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Abstract

We consider a topologically massive Ginzburg-Landau model of superconductivity. In

the context of a mean �eld calculation, we show that there is an increase in the critical

temperature driven by the topological term. It is shown that this e�ect persists even if we

take into account the critical uctuations. The renormalization group analysis gives further

insight on this behavior. The �xed point structure is such that the critical exponents tend

to their mean �eld values for very large values of the topological mass. In this sense, the

topological term stabilizes the critical uctuations of the order parameter.
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The Ginzburg-Landau (GL) theory of superconductivity [1] describes very well the phe-

nomenology of conventional superconductors. It is believed that a similar phenomenological

theory can be applied to the study of the High temperature superconductors (HTSC). This

expectation relies on experimental observation which indicates that the order parameter is

just the same in both situations [2]. However, the GL theory neglects the uctuations of the

order parameter which are very important in the HTSC. Consequently, the exponents of the

HTSC phase transition di�ers from the ones given by the GL theory [3]. Theoretically, the

uctuations can be taken into account through the use of renormalization group techniques

to study the behavior of the theory in the neighbourhood of the critical point [4]. Another

possible path to study the e�ect of the uctuations is to compute further corrections to the

free energy functional in a systematic way by performing a loop expansion [5].

In this note we study a version of the GL free energy functional where a topological Chern-

Simons term [6] is added. Topological models are frequently employed in the construction

of quantum models for HTSC which explore the e�ects of statistical transmutation (anyon

superconductivity) [7]. Here we investigate the e�ect of such a topological contribution in

a macroscopic model which generalizes the GL model. We perform mean �eld calculations

very similar to those in the mean �eld theory proposed by Halperin, Lubensky and Ma

(HLM) [8]. Also, we compute the corrections due to the critical uctuations in the free

energy and we obtain the renormaliztion group equations.

Our starting point is the following free energy functional,

F [ ; ~A] =
Z
d3x
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where r0 = a0(T �T0)=T0 and � > 0 is the topological mass. The partition function is given

by

Z =
Z
D ~AD yD exp(�F [ ; ~A]): (2)

Since F is quadratic in the vector �eld, the integration over ~A is Gaussian and can be
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performed exactly. For an uniform  this de�nes the following e�ective free energy density

functional:

feff [ ] = �
1

12�
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+(j j
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j j2+

u0
4!
j j4; (3)

where the calculations were performed in the the Landau gauge and the functions M� are

de�ned by

M2
�(j j

2) = q2j j2 +
�2

2
�
�

2

q
�2 + 4q2j j2: (4)

The parameter r0 has been renormalized to r = a(T � Tc)=Tc. When � = 0 Eq.(3) reduces

to the e�ective functional obtained by HLM. The critical temperature Tc does not depend

on � and is the same as in the HLM paper.

The inverse of the susceptibility is obtained for temperatures above the critical temper-

ature by

��1 =
@2feff
@j j2 j j=0

: (5)

The critical temperature is de�ned by the divergence of the susceptibility and we get from

Eq.(5) the �-dependent critical temperature

~Tc = Tc

 
1 +

q2�

2�a

!
: (6)

The susceptibility has a critical behavior with critical exponent  = 1 which is the mean

�eld value. Minimizing the e�ective free energy functional with respect to j j2 and denoting

by � the corresponding value of j j which minimizes feff we get the expression for the mean

�eld order parameter,

� =

s
6~a

u0
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T
~Tc
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; (7)

where

~a = a+
q2�

2�
: (8)
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Therefore the mean �eld critical exponents are the same as in HLM as it should be. In

particular, the above results imply that � = � = 1=2. However, the critical temperature has

been increased by a factor of 1+q2�=2�2a with respect to the mean �eld critical temperature

of HLM. The mean �eld theory of HLM renormalizes negligibly the critical temperature

while in the present case this is not necessarily true because we may have arbitrary values

of � which may increase considerably the critical temperature of the superconducting phase

transition.

