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Niter�oi, RJ, Brazil, 24210-340

y Centro Brasileiro de Pesquisas F��sicas Av. Dr. Xavier Sigaud 150, Urca,
Rio de Janeiro, RJ, Brazil, 22290-180

Abstract

Hadron di�usion equations are solved using an alternative analytical method
based on depth-like ordered exponential operators, similar to that used by Feynman.
With this method these equations are solvable for any form of the primary spectrum
(an improvement comparing with other ones). The muon uxes generated by these
hadronic showers are then obtained for zenith angles covering 0 to 89 degrees. A
comparison of our calculations for the vertical and horizontal muon uxes with
experimental data and with another theoretical calculation is made. The agreement
between them are in general very good, greather than 90 percent.
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1 Introduction

Cosmic ray propagation in the earth's atmosphere has long been studied on the basis
of di�usion equations, which depends on the properties of the particles, their interactions
and on the structure of the atmosphere [1]. Several di�erent approaches are used to
solve these di�usion equations such as analytical as numerical methods [2]. Also, this
propagation can be calculated using simulation techniques like Monte Carlo [3]. In our
case we think that analytical calculations are still worth to pursue because they are useful
for qualitative understanding and to check Monte Carlo results. Besides, the analytical
solutions are currently used in order to give accurately the relations among the di�erent
uxes of particles. Muon uxes play a very important role in the understanding of several
cosmic ray and astrophysical issues of current interest. For example, atmospheric neutrino
anomalies [4] and prompt muon and prompt neutrino production observed at sea level [5].
Another signi�cant point is the analysis of the angular distribution of cosmic ray muons
at sea level to study the problems mentioned above and the primary mass composition. In
this paper we calculated the muon ux for di�erent zenith angles originated by a hadronic
shower in the earth's atmosphere. We are extending the same technique used in previous
papers [6]. It is related with expansional operators similar to those used by Feynman in
some QuantumMechanics and QED problems [7]. This method allow us to investigate the
e�ects of primary spectrum deviations from the power law form and to take into account
non-scaling properties of the hadronic cross-section. Also, it is very powerful because
permits to obtain the uxes in the whole energy range in a single solution. In order to
check our method of solution we compare our calculations with experimental data [8, 9]
and with a solution obtained by Lipari [10]. To do this, we need to perform the same
approximations used by this author. This paper is divided as follows: in the next section
we solve the hadronic equations analytically using a general form for the primary energy
spectrum with Maeda's �t for the atmosphere [11]. In section 3, we calculate the muon
ux taking into account energy losses and decay. In section 4, we reduce the expressions
obtained in the two last sections for the case where the primary spectrum is taken as a
power-like law. In section 5, we present some numerical results and we make a comparison
of our muon uxes with experimental data and Lipari's calculation. Finally, we discuss
and make some comentaries on our results.

2 Hadron Di�usion Equations

The di�usion equations for the hadronic components (nucleonic and mesonic) can be
written as

@N(t; E)

@t
= �

N(t; E)

�(E)
+
Z 1

0

N(t; E=�)

�(E=�)
fNN(�)

d�

�
(1)

and

@M(t; E; ��)

@t
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Z 1

0

M(t; E=x; ��)

�M (E=x)
fMM(x)

dx

x
+
Z 1

0

N(t; E=x; ��)

�(E=x)
fNM(x)
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x
(2)

where t indicates the slant depth along a given direction of zenith angle ��, �i(E) the
interaction length in air and (c � �M

E
mM

�(t; ��)) the decay length of the meson M in
the atmosphere. fMM and fNM are respectively the spectra of the mesons produced in
the meson-air nuclei and in the nucleon-air nuclei interactions, � is the elasticity of the
collision nucleon-air nuclei and x is the Feynman variable (x � E=E 0) where E0 is the
primary energy of the nucleon or the meson.

The solutions of equations (1) and (2) are subject to the boundary conditions

N(0; E) = G(E) (3)

and

M(0; E) = 0 (4)

where G(E) stands for the di�erential energy spectrum of nucleons at the top of the
atmosphere (t = 0). x

In order to solve the di�usion equations (1) and (2) we introduce the operators as we
made in ref. [6].

