 A 3 3 £ € ~Ee *
AB 38, T 08,0, 38 %8578, R0 | %4, ..000,%8
(27)

After use of (15) and some "gammology", we obtain from eq. (27):

AV _ s AUy sha 2PV L alaVa oD
L, v 02, 0a - 20,0% 200 8" 4 a¥a¥A 0% (28)

We now define:

= 9,9 A 3 9 A

vaox v uc* Tt 3x3u v = 2g° Aul ’ (29)

which is antisymmetric in uv and in oX (symmetric under the inter

change of uv with o}). Then, up to a divergence, we have:

= 1 LUVOA
d£2 =7 F vaok (30)

Note the similarity between (29) and the linearized curvature
tensor of_gravitation (see, for example reference [8]). Note al-

so0 that the related eqmﬂnmns of motion are of the fourth order).

&,8,8,

G1 0-2(13

For the Lagrangian corresponding to A ; egs. (24) and

1...
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{25) give:

L. - (5 4y %1%2%3 a“'t.;'_l'“i“a)(_\Bsahsl_éz%
3 o, a,B,8, Bl Qzulﬁz a o, BaB,
B, BB B Q. ...0, B....B,
+ asaAalaZBB)'t Lo gt S5 .6 b .. .8 (31)
3 74735 1'% P17 P4
Using egs. (16) and (17) we arrive at:
1 . 12 V1 u VaV3 V2V
°£3 n f(aunv_-auau)_}a.sa Av Vv 3 Au —GBHA\) . v=a A _
: Cn R 1723 1273
: (32)

We define a rotational operator on a tri-wvector as:

c %Ly a eul'"v‘ 3 ﬁulu"’vﬁ
31 V) VaViaYy 3 Vi o :

11r

(33)

where A is the dual of A,
As the tri-vector is self-dual, it can be shown that both terms

involving A, v

in (32) are ptoportional to G“UG'v.' Then:
172V3 | "

- uv TAVN
I3 =FF +KGG {(34)

uv

{« some numerical constant}.

6 INTERACTION

The gauge invariant interaction between the superfield V and a

chiral field ¢ is given in the usual way byv:
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. . ) . w2 . N
,J:i =TV = ¢t e AVl L ¢+e—1A (1+V'12-I e-u\% ~ {35)

where

v, Yo% (36)

The first term in the parenthesis (of (35)) . corresponds to
the free Lagfangian for the chiral field. We shall discuss only

the simplest term of the interaction, namely

1= ojve | (37)
06*
& 0.1... Cls
where o, = SEO "’al...af’. 9 (38)

Introducing (38) and (14) in :(37) and taking the coefficients

44
of 66" we get:

k _. . '& & - . o_& . a - » t.a).'
JI = Z aql'l'l 4.Aa1 .as wa . o e 1 .43_. y & (39)
s, t=2 1°°° % t+l" " "4 1°° %%
Qr, "in extenso™:
' %G, G0 QO G0 B, G, &0
L _ g1 2003% Lt gt
2 374 17273 Y4 ' 4
&, 8.8.4 & Goa. & 8.4.0
+ 1Aa2a3 qwa - T lAazaBaawa . T 1 a?&3a4a .
172 374 17273 4 1727374

A
Now using (15) to (21}.
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We can rewrite (39)

e[.

1

-~

4$u

+ 9CR P +
SV

where wu is the vec

We shall write
tric and traceless
(28) or (30). The
and the additional

The equation is

where F is giv

Uo, v
following expressio

v

NI

. 8P
Juv

. 28C
Iyv

where the symmetric

-12-

in the form

A""q;v_J, 2wuaﬁ°‘wa + zﬁukﬁw + 2F% Ag v,
— 0 = RV g A [ - \o
DAY + YA Y +A P y: +1A Wa(Y Y, Y

o u ‘Av & i3v1u2v3 vy Vy Vg &wa

(40)

tor associated with wa o

172

v = (y"c)

0.10.

7
2 @8, K

the eq. of motion corresponding to the “symme-

tensor field whose free' Lagrangian is given by

interaction comes from the first term of (40)
ones coming from the rest of (35}.
OnA _ sV 8P L 8C _
3 a'?uo,vl = JHU+ juv +_juv - (41)
en by {(29) and the currents are given by the

ns

= Euwv (42)
. om0 & :

= 1auw Yoo Vo * he {43)

= Auv$w+ auwavw + auauww + he (44)

and traceless parts in u,Q are to be taken,
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As a second example, we obtain for the tri-vector field from

(32}, (33), (34) and (40) the following equation

Cw - a |~ v o '
'af""-i G-"z"a} -V (Yf“ly"z Y"31) Yo (45
o

where [ ] means antisymmetrization in the three indices

7 DISCUSSIONS

The gauge superfield in D=6 has some interesting features., It
contains all the massless fields we are acquainted with .in . four
dimensions, namely: a graviton, a gravitino, a photon, and a pho-
tino; together with a tri-vector whiéh, like the photdn, has a se—
cond rank antisymmetric tensor as field inténsity.'

0f course, having chosen an abelian U(l) group of gauge trans-
formations we can not expect neither non-linear field strength, nor
a correct gravitational interaction with other fields. (We get a
linearized curvature tensor for tﬁe graviton intensity).

We also see that the "main" field component (lowest gauge in-
variant component)} obeys a fourth order equation of motion while
the gravitino field cbkeys a thifd'order differential eguation.

The next steps will be to construct the canonical tensor
associated to the superfield and to properly quantize the model.

These studies are under way.
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