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I Introduction.

Nowadays, the satisfactory state of comprehension of the fundamental interactions of na-
ture based on the gauge principle constitutes a strong appeal to quantize the gravitational
�eld. Also, the search for a grand-uni�ed theory in four dimensions shall demonstrate a
complete sense only when the quantization program for the gravitational �eld has reached
the same status of comprehension and consistency of the other three interactions. During
the `70s, attempts to verify the renormalizability of Einstein gravity as a perturbative
quantum �eld theory were able to show the casual on-shell �niteness of pure gravity at
one-loop [1], the explicit loss of renormalizability at two-loops [2], by the generation of
non-trivial higher-order counterterms that can not be absorbed in a rede�nition of the
physical parameters, and that matter-gravity coupled theories do not renormalize at all.
In an attempt to cure the non-renormalizability of Einstein gravity in four dimensions,
some higher-derivative models were proposed [3, 4]; these models were shown to be non-
unitary, though renormalizable, or unitary but now non-renormalizable again [5].

Within this four dimensional picture, of apparent incompatibility of quantum mechan-
ics and gravity, and having in mind that experiments can only probe a limited range of
energies, we are led to take a more realistic position and interpret general relativity as
an e�ective theory [6] up to Planck's scale, where low-energy scales are separated from
unknown high-energy physics. The low-energy e�ective theory, obtained integrating out
unknow high-energy physics, does not present problems with renormalizability and/or
unitarity. This can be easily understood in the following way : a theory of gravity where
high-energy e�ects are taken into account, presents high-derivative sectors. These are
responsible for the renormalizability of the model, if one makes e�orts to constrain its
coe�cients in this direction, but unavoidably show the existence of massive ghosts. As
these ghosts have masses proportional to the Planck's mass, they shall not be excited in
the low-energy regime [7]. At su�ciently low energies, these high-derivative corrections
are not even relevant to Physics phenomena at this lower scale [6].

Owing to the description of physics in a grand-uni�ed picture, the e�ects due to the
gravitational interaction on �eld theory models become relevant when the energy scale is
close enough to Planck's scale. In this scenario of taking into account gravity corrections at
the grand-uni�ed range and the need for consistency in a quantum �eld theory description
of general relativity, the viewpoint we shall adopt is that of Wilson's conception of an
e�ective theory [8], where the physical phenomena should be analysed at a characteristic
scale where its e�ects can e�ectively be veri�ed (in contrast to the \fundamental" thought
of taking all scales at a time that has become the orthodoxy in quantum �eld theory) and
the relation between di�erent scales described by \exact renormalization group equations"
[9].

Recently, a new e�ective �eld theory approach in continuous space [10], improved from
Polchinski's presentation of the \
ow equations" [9], in the sense it gives the generating
functional of 1PI-Green's functions as one runs the characteristic scale � to zero, was
proposed to exhibit infrared properties of theories such as the convexity of the e�ective
action when spontaneous symmetry breaking takes place [11]. This is known by the name
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of \average e�ective action".

The average e�ective action �� takes averages of �elds in the e�ective action in con-
tinuos space [10]-[11] by adding an infrared smooth cuto� �S� to the action S; so that
all contributions to the e�ective action with momenta q2 < �2 are e�ectively suppressed.
In the limit �! 0, the cuto� vanishes. �S� is written as

�S� =
1

2

Z
d4q �

A
(�q) R[AB]

� (q) �
B
(q) ; (1.1)

where �
A
are generic �elds whose Lorentz character is described by the labels A and B.

R� is de�ned in such a way as to imply that the 1PI-e�ective action is recovered from
�� when the limit �! 0 is taken, independently of the form of R�, and �

�!1 [�] = S[�]
in the opposite limit [11]; showing that a 
ow equation can be written with solutions
interpolating from the classical action to the e�ective action. Introducing sources to the
action S + �S�, and de�ning the generating functional of 1PI-Green's functions by a
Legendre transformation of the �-dependent generating functional of connected Green's
functions, one easily gets the exact evolution equations, or 
ow equations, for the average
e�ective action [11]

�
@

@�
��[�] =

1

2
Tr

��
�(2)� [�] +R�

��1
�
@

@�
R�

�
; (1.2)

that relates phenomena at di�erent scales. �(2)� is the second functional derivative of the
average e�ective action with respect to the classical �eld �; it is interpreted as the inverse
full propagator.