ÂN = �
�
1 �

Z 1

0
d� fNN(�) �̂

�
1

�
(5)

ÂM = �
�
1�

Z 1

0
dx fMM(x) �̂M

�
1

�m
(6)

B̂N =
Z 1

0
dx fNM(x) �̂N

1

�
(7)

and

ĜM = ĝM(t; E; ��) (8)

where the operator �̂ acts on the energy function

�̂i H(t; E; ��) =
1

x
H(t; E=x; ��) (9)

for x � xmin > 0, where i = N or M and

ĜMM(t; E; ��) =
1

�Mdecay

M(t; E; ��) (10)

with (�Mdecay
)�1 = (c � �M

E
mM

�(t; ��))�1, being the eigenvalue of the operator ĜM sat-
isfying the eigen-equation (10). The operator �̂, in eq.(5), acts in the energy function
transforming E to E=� instead of E=x, with 0 < � � 1.

By the introduction of these operators in eqs.(1) and (2) we obtain the operator
equations
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@N

@t
(t; E) = ÂNN(t; E) (11)

@M

@t
(t; E; ��) = ÂMM(t; E; ��) + ĜMM(t; E; ��) + B̂NN(t; E; ��) (12)

The formal solutions of these operator equations which satis�es the initial conditions
(3) and (4) are

N(t; E) = e�tANG(E) (13)

and

M(t; E; ��) =
Z t

0
Exp

�Z t

z

�
ÂM + ĜM

�
dz0
�
B̂NN(z;E) dz (14)

where Exp
hR t
z

�
ÂM + ĜM

�
dz0
i
is an expansional de�ned by a sum of multiple depth-

ordered integrals.

3 Muon Di�usion Equations

The one-dimensional di�usion equation of the muons in the atmosphere can be written
as

@�

@t
(t; E; ��) = �Ĝ�(t; E; �

�) +
@

@E
(�(E) �(t; E; ��)) +

+
Z E2

E1

dE0 ĜM M(t; E0; ��) fM�(E;E
0) (15)

where

Ĝ� �(t; E; �
�) =

1

��decay
�(t; E; ��) (16)

The �rst term on the right-hand side of eq.(15) represents the muon decay, the second
describes energy loss of the muon in the atmosphere and the last term the sources of the
muons.

ĜM and Ĝ� represent the decay operator of the meson and of the muon in the earth
atmosphere de�ned in eq.(10) and eq.(16), respectively. The decay lenght of the muon is

��decay �
c ��
m�

�(E; t� z) cos ��(z) �(z) (17)

The solution of the eq.(15) satis�es the boundary condition

�(0; E; ��) = 0 (18)
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We shall assume that the losses occur continuously, i.e., uctuations can be neglected.
In this case a simple approximation expression for the muon energy loss is

�
dE

dt
= �(E) = a+ b E (19)

with \a" representing ionization and excitation losses and \b" the bremsstrahlung, pair-
production and nuclear interaction losses. In this case the solution of the equation (15)
can be written as a sum of a homogeneous part plus a particular case of the inhomogeneous
one

�(t; E; �) = �hom(t; E; �) + �part(t; E; �) � (20)

As �hom(t; E; �) is equal to zero, due to the initial condition (18) the solution of the
equation (15) becomes

�(t; E; �) =
Z t

0
exp

"
b(t� z1)�

Z t

z1

1

��decay(z; �; �
�(z))

dz

#
�

�H(z; �(E; t� z1); �
�(z1)) dz1 (21)

where,

�(E; t� z1) = Eb(t�z1) +
a

b
(eb(t�z1) � 1) (22)

represents the muon energy at depth z1 in order to arrive at depth t with energy E,
1

��decay

is the eigenvalue of the operator Ĝ� satisfying eq.(16) and

H(z; �; ��(z1)) =
Z E2

E1

(BR)M ĜM M(z1; E
0; ��(z1)) fM�(E;E

0) dE0 � (23)

fM�, E1 and E2 are obtained from the relativistic kynematics of two or three bodies in
the �nal state, (BR)M is the branching ratio of the meson M and ��(z1) is the zenith
angle at the muon production point.

