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I Introduction

It is well known that higher derivative Chern-Simons
extensions in a background of gravitation [1] in D =
1 + 2 dimensions are possible. Such action has some
pecularities compared to the usual Chern-Simons grav-
itational or Abelian Chern-Simons theory. Perhaps the
most interesting fact associated with an extension for
Chern-Simons theory in D = 1 + 2 is that the energy-
momentum tensor is non zero. Considering the action
given by Deser-Jackiw [1] it is not di�cult to calculate
the entropy for black holes in D = 1+2 dimensions [6].

Despite the fact that the Chern Simons theory ap-
pears only in odd dimensions [5,3] we attempt to write
here an analogous action in a background of gravitation
in D = 1 + 1 dimensions and compute the entropy of
black holes in such a case.

This action in D = 1+1 dimension may be called a
\quasi-topological action as Chern-Simons" in the same
sense as suggested earlier [1,3,6,8].

The quantities such as Hawking's temperature, in-
verse temperature and entropy correction are shown as
in the corresponding case given before [2,6].

The \quasi topological action" is di�erent from the
one suggested earlier [2] and depends locally on the po-
tential vector in 
at space time.

Let us start by writing the functional integral fol-
lowing the analogy of the Euclidean �eld theory and

statistical mechanics as

ZT =

Z
Dg e�(I[g; '] + I[f; g]) (1)

where

I[g; '] =
1

4G

Z
d2x

p�g e�2' �R+ 4(r')2 + 4�2
�
:

(2)
Here I[g; '] is the two dimensional dilaton action mo-
tivated by the string theory [7] and

I[f; g] =

Z
d2x "��f�2

2f� (3)

It's a \quasi topological term" in 1 + 1 dimensions. In
equation (3) f�, is a covariant vectors with f� given as

f� = g�1=2g��"
��A� : (4)

The quantities R, ', g; "�� and A�(x) are respectively
scalar curvature, dilaton �eld, determinant of the met-
ric, the Levi-Cevita tensor "01 = +1 and the vector
potential respectively.

A general solution of the Einstein's equation is
parametrized by one constant [7] and it is given by

ds2 = �A dt2 +
dr2

A
(5)
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where

A = 1� M

�
e���r (6)

and
' = ��r : (7)

The metric describes a static, asymptotically 
at
two dimensional black hole with event horizon at r = r+
where

r+ =
1

2�
ln

�
M

�

�
: (8)

with the parameter M being identi�ed with the mass
of a black hole.

Following [2] we can �nd the Hawking's tempera-
ture �, inverse temperature as well the Euclidean time
period �, and entropy S as

� =
df(r)

dr

���
r=r+

; (9)

� =
2�

�
; (10)

S =
~A0

4
(11)

with f(r) being equal to A and ~A0 meaning the area of
the event horizon in D = 1+1 dimensions and ~A0 = r+
respectively. These quantities are then given as

� = 2� ;

� =
�

�
; (12)

S =
1

8�
ln

�
M

�

�
:

It is usual to rede�ne the Hawking's temperature as

TH =
1

�
; (13)

thus, in this case the temperature is given as

T =
�

�
: (14)

The equation (3) may be expressed as

I[f; g] =

Z
d2x(f02

2f1 � f12
2f0) (15)

using equation (4), the two contributions f0 and f1 are
given as

f0 =

�
1� M

�
e�2�r

�
A1(x)

(16)

f1 = �
�
1� M

�
e�2�r

�
�1

A0(x) :

It is important to remember that equation (15) was ob-
tained considering only the static con�guration for f0
and f1 �elds.

Then we have

ZT �= ef02
2f1 � f12

2f0
Z
Dg e�(I[g; '] + I[f; g])

(17)
where only two terms in integrand (15) are given as

f02
2f1 � f12

2f0 �= 2 4M e�2�r�
1� M

� e�2�r
� F (A1; A0) (18)

and

F (A1; A0) = A1

�
@A0

@r

�
+ A0

�
@A1

@r

�
: (19)

Considering now the following approximation:
f02

2f1 � f12
2f0 ' 2 (f02f1 � f12f0) where we wish

to imply that the operator 2 will act only on the second
part of each term of the expression f02f1 � f12f0, i.e,
it acts on 2f1 and 2f0 only.