In order to avoid some possible problems discussed in [7], that may occur when explic-
itly stating R�, we are going to use here a further consideration: the squared momentum
contributions, q2, that we �nd in all inverse propagator coe�cients obtained from the
linearized form of the action S +�S�, shall be replaced by the function

P�(q
2) =

q2

1� f2�(q)
; (1.3)

where

f�(q) = exp

"
�a

�
q2

�2

�b
#
; (1.4)

with a and b constants, as the only e�ect that the cuto� term �S� has over the e�ective
action [7].

For q2 > �2, P�(q
2) goes exponentially fast to q2, while for q2 < �2 the low-energy

modes are suppressed. The function f�(q) behaves like a modulating function acting on q2
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varying from a Gaussian function, when a = 1
2 and b = 1, for example, where P�(q2) tends

to �2 for q2 ! 0, to a step function, when b!1, forbidding the modes with q2 < �2 from
propagation. So, thanks to this behavior and the �-derivative of P�(q2) (see below), that
suppress the propagation of large momentum 
uctuations, the momentum integration of
the 
ow equations is ultraviolet and infrared �nite. Thus, no regularization scheme is
needed in order to deal with high-energy quantum 
uctuations; provided an appropriate
non-trivial cuto� term modulate the asymptotic behavior of e�ective propagators and
vertices in such a way that the loop integrals of the 
ow equations are performed, e�ec-
tively, over a �nite number of degrees of freedom. In this sense, the method is close to
what is called non-perturbative �eld theory.

The average e�ective action, as proposed above, might turn the exact solution of the

ow equations impossible to be found out due to an in�nite number of e�ective insertion
terms that can be added to the e�ective action. Using some symmetry requirements along
with the understanding that experiments go over a limited range of energies, one is then
led to consider only a �nite and small number of relevant parameters that characterize
physical phenomena up to a given energy scale by performing a truncation scheme at a
given scale �1. The integration of the 
ow equations of the truncated e�ective action
down to �2 < �1 is, in principle, possible and so is the description of the 
ow of the
relevant parameters.

In this work, we follow the approach of [12] when describing gauge �elds by the back-
ground �eld method, where it is shown that the gauge symmetry is preserved with respect
to the gauge transformation of the background.

The paper is planned as follows : in section 2, we de�ne the average e�ective potential
at one-loop and extract the 
ow of relevant parameters in a general form. In the 3rd: and
4th: sections, we compute the 
ow equations for the Scalar-QED model with and without
gravity interaction. In section 5, we present our concluding remarks.

II Flow Equations.

Given the general form of the exact evolution equations (1.2) above, we can now introduce
a set of prescriptions by imposing some de�nitions, or parametrizations, for the �rst few
parameters appearing in the truncated form of the average e�ective action ��. Remem-
bering that we want to describe the 
ow of the relevant parameters in a spontaneously
broken regime, let us parametrize the action by the minimum of its potential and the
quartic self-interacting coupling at the minimum. In this phase, the average e�ective
potential V� has its minimum at �� = ('�')�. So,

V 0

�(��) = 0 ; �� = V 00

� (��) ; (2.1)

where each prime denotes a derivative with respect to �.
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The 
ow equations for �� and �� can be read o� by taking derivatives of (2.1) with
respect to � as below:

�
@

@�
�� = � 1

��

�
�
@

@�
V 0

�

�
� = ��

� �2
(�) ; (2.2)

�
@

@�
�� =

�
�
@

@�
V 00

�

�
� = ��

� �(�) : (2.3)

In the de�nition of �(�) we neglected a third derivative term which accounts for the
variation in the point of de�nition of ��; we consider it an irrelevant contribution to the
truncated action.

As it can be seen, the evolution equation of �� and �� can be computed using the
de�nitions above directly from the average e�ective potential V�. This potential shall be
given only at one-loop order due to truncations, although it can be represented by one-
loop Feynman diagrams of full propagators [11]. To this end, we consider the e�ective
action at a scale � as the classical action at a lower scale [7]. Using the background �eld
method, we write down the linearized form of the Euclidean classical action, expand the
e�ective action in powers of momentum around the position of vanishing external mo-
menta, choose a speci�c con�guration of the �elds, so that only translationally invariant
vacuum expectation values are taken into account [13], and properly de�ne the determi-
nant of the operators of small 
uctuations (see below) as to account for the volume of the
spacetime 
.