Substituing the expression (17) in the muon ux (21) we obtain

�(t; E; �) =
Z t

0
exp

"
b(t� z1)�

Z t

z1

m� sec ��(z)

c �� �(E; t� z) �(z)
dz

#
�

�H(z1; �(t� z;E); ��(z1)) dz1 (24)

4 Particular Case

In order to test our method we consider the cosmic ray primary spectrum in the usual
form,

N(0; E) = N0 E
�(+1)� (25)
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As the muon ux presents a small variation due to the decrease with energy of the
hadron interaction lenghts [12], we assume a constant value for them.

The nucleon ux takes the well-known form

N(t; E) = N0 E
�(+1) e�t=L (26)

where

L =
�

1� ZNN
(27)

is the nucleon absorption mean free path with

ZNN =
Z 1

0
� fNN(�) d�� (28)

The meson uxes are simpli�ed by use of the properties of the Expansional.
As the operators ÂM and ĜM are not commutative, we decompose the expansional

operator from eq.(14) in the following way (see appendix).

M(t; E; ��) =
Z t

0
Exp

�Z t

z
dz0ÂM

�
Exp

�Z t

z
dz0Exp

�Z t

z0
dz"ÂM

�
�

�ĜMExp

 Z z0

t
dz"ÂM

!#
B̂N N(z;E) dz (29)

As the operator ÂM is depth-independent we have

Exp

"Z b

a
dzÂM

#
= e(b�a)ÂM (30)

and

B̂NN(z;E) =
ZNM

�
N(z;E) (31)

where ZNM is the energy spectrum of the secondary mesons from the nucleon-air interac-
tion,

ZNM =
Z 1

0
x fNM(x) dx� (32)

Therefore, using eq.(30) and eq.(31) the expression (29) can be written as

M(t; E; ��) =
Z t

0
Exp

�Z t

z
e(t�z

0)ÂM ĜM e�(t�z
0)ÂM dz0

�
�

�e
�(t�z)
LM ()

ZNM

�
e
� Z
L() N0 E

�(+1) dz (33)

where, � 1
LM () and �

1
L() are the eigenvalues of the operators ÂM and ÂN acting on the

eigenfunction N0E
�(+1), with
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LM () =
�M ()

1� ZMM()
(34)

and

ZMM() =
Z 1

0
x fMM(x) dx� (35)

where MM stands for meson production due to the meson-air interaction.
Using the eq.(49) of the appendix the eq.(33) takes the form

M(t; E; ��) =
Z t

0
Exp

�Z t

z
dz0ĜM e(t�z

0)(ÂM ()�ÂM (+1))
�
�

�e
�(t�z)
LM ()

ZNM

�
e
� Z
L() N0 E

�(+1) dz (36)

where ÂM() and ÂM( + 1) are operators with eigenvalues (� 1
LM()) and (� 1

LM (+1))
respectively.

Using the de�nition of the expansional operator (see appendix) and taking into account
the �rst two terms of the sum of multiple depth-ordered integrals we obtain

M(t; E; ��) =
Z t

0
e
�(t�z)
LM ()

ZNM

�
e
� z
L() Exp

�Z t

z

h
ĜM (z0)+

+ĜM (z0)(t� z0)
�
ÂM()� ÂM( + 1)

�i
dz0
o
N0 E

�(+1) dz (37)

Introducing the operators

T̂M(t; z) = Exp
�Z t

z
dz0 ĜM (z0)

�
(38)

and using the decomposition expansional properties the expression (37) takes the form

M(t; E; ��) =
Z t

0
dz e

�(t�z)
LM ()

ZNM

�
e�

t
L() T̂M(t; z) �

�Exp
�Z t

z
dz0 T̂M(t; z0) ĜM (z0) (t� z0)�

�
�
ÂM ()� ÂM( + 1)

�
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M (t; z0)

i
N0 E

�(+1) (39)

Expanding the expansional in a sum of multiple depth-ordered integrals we obtain

M(t; E; ��) =
Z t

0
dz

ZNM

�
e
�(t�z)
LM () e�

z
L()

h
T̂M(t; z)+

+
Z t

z
dz0

�
T̂M(z0; z) ĜM (z0) (t� z0) (ÂM()�

�ÂM( + 1)) T̂M(t; z0)
�
+ :::

i
N0 E

�(+1) (40)
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The eigenvalue of the operator ĜM (z0) is a function of the atmospheric density, �(t; ��)
and of the factor 1