We approximate the partition function associated
with the \quasi topological term" as

ZChern
Simons ' ef02

2f1 � f12
2f0 (20)

ZChern
Simons = e

2

�
4�F (A1; A0)

�e2�r � �=�

�
(21)

The contribution to entropy is found from

S = ln Z � �
@

@�
lnZ (22)

and we get

S � 2
"
4� F (A0; A1)�
� e2�r � �

�

� +
4�� F (A0; A1)e2�r�

� e2�r � �
�

�2
#

(23)

The average energy is obtained from

M = � @

@�
ln Z (24)

and is

M �= 2
"
4� F (A1; A0)e2�r�

� e2�r � �
�

�
#

(25)

It is assumed that all �elds at in�nity go to zero i.e.
F (A0; A1)! 0 when r!1.

The entropy, (23), and mass, (25), are zero in that
case and we can recover the results (12) for Einstein-
Hilbert theory only. For r = r+ the equations (23) and
(25) diverge then we have a mechanism for generation
of mass and entropy. Finally, for 0 < r < r+ a positive
value for S is obtained.

In the general case, however, the total entropy is

ST � SEinsteinHilbert � SChernSimons (26)

with SEinsteinHilbert given by (12) and SChernSimons given by eq.
(23).

Again the source of entropy from action (3) is traced
to the fact that the energy momentumtensor is not zero
but is given by

T�� =
22

g2
"�k"�
"��g��gk�g��A
A� (27)
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or using (4) it can be written as

T�� =
22

g
g��fkf

k

Then T 00 � g00 and at r = r+, the stress energy mo-
mentum tensor diverges. On the other hand, in the
limit r ! 1, T�� is null due to our assumption that
all �elds are zero at in�nity; so the metric (5) reduces
to the 
at space time with eq. (4) going to zero along
with eq. (3).

The conservation of T�� on-shell is easily checked
with the equation of motion given as

"k�"�
"��gk�g�"A
A� = 0 (28)

or still yet
"��"

�
"��A
A� = 0 (29)

and �nally using again (4) it is given as

"k�fkf� = 0

and thus, independent of the metric. The complete
metric dependence is on the �eld f� given by eq, (4).

Hence, the action (3) or (15) is clearly not com-
pletly a topological action as in [5,4] but is a \quasi-
topological in the sense that the metric dependence is
entirely contained in f� in the same way as [1,6,8].
It is only with this meaning that we are calling the
action (3) \A quasi-chern-simons action" or \quasi-
topological term". The action (3) has the same form
as that of Jackiw's action in [1], but there taking
the limit of g�� for ��� , 
at space time, the higher
derivative Chern-Simons extension can be written as

IECS �
R
d3x f�@�f
"

��
 and f� =
1

2
"���F�� where

the extension depends locally on the �eld strength and
not on the vector potential. In our present case, the
equation (4) is reduced to f� = "��A� and then the
action (3) depends locally on the vector potential di-
rectly, while the equation of motion is independent of
metric, thus, our case being di�erent than that of [1].
However, the best analogy with D = 2+1 we can do is
through considering the equation (3) and some quasi-
topological aspects such in [1,3,8].

Hence, forD = 1+1 dimension we can't write an ex-
act topological Chern-Simons action but one can eval-
uate some contribution for entropy of black holes by
constructing an action analogously to [1] and improv-
ing the same approach as in [2].

Conclusions and Comments

We had introduced a \quasi topological action" as
in [1] and with an appropriate de�nition of a vector in

D = 1 + 1 dimension. The contribution to entropy of
black holes in two dimensions is found.

The correction for average energy has been written
as a function of F (A0; A1) with the assumption that all
�elds at in�nite are zero.

The contribution to entropy is attributed to a non-
null energy momentum tensor (27). We justify the
source of entropy as the stress-energy tensor.
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