The linearized quadratic action, including Faddeev-Popov ghosts, gauge-�xing sectors
and potential terms, can be written as

S(2) =

Z
d4q �

A
(�q) aABij (JP ) P

AB

ij (JP ) �
B
(q) ; (2.4)

where a
AB

ij (JP ) are coe�cient matrices that represent inverse propagators with de�nite

spin and parity; P
AB

ij (JP ) are spin-projection operators [5, 7, 14, 15] listed in the appendix
and the indices A;B label �eld 
uctuations above the background.

The one-loop average e�ective action is obtained through a Legendre transformation
of the generating functional of connected Green's functions and an appropriate choice
of �S� so as to make possible the substitution of q2 by P�(q2) in the operator of small

uctuations O

AB
de�ned below:

S(2) =

Z
d4q

X
A;B

�
A
(�q) O

AB
�
B
(q) : (2.5)
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So, provided an ultraviolet cuto� � is taken, we de�ne the one-loop average e�ective
action as

��(�) =
1

2
ln

�
det�O(�)
det�O(��)

�
; (2.6)

where �� is the minimum of V� and det� is the determinant with momentum integrations
modi�ed as described above. With this de�nition for ��, with the normalization denom-
inator det�O(��) included, the minimum of the average e�ective potential is zero for all
scales,

V�(��) = 0 ; (2.7)

this is consistent with the set of parametrizations adopted in (2.1).

Now, the average e�ective potential at one-loop can be written as

V�(�) =
1

2

X
J;P

(2J + 1)

Z �

jq2 j=0

d4q

(2�)4
ln

�
det� a�(JP )(�)

det� a�(JP )(��)

�
; (2.8)

where (2J + 1) stands for all the multiplicity of each spin contribution.

Given the de�nition for V�(�) as above and the inverse propagator coe�cients, a�(JP ),
stemming from the linear quadratic action (2.4), we are able to compute the �-functions
(2.2) and (2.3) and analyse the scale-dependence of the parameters that characterize the
e�ective action. The general functions are


(�) =
�1

32�2 �2 ��

Z
dxxR
(P�; ��)�

@P�

@�
; (2.9)

�(�) =
1

32�2

Z
dxxR�(P�; ��)�

@P�

@�
; (2.10)

where x =j q2 j and R are rational functions of P� and ��. Notice that as a by-product of
our appropriate infrared cuto� �S� introduced at a scale �, due to the behavior of P�(x)
and its k-derivative, the momentum integration in the 
ow equations (2.9) and (2.10) are
ultraviolet and infrared �nite. � @P�

@�
receives an e�ective contribution at x � �2 and large

momentum 
uctuations q2 � �2 are exponentially suppressed, while the �-scale acts like
a mass term in the inverse propagators P�(q2) in the infrared limit q2 � �2. Thus, only a
�nite number of degrees of freedom e�ectively contributes to (2.9) and (2.10), as an exact
evolution equation should be.
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III Scalar-QED.

Let us now compute the 
ow equations, described in the previous section, for the case of
Scalar-QED. The truncated e�ective action we shall work with is given by

�(A�; '
�; ') =

Z
d4x [ V (�)+ Z�(D�')

�(D�') +

+
1

4
ZFF��F

�� +
1

2�
(@�A

�)2
�
; (3.1)

where D� � @�+ ieoA� and � � '�'. Z� and ZF are �xed wave-function renormalization
constants 3 and eo is a bare coupling constant.

Following the steps described in the previous section, the associated average e�ective
potential is

V�(�) =
1

2

Z
d4q

(2�)4

�
3 ln

�
a�(1�)(�)

a�(1�)(��)

�
+ ln

�
det� a�(0+)(�)

det� a�(0+)(��)

��
: (3.2)

Here, we have split the �elds A�; '
� and ' in classical backgrounds, that will be identi�ed

as vacuum expectation values, plus 
uctuations as below:

'� = '�
cl:
+ �'� ;

' = '
cl:
+ �' ; (3.3)

A� = �A� ; A
cl:

� � 0 :

The inverse average propagator coe�cients a�(JP )(�) of eq. (3.2) are given by

a�(1
�) =

p
3
�
P�(q

2) + 2e2o �
�
; (3.4)

a�(0
+) =

0
BB@

1
�
P�(q2) + 2e2o� eo'

� j P
1
2
� (q2) j �eo' j P

1
2
� (q2) j

eo'
� j P

1
2
� (q2) j ('�)2V 00(�) P�(q2) + V 0(�) + �V 00(�)

�eo' j P
1
2
� (q2) j P�(q2) + V 0(�) + �V 00(�) (')2V 00(�)