E
. As the meson production angle �� has a dependence with the slant

depth, we realize that only in special cases the expansional T̂M(t; z) can be performed
exactly. For example, if we have a linear isothermal atmosphere the expansional T̂M(t; z)
can be written in a closed form

T̂M(t; z) =
�
t

z

� bM
E cos �

(41)

and the meson ux (40) becomes

M(t; E; ��) = N0 E
�(+1) ZNM

�

Z t

0
e
�(t�z)
LM () e

� z
L()

�
t

z

� bM
E cos �

dz (42)

This last expression is the usual muon ux for a zenith angle � � 60o and for a primary
cosmic ray with a power law spectrum. This ux was obtained considering only the �rst
term on the right-hand side of the equation (40).

Substituting (40) in the expression (23) we obtain the function H(z; �; ��(z)) that
describes the source of muons from the decay of mesonsM . So the ux of muons reaching
an observation point of slant depth t with zenith angle � can be calculated from the source
H(z; �; ��(z)) using the expression (24).

5 Comparison With Data

In order to make a comparison with the horizontal muon uxes measured at sea level,
we need to take into account several factors such as the primary cosmic ray spectrum,
the hadronic Z-factors, the energy losses and decays and the interaction lengths �, �� and
�K .

As our intention is to estimate the sensibility of the Lipari's solution in comparison
with our results, we used the same parameters and distributions, mentioned above, as
suggested by Gaisser [13] and by Lipari [10].

The vertical column density as a function of height, x(h), used in our calculation are
taken from the �t of Maeda [11] for the average U.S. Standard Atmosphere. This �t
corresponds to choosing a constant temperature in the stratosphere (h � 11 Km) and a
linear dependence in the troposphere (h < 11 Km).

Figures 1 and 2 show a comparison of our calculations with the vertical and horizontal
muon uxes measured at sea level (ref.[8] for vertical and ref.[9] for horizontal muon data)
and with the Lipari's analitycal solution [10]. The agreement is in general very good.
Our vertical and horizontal muon uxes are, respectively, 3 and 5% greater than Lipari's
results, in the energy region from 2 to 10000 GeV and approximately 8% smaller than the
Butkevich's calculation [1]. Figure 3 show the contributions of the K� to �� decay ratio
to the vertical muon uxes at sea level. This �gure also shows a comparison with other
ratios obtained by Lipari [10] and Volkova [14].

From this �gure we note that the kaon decay accounts for approximately 10% of the
muon ux at 100 GeV and this kaon contribution raises to � 35% at 104 GeV. At high
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energy, the Volkova's solution becomes larger than ours and Lipari's calculation. The
disagreement can be traced through di�erent choices of hadronic Z-factors (the factors
used by Volkova are larger than ours) and the power index of the primary spectrum (we
used a larger value). Figure 4 shows the variation of the horizontal muon uxes at sea
level for three di�erent values of zenith angles cos � = 0, 0.4 and 1. At low energies the
vertical muon uxes are much greater than the horizontal uxes. At high energy, however,
the former always gives smaller intensity.

6 Conclusions

We have solved the hadron di�usion equations analytically by means of Feynman-like
procedure of ordered exponential operators. Then, we derived the zenith-angle spectrum
of atmospheric muons from these hadronic cascades. One solution is showed to be valid
in all energy interval from GeV to PeV and allows to include non-isothermal atmosphere.

As we showed this method is very powerful because permits solutions with a quite
general form for the primary spectrum used as initial condition. Besides, it allows to get
solutions with an energy dependent mean free path.

Our calculated muon uxes (horizontal and vertical) �t very well the experimental data
as well Lipari's calculation with a di�erence less than 10%. In particular, we think that
the small di�erence between our calculation and Lipari's one could come from analytical
method itself, since we have used the same parameters and distributions for the numerical
calculations.

We investigate the muon uxes in three zenithal angles, cos � = 0, 0.4 and 1. We
observe a well-known suppression e�ect for low energy muon as cos � goes to 1. This
e�ect is due to the fact that they travel a very long path and, therefore, loose much more
energy by ionization consequently increasing their decays.

Finally, we showed the contributions of the K� to �� decay ratio to the vertical
muon ux. In our calculation the muon ux originated from kaons is 10% from those
originated by pions, at 100 GeV. Instead, when the energy rises to 100 TeV we observe
an enhancement of the kaon decay contribution, around 40%. This is a reection of the
increase of kaons production at higher energies. Our result is compared with Lipari and
Volkova ones. At low energies we notice a good agreement among the three results. But,
as the energy increases the Volkova's solution becomes higher than the others. This e�ect
can be explained as a mixture of the following factors: a lower power index for the primary
spectrum and a higher values of the secondary kaon distributions used by Volkova.

7 appendix

Let the operator function H(x) with x a real parameter and [H(xi);H(xj)] 6= 0 for
xi 6= xj.

The expansional operator is de�ned as the transformation operator generated byH(x)
corresponding to the variation of the parameter x between a and b. This transformation
operator is an in�nite product of the in�nitesimal transformation operator (1+ dxH(x))
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arranged from right to left corresponding to the sucession of ordering parameter x from
a to b. So,

T (b; a) = Exp

 Z b

a
dxH(x)

!
= 1+

Z b

a
dxH(x) +

+
Z b

a
dx1

Z x1

a
dx2H(x2) + ::: (43)

Here Exp is an indication to discriminate our expansional operator from the usual
exponential operator. As, [H(xi);H(xj)] 6= 0 for xi 6= xj so the concept of ordering is of
fundamental relevance.

Properties

a) T�1(b; a) = T (a; b), inverse operator
b) T (b; a) � T (a; b) = 1, unitary operator
c) T (b; a) � T (a; c) = T (b; c)
d) Composition and Decomposition Rules.

IfH(x) = H1(x)+H2(x), for [H1(x);H2(x)] 6= 0 then the expansional can be factorized.
d.1) Composition Rule

T1(b; a) � T2(b; a) = Expf
Z b

a
dx [H1(x) + T1(x; a) �H2(x) � T1(a; x)]g

= Expf
Z b

a
dx [H2(x) + T2(b; x) �H1(x) � T2(x; b)]g (44)

where

Ti(b; a) = Exp

"Z b

a
Hi(x) dx

#
for i = 1 or 2 (45)

d.2) Decomposition Rule

T (b; a) = T1(b; a) � Expf
Z b

a
dx [T1(a; a1) �H2(x) � T1(a1; a)]g

= Expf
Z b

a
dx [T2(b; a1) �H1(x) � T2(a1; b)]g � T2(b; a) (46)

with

T (b; a) = Exp

"Z b

a
dx (H1(x) +H2(x))

#
(47)

If, [H(xi);H(xj)] = 0 for xi 6= xj the concept of ordering is irrelevant, so the expan-
sional reduces to the usual exponential operators. Therefore, the capital letter E must
be turned into its small letter and the integration in the exponent must be performed
according to its usual de�nition.
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Particulary, the most familiar type of exponential operator is when H(x) is constant.
Assuming a = 0 and b = 1, then

Exp
�Z 1

0
dxH

�
= eH (48)

For completeness we include the formula frequently used without proof

e�ABeA =
1X
n=0

Bn (49)

where

B0 = B (50)

and

Bn = [Bn�1; A] (51)
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Figure Captions

Figure 1 - Vertical muon uxes at sea level. Experimental data taken from Allkofer et al.
(black dots); Muon ux calculated by P. Lipari (solid line); Muon ux calculated in this
work (dashed line).

Figure 2 - Horizontal muon uxes at sea level. Experimental data taken from Matsumo
et al. (black dots); Muon ux calculated by P. Lipari (solid line); Muon ux calculated
in this work (dashed line).

Figure 3 - Contribution of the K� to �� decay ratio to the muon uxes, at sea level, for
� = 0. L. Volkova [14] (crosses); P. Lipari [10] (white dots); Our calculations (black dots).

Figure 4 - Horizontal muon uxes at sea level for three di�erent values of zenith angles.
cos � = 0 (black dots); cos � = 0:4 (crosses); cos � = 1 (white dots).