1
CCA :

(3.5)

3In this work, we do not compute the running of the wave function renormalization constants ZF and
Z�. It was shown in ref. [7] that for the pure scalar �eld case, in the ultraviolet and infrared limits, the
anomalous dimension in four dimensions can be neglected; � � 1. We set here Z� = ZF = 1 because we
don't expect it to give signi�cant di�erent results in these limits.
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They can be easily read o� from the linearized quadratic action in coordinate space

S(2)(A�;'
�; ') =

Z
d4x

�
�A�

�
(�@2)��� +

1

�
(�@2)!�� + 2e2o �cl: �

��

�
�A� +

+ 2 �'�
�
(�D2) + V 0(�) j

'cl:
+�

cl:
V 00(�) j

'cl:

�
�'+

+ V 00(�) j
'cl:

�
(�'�)2'2

cl:
+ ('�

cl:
)2(�')2

�
+ (3.6)

+ 4e2oA
�
cl:
�A�

�
'
cl:
�'� + '�

cl:
�'
�
+

� 2 i eo �A�

�
�'�@�' j'cl: �'

cl:
@��'� + '�

cl:
@��'� �' @�'� j'cl:

� �
;

after it is Fourier transformed to momentumspace, the di�erent spin-parity contributions 4

are identi�ed, the �eld con�gurations (3.3) are chosen and q2 is replaced by P�(q2).

We call the readers attention to the fact that we have not constrained any longitudinal
mode in order to obtain manifest gauge invariant results. Terms containing (�')2, (�'�)2

and longitudinal vector �elds do propagate in our approach due to the presence of an
infrared cuto�. In this way, the gauge invariance could be achieved as the limit �! 0 of
the modi�ed Ward-identities as in refs. [16].

After taking derivatives of the coe�cients (3.4) and (3.5), with respect to � and � as in
eqs. (2.2) and (2.3), we substitute into the 
ow equations the `classical' parameters and the
`classical' potential V , from (3.1), by their running counterparts. In connection to what
was called a `classical' action, as an e�ective action at a lower scale, the procedure can be
iterated at each scale �. This updating is called the renormalization group improvement,
or, sometimes, �ne-tunning, and the 
ow of V 0

�(�) and V 00

� (�) with � shall be the 
ow
equations we are searching for.

Analytic solutions of eqs. (2.9) and (2.10) for this model in closed form are not
possible to be found. However, we are able to analyse asymptotic limits and obtain
analytic solutions for �2 very large or very small compared to �� .

In the ultraviolet limit, where q2 � ��, the 
- and �-functions describing the running
of the v.e.v. of �� and the running of �� are dominated by powers of P�(x), which is
of order �2, since the factor �@ P�

@ �
, in eqs. (2.9) and (2.10), suppressing exponentially

large momentum 
uctuations in comparison to � and as a power for lower q, receives its
e�ective contribution at q � �, where it is peaked. So, in this limit we neglect �� with
respect to �2. The leading contributions are


(�) =
�1

32�2 �2 ��

Z
dxx �

@ P�(x)

@ �

��6e2o � 4�e2o � 4��
�
P �2
� (x) ; (3.7)

�
@ ��

@�
=

�2

16�2��

�
3e2o + 2�e2o + 2��

�
I�2(0) (3.8)

4See eq. (2.4) and Appendix.
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and

�(�) =
1

32�2

Z
dxx �

@ P�(x)

@ �

�
24e4o + 32�2e4o + 8�e2o�� + 20�2�

�
P �3
� (x) ; (3.9)

�
@ ��

@�
=

1

8�2
�
6e4o + 8�2e4o + 2�e2o�� + 5�2�

�
I�3(0) ; (3.10)

where the integrals In(w) are de�ned by

�2(n+3) In(w) =

Z
dxx (P�(x) + w )n �

@P�(x)

@�
; (3.11)

I�2(0) = ��2
Z

dxx P �2
� (x)�

@P�(x)

@�
=

2

(2a)
1
b

�(1 +
1

b
) (3.12)

and

I�3(0) =

Z
dxxP �3

� (x)�
@P�(x)

@�
= 1 : (3.13)

From this we see that, independently of the constants a and b, �� runs quadratically in
the ultraviolet regime, as dimensional arguments suggest perturbatively, and �� scales
logarithmically with sublogarithmic corrections at high energies.