CBPF-NF-052/01 12

10 -1      1 10 10 2 10 3 1 0 4

E µ (G eV )

10
-14

10 -12

10
-10

1 0 -8

1 0 -6

1 0 -4

1 0 -2

µ  
(t

, E
, θ

) 
(c

m
2 .s

.s
r.

G
eV

)-1



CBPF-NF-052/01 13

10 2 103 104 10 5

E µ (G e V )

10 -15

10 -13

10 -11

10 -9

10 -7

µ  
(t

, E
, θ

) 
(c

m
2 .s

.s
r.

G
eV

)-1



CBPF-NF-052/01 14

10
2

10
3

10
4

10
5

E µ (G e V )

0.00

0 .20

0.40

µ  
(K

 ±
 ) 

/ µ
 (

π 
± 

)



CBPF-NF-052/01 15

    1 10 102 103 104

E µ (G e V )

10 -13

10 -11

10 -9

10 -7

10 -5

10 -3

µ  
(t

, E
, θ

) 
(c

m
2 .s

.s
r.

G
eV

)-1



CBPF-NF-052/01 16

REFERENCES

[1] Butkevich A V, Dedenko L G and Zheleznykh I M 1989 Yad. Fiz. 50 142
Mitsui K, Minorikawa Y and Komori H 1986 Nuovo Cimento C 9 995
Volkova L V, Zatsepin G T and Kuz0 michev I A 1980 Yad. Fiz. 29 1252
Portella H M et al. 1994 J.. Phys. A: Math. Gen. 27 539
Portella H M et al. 1999 ICRR-Report 454-99-12 Institute for Cosmic Ray Research,
University of Tokyo, p 31
Ohsawa A, Shibuya E H and Tamada M 1999 ICRR-Report 454-99-12 Institute for
Cosmic Ray Research, University of Tokyo, p 19

[2] Brikov N et al. 1971 Dosimetry and Radiation Shielding (ed. by Kimel L P, Atomizdat
Moscow) 12 p 3
Kimel L P and Mokhov N V 1974 Ser. Fiz. 10 18

[3] Honda M et al. 1995 Phys. Rev. D 52 4985
Barr G, Gaisser T K and Stanev T 1989 Phys. Rev. D 39 3532
Knapp J, Heck D and Schatz G 1996 preprint FZKA 5828
Knapp J, Heck D and Schats G 1997 Nucl. Phys. B 52 136 and 139
Tamada M 1999 ICRR-Report 454-99-12 Institute for Cosmic Ray Research, Univer-
sity of Tokyo, p 61

[4] Gaisser T K, Stanev T and Barr G 1988 Phys. Rev. D 35 85
Hirata K S et al. (Kam-II Collaboration) 1992 Phys. Lett. B 280 146
Becker-Szendy R et al. (IMB Collaboration) 1992 Phys. Rev. D 46 3720

[5] Volkova L V, Fulgione W, Galeotti P and Saavedra O 1987 Nuovo Cimento C 10 465
Inazawa H et al. 1986 Nuovo Cimento C 9 382
Portella H M, Maldonado R H C and Gomes A S 1992 Am. Inst. Phys. 505

[6] Bellandi Filho J et al. 1989 Hadronic Journal 12 245
Bellandi Filho J et al. 1991 Nuovo Cimento C 14 15
Portella H M et al. 1998 J. Phys. A: Math. Gen. 31 6861

[7] Feynman R P 1948 Rev. Mod. Phys. 20 367
Feynman R P 1951 Phys. Rev. 84 108

[8] Allkofer O C et al. 1971 Phys. Lett. B 36 425

[9] Matsumo S et al. (MUTRON Experiment) 1984 Phys. Rev. D 29 1

[10] Lipari P 1993 Astroparticle Phys. 1 195

[11] Maeda K 1973 Fortschr. Phys. 21 113

[12] Portella H M et al. 1990 Proc. 21th ICRC (Adelaide) 9 232

[13] Gaisser T K 1990 Cosmic Ray and Particle Physics (Cambridge: Cambridge Univer-
sity Press)



CBPF-NF-052/01 17

[14] Volkova L 1990 Proc. of the 1st Gleb Wataghin School on High Energy Phenomenology

(Campinas) 1 103