There is an apparent incompatibility between the running of �� and the approximation
�2 � ��. Looking at eqs. (3.7) - (3.10), we see that �� runs in fact quadratically,
which makes the approximation questionable, but �� runs logarithmically with some
sublogarithmic corrections. Thus, the net result is that �� grows slower than �2 what
justi�es the approximation in this case.

In the opposite limit, �2 � ��, the infrared one, the 
ow equations are dominated by
powers of �� greater than powers of P�(x) � �2. The leading contributions are those with
higher powers of ��. So, the 
-function is given by


(�) =
�1

32�2 �2 ��

Z
dxx �

@ P�(x)

@ �

� �3
2�2�e

2
o

� ��

2P 2
� (x)

�
; (3.14)

�
@ ��

@�
=

1

32�2��

�
3

2�2�e
2
o

I 0(0)�
6 +

��

2
I�2(0)�

2

�
: (3.15)

Solving the above p.d.e. for �0 6= 0 and �0 6= 0, we get that the �rst term on the r.h.s.
of eq. (3.15) becomes the dominant one which damps the scaling of �� by powers of �2

��
and stops its running for �! 0. For small enough �; �� runs as
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�� = �0

�
1 +

1

128�2
I0(0)

�0e2o

�6

�30

�
; (3.16)

where

I0(0) = ��6

Z
dxx �

@ P�(x)

@ �
(3.17)

is a constant.

The �-function in this limit is given by

�(�) =
1

32�2

Z
dxx �

@ P�(x)

@ �

�
3

�3�e
2
o

+
�2�

2P 3
� (x)

�
; (3.18)

�
@ ��

@�
=

1

32�2

�
3

�3�e
2
o

�6 I 0(0) +
�2�
2
I�3(0)

�
: (3.19)

The �rst term in the r.h.s. contributes with the same behavior seen in the pure scalar
case [7], although it comes from a purely vector contribution (spin-1) : the running of ��
is damped by powers of �2

��
, going to zero in the limit �! 0. The second term contributes

logarithmically to the scaling of ��; showing the same net behavior found in the ultraviolet
regime. Thus, when �! 0, the damped term decouples but the theory still correlates at
long distances.

IV Turning on the Gravity interaction.

We are now going to use the techniques shown in the sections before to compute and
analyse the �-function of the Scalar-QED model when gravitational e�ects are taken into
account; i.e., we are going to correct the �-functions of the last section when the energy
scale is close to, but below, the Planck's scale. To do that, we take our e�ective action as

�(A�; '
�; ';h��) =

Z
d4x

p
g [ V (�)+ g�� (D�')

�(D�') +

+
1

4
g��g�� F��F�� +

1

2�
g��g�� (@�A�)(@�A�) +KR

�
; (4.1)

where, as before, D� � @� + ieoA� and � � '�'. K = 1
16�G ; g = det g�� ; R = g��R 



� � is
the scalar curvature and R �

�� � = @� � �
� ��@� � �

� �+� �
� 
 �



� ��� �

� 
 �



� � is the curvature
tensor, where the connection is de�ned as usual; � �

� � =
1
2 g

�� (@�g�� + @�g�� � @�g��) :
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Hereafter, we shall recognize the metric �eld g�� as a 
uctuation around the Euclidean
(
at) space geometry,

g��(x) = ��� +
1pK h��(x) ; (4.2)

and take h��(x) as the �eld variable of the gravitational interaction. Also, we shall expand
the �elds A�; '

� and ' as in (3.3).

The linearized quadratic action is then written as

S(2)(A�;'
�; ';h��) =

Z
d4x

�
�A�

�
��� ���(�@2���) +

1

�
��� ���(�@2!��)+

+ 2e2o �cl: �
��
�
�A� +

+ 2 �'�
����� @� @� + V 0(�) j�cl: +�cl: V 00(�) j�cl:

�
�' +

+ V 00(�) j
�cl:

�
(�'�)2'2

cl:
+ ('�

cl:
)2(�')2

�
+

� i 2 eo �A� �
��
�
'�
cl:
@� �'� '

cl:
@� �'

�
�
+

+
1pK h��

�
1

2
��� V

0(�) j
�cl:

'�
cl:

�
�' +

+
1pK �'�

�
1

2
��� V

0(�) j
�cl:

'
cl:

�
h�� +

+
1

K h��
� �1

4
������ V (�cl:) +

1

8
������ V (�cl:)

�
h�� +

+
1

2
h��

�
��� @� @� � 1

2
������ @2 � ��� @� @�+

+
1

2
��� ��� @2

�
h�� +

1

2 �
@� h

�� @� h�� ] ; (4.3)

where we have �xed the gauge symmetry

�h��(x) = @���(x) + @���(x) ; (4.4)

with ��(x) being an in�nitesimal coordinate transformation, by adding the gravitational
gauge-�xing sector

S
G:F:

=
1

2 �

Z
d4x@� h

�� @� h�� : (4.5)

The Faddeev-Popov ghosts decouple from h�� in this gauge and shall not be considered
in what follows.
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The linearized quadratic action (4.3) can be rewritten in compact form spanning all its
elements on the corresponding spin-projection operators as in eq. (2.4). The coe�cient
matrices aAB(JP ) are

ahh(2+) =
�1
4
q2 � 1

4K V (�) ; (4.6a)

ahh(1�) =
1

4 �
q2 � 1

4K V (�) ; (4.6b)

ahhs (0+) =
1

2
q2 +

1

8K V (�) ; (4.6c)

ahhw (0+) =
1

2 �
q2 � 1

8K V (�) ; (4.6d)

ahhsw(0
+) =

p
3

8K V (�) = ahhws(0
+) ; (4.6e)

a
h'
s1 (0

+) =

p
3

4
pK V 0(�)'� = a

'h
1s (0

+) ; (4.6f)

a
h'�

s1 (0+) =

p
3

4
p
K V 0(�)' = a

'�h
1s (0+) ; (4.6g)

a
h'
w1(0

+) =
1

4
pK V 0(�)'� = a

'h
1w(0

+) ; (4.6h)

ah'
�

w1 (0
+) =

1

4
pK V 0(�)' = a'

�h
1w (0+) ; (4.6i)

aAAs (1�) =
p
3 (q2 + 2 e2o �) ; (4.6j)

aAAw (0+) =
1

�
q2 + 2 e2o � ; (4.6k)

a
A'
w1 (0

+) = eo '
� j q j = a

'A
1w (0

+) ; (4.6l)

aA'
�

w1 (0+) = �eo ' j q j = a'
�A

1w (0+) ; (4.6m)

a''11 (0
+) = V 00(�)('�)2 ; (4.6n)

a
'�'
11 (0+) = q2 + V 0(�) + �V 00(�) = a

''�

11 (0+) ; (4.6o)

a'
�'�

11 (0+) = V 00(�)'2 : (4.6p)

In matrix form, we can write

a(0+) =

0
BBBBB@

ahhs (0+) ahhsw(0
+) 0 a

h'
s1 (0

+) a
h'�

s1 (0+)

ahhws(0
+) ahhw (0+) 0 a

h'
w1(0

+) a
h'�

w1 (0
+)

0 0 aAAw (0+) a
A'
w1 (0

+) a
A'�

w1 (0+)

a
'h
1s (0

+) a
'h
1w(0

+) a
'A
1w (0

+) a
''
11 (0

+) a
''�

11 (0+)

a
'�h
1s (0+) a

'�h
1w (0+) a

'�A
1w (0+) a

'�'
11 (0+) a

'�'�

11 (0+)

1
CCCCCA ; (4.7)
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a(1�) =

�
ahh(1�) 0

0 aAAs (1�)

�
; (4.8)

a(2+) = ahh(2+) : (4.9)

To each element aAB(J
P

), there is a spin-projector PAB(J
P

). The complete set of pro-
jectors for this model is cast in the appendix. The lower labels s;w; and 1 stands for
transversal, longitudinal and pure-scalar contributions.

Again, the associated average e�ective potential reads as

V�(�) =
1

2

Z
d4q

(2�)4

�
5 � ln

�
a�(2+)(�)

a�(2+)(��)

�
+ 3 � ln

�
det� a�(1�)(�)

det� a�(1�)(��)

�
+

+ ln

�
det� a�(0+)(�)

det� a�(0+)(��)

� �
: (4.10)

Given the set of parametrizations (2.1) and the average potential above, the 
ow of
�� and �� are given by


(�) =
�1

32�2 �2 ��

Z
dxx �

@ P�(x)

@ �

"
5 � @

@ P�(x)

@

@ �
ln

�
a�(2+)(�)

a�(2+)(��)

�
�= ��

+

+ 3 � @

@ P�(x)

@

@ �
ln

�
det� a�(1�)(�)

det� a�(1�)(��)

�
�= ��

+ (4.11)

+
@

@ P�(x)

@

@ �
ln

�
det� a�(0+)(�)

det� a�(0+)(��)

�
�= ��

#

and

�(�) =
1

32�2

Z
dxx �

@ P�(x)

@ �

"
5 � @

@ P�(x)

@ 2

@ � 2
ln

�
a�(2+)(�)

a�(2+)(��)

�
�= ��

+

+ 3 � @

@ P�(x)

@ 2

@ � 2
ln

�
det� a�(1�)(�)

det� a�(1�)(��)

�
�= ��

+ (4.12)

+
@

@ P�(x)

@ 2

@ � 2
ln

�
det� a�(0+)(�)

det� a�(0+)(��)

�
�= ��

#
:
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In the ultraviolet limit, �2 � ��, where again P�(x) � �2, we collect the terms with
highest power of P�(x) and neglect �� with respect to �2. Thus, we have for the 
-function

�
@ ��

@ �
= � 2 
(�) =

�2

16�2��

�
3e2o + 2�e2o + 2��

�
I�2(0) : (4.13)

This result is the same as in the case without gravity coupling; �� runs quadratically.

In the infrared limit, �2 � ��, we get

�
@ ��

@ �
= � 2 
(�) =

1

32�2��

�
3

2�2�e
2
o

I 0(0)�
6 +

��

2
I�2(0)�

2

�
: (4.14)

The �rst term in the r.h.s. damps, when �! 0, the evolution of �� by powers of � 2

��
. For

�0 6= 0 and �0 6= 0, we have

�� = �0

�
1 +

1

128� 2

I0(0)

�0 e 2o

� 6

� 3
0

�
: (4.15)

This exactly agrees with the case without gravity.

Now, the �-function, in the ultraviolet limit is given by

�(�) =
1

32�2

Z
dxx �

@ P�(x)

@ �

�
5 �

� ���
KP 2

� (x)

�
+

+ 3 �
�

�� �

KP 2
� (x)

+
8 e 4o
P 3
� (x)

�
+

�
�� (� � 1)

4KP 2
� (x)

+
32� 2 e 4o
P 3
�

+ (4.16)

+
8� e 2o ��

P 3
�

+
20� 2

�

P 3
�

+
3� e 2o �� �� (� � 1)

KP 3
�

+
5� 2

� �� �

2K P 3
�

� �
;

�
@ ��

@ �
=

1

32�2
� �

24 e 4o + 32� 2 e 4o + 8� e 2o �� + 20� 2
�

�
I�3(0) +

+

�
�5 + 3 � +

(� � 1)

4

�
�� �

2

K I�2(0) + (4.17)

+

�
3� e 2o �� �� (� � 1)

K
�
I�3(0) +

�
5� 2

� �� �

2K
�

I�3(0)

�
:

As � 2 � ��, the last two terms do not contribute in this limit. Considering � 2 �K, the
terms proportional to �2

K
I�2(0) are not relevant, but when the energy scale goes near,
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but below, the Planck's mass, � 2 � K, the �� coupling begins to run much faster than
logarithmically and some care must be taken, as the validity of Einstein theory near this
energy scale becomes questionable.

In the infrared limit, one gets for the �-function

�(�) =
1

32�2

Z
dxx �

@ P�(x)

@ �

�
5 �

� ���
KP 2

� (x)

�
+

(4.18)

+ 3 �
�

�� �

KP 2
� (x)

+
1

e 2o �
3
�

�
+

�
�� (� + 1)

2K P 2
� (x)

+
� 2
�

2P 3
�

� �
;

�
@ ��

@ �
=

1

32�2

�
(�9 + 7 �)

2
��

� 2

K I�2(0) +
3

e 2o

� 6

� 3
�

I 0(0) +
� 2
�

2
I�3(0)

�
: (4.19)

The �rst term in the r.h.s. becomes relevant when the scale is close to the Planck's
threshold where the Einstein's action is limited to. The other two terms are the same as
those coming from the Scalar-QED model when gravity corrections are not considered.

V Concluding Remarks.

The �rst conclusion we can draw from the analysis of these 
ow equations is that the
running of the v.e.v. of �� is not modi�ed when the gravitational contribution is taken
into account. Eqs. (4.13), (4.14) and (4.15) are exactly the same as eqs. (3.8), (3.15) and
(3.16), respectively. We have promoted the metric �eld g�� to a quantum �eld without
letting the Planck's constant to run; i.e., we took only the bilinear sector of Einstein's
action and de�ned the e�ective action over 
at background. In this way, the vacuum
structure of the theory was not modi�ed by gravity couplings; the equivalence principle
applies.

For the �-functions, we can observe that eqs. (4.17) and (4.19) contain the same
terms found in eqs. (3.10) and (3.19) plus corrections when the mass scale is increased.
At K � �2 � ��, the 
ow of �� is given by the �rst term in r.h.s. of eq. (4.17). It is the
same result found in eq. (3.10). For K � �2 � ��, the scale is of order the Planck's mass
and the 2nd: term of (4.17) becomes relevant as a correction induced by gravity. So, the
�-function reads

�
@ ��

@ �
=

1

32�2
� �

24 e 4o + 32� 2 e 4o + 8� e 2o �� + 20� 2
�

�
I�3(0) +

+

�
�5 + 3 � +

(� � 1)

4

�
�� �

2

K I�2(0)

�
: (5.1)
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The 3rd: and 4th: terms of eq. (4.17) would become relevant, compared to the 2nd: one, if
K � �2 � �� or K � �� � �2; but these possibilities would violate the basic assumption
of a �-function in the ultraviolet limit �2 � ��. So, these last two terms can be neglected.
Yet, the terms of correction by Einstein's gravity should be looked upon with some care,
as the theory is questionable at this energy scale if one sticks to gravity as an e�ective
�eld theory.

On the opposite range, �� � �2, the infrared one, the �rst term of eq. (4.19) appears
as a correction by gravity and the last two are the same found in eq. (3.19). Comparing
the behavior of the �rst two terms, one �nds two di�erent situations. If we set up the
regime �

3=2
� K�1=2 � �2 � ��, only the 3rd: term of eq. (4.19) contributes in the deep

infrared limit. If �2 � �
3=2
� K�1=2 � ��, the 1st: term corrects the case without gravity,

but our threshold region is limited to K as �2 � �� � K. So, e�ectively, only the 3rd:

term contributes to the running of ��. Thus, the behavior of �� in the infrared, with and
without gravity, is kept the same:

�� =
�0

1� �0I�3(0)
64�2

ln
�

�
�o

� : (5.2)

The self-interacting coupling �� scales slowly to zero in the deep infrared and the theory
still correlates at long distances as the masses of the gauge particles are suppressed with
��.

We have computed the 
- and �-functions of the Scalar-QED corrected by Einstein's
Gravity. The v.e.v. of �� was found to run quadratically at high energies and to suppress
it's running at su�cient low energies. �� scales faster than logarithmically in the ultravi-
olet in the presence of the gravitational coupling and logarithmically in the infrared due
to the presence of massless particles in this limit.
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Appendix:

Below, we list all the spin-projection operators found in this work.

P hh(2+)��;�� =
1

2
(������ +������)� 1

3
������ ;

P hh(1�)��;�� =
1

2
(���!�� +���!�� +���!�� +���!��) ;

P hh
ss (0

+)��;�� =
1

3
������ ;

P hh
ww(0

+)��;�� = !��!�� ;

P hh
sw (0

+)��;�� =
1p
3
���!�� ;

P hh
ws (0

+)��;�� =
1p
3
!����� ;

P h'
s1 (0

+)�� =
1p
3
��� ;

P 'h
1s (0

+)�� =
1p
3
��� ;

P
h'�

s1 (0+)�� =
1p
3
��� ;

P
'�h
1s (0+)�� =

1p
3
��� ;

P h'
w1 (0

+)�� = !�� ;

P
'h
1w (0

+)�� = !�� ;

P
h'�

w1 (0+)�� = !�� ;

P '�h
1w (0+)�� = !�� ;

PAA
s (1�)�� =

1p
3
��� ;

PAA
w (0+)�� = !�� ;

P
A'
w1 (0

+)� : = !�� q̂� ;

P
'A
1w (0+)� : = !�� q̂� ;

PA'�

w1 (0+)� : = !�� q̂� ;

P
'�A
1w (0+)� : = !�� q̂� ;

P ''
11 (0

+) = 1 ;

P ''�

11 (0+) = 1 ;

P
'�'
11 (0+) = 1 ;

P '�'�

11 (0+) = 1 :

The operators ��� and !�� stand for the usual transverse and longitudinal projectors on
the space of vectors,
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q̂� =
q�p
q2

; ��� = ��� + !�� and !�� = q̂�q̂� ;

and are identi�ed by the lower labels s and w, as in the Barnes and Rivers notation [14].
The lower index 1, label the unity contribution from the scalar �elds to the spin operators.
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