Up to now we have taken into account only the uctuations which does not change the

mean �eld behavior of the model. To proceed let us investigate the e�ects of the critical

uctuations. These are obtained by computing the one loop correction arising from the

uctuations of the order parameter. The corrected free energy density is given by

f1�loopeff =
r0
2
j j2 +

u0
4!
j j4 +

1

4�2
f
Z �

0

dpp2[ln(p2 +M2
+(j j

2)) (9)

+ ln(p2 +M2
�(j j

2)) + ln(p2 + r0 + u0j j
2=2) � 3 ln(p2)]g;

from which we get the corrected inverse susceptibility for T > T 0
c, T

0
c being the new critical

temperature:

��1
1�loop =

a

Tc
(T � ~Tc) +

u0
4�2

Z �

0

dp
p2

p2 + r0
: (10)

In the above equation we have replaced r0 by r0 = �(T � T 0
c) = ��1

1�loop since the error

involved is beyond one loop order. The critical temperature is

T 0
c(�) = ~Tc(�) �

u0Tc�

4�2a
: (11)

Thus, the critical uctuations have the e�ect of lowering the critical temperature. However,

T 0
c(0) < T 0

c(�) and therefore the topological term increases the degree of order with respect

to the standard GL model. This e�ect is better elucidated if one uses Eq.(6) to rewrite (11)

as

T 0
c(�) = Tc +

�Tc
2�a

�
q2� �

u0
2

�
; (12)
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where we have chosen to measure � in units of �, that is, � = ��. From Eq. (12) we see

that the e�ect of the critical uctuations can be supressed by the topological mass. In fact,

if u0 = 2q2� we have T 0
c = Tc. Thus, the topological term acts as a factor which compensates

the disorder introduced by the critical uctuations. By attributing typical BCS values to

both q2 and u0 in Eq.(12) we get that � = u0=2q2�10�2 in order to suppress the e�ects of

the uctuations of the order parameter on the critical temperature. Since for a typical BCS

situation u0=2q2�10�2 we may choose � such that � >> u0=2q2 and T 0
c �

~Tc. Therefore,

in a topologically massive GL model the critical temperature can be considerably enhanced

even when the critical uctuations are taken into account. The uctuations arising from the

vector potential ~A dominates over the uctuations of the order parameter.

The critical behavior is better analysed through renormalization group (RG) techniques.

The case with � = 0 was already analysed by many authors [4]. The RG study in the

ultraviolet limit was carried over in the case of Chern-Simons scalar QED without a self-

coupling of the scalar �eld and show a trivial behavior of the Chern-Simons coupling, at least

in the context of perturbation theory [9]. We are interested in the infrared behavior and,

therefore, the ultraviolet cuto� is kept �xed. We shall work with Wilson's version of the RG

in its perturbative form [10]. Although the presence of the cuto� spoils gauge invariance,

it can be shown that as soon as the cuto� is removed gauge invariance is recovered [11]. In

fact, many studies using Wilson's RG are being performed in gauge theories [12]. Up to one

loop order it is possible to perform an �-expansion because the antisymmetric part of the

vector �eld propagator does not contribute at this order. Alternatively, if we want higher

orders we can use dimensional reduction techniques to obtain the desired power of �.

The RG equations are obtained by integrating out the fast modes and performing an

appropriate rescaling of the momentum variables and �elds. The ow equations are better

expressed in terms of dimensionless parameters de�ned through r = �2r, u = S�1
d �4�du,

f = q2 = S�1
d �4�df and � = �� where Sd = 21�d��d=2=�(d=2). The result, extrapolated to

4� d = 1, is given by
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dr

dt
= (2 � �)r +
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2
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df

dt
= (1 � �A)f (15)

where the anomalous dimensions for the scalar and gauge �elds are given respectively by

� = �3
f

(1 + r)(1 + �
2
)

(16)

and

�A =
f

3(1 + r)
: (17)

There is no ow for the parameter � as expected perturbatively. From the above ow

equations it is readily seen that all critical exponents will depend on �. Therefore, the

parameter � drive the system into di�erent universality classes.

The �xed point structure is well known for � = 0. It is found that the superconducting

�xed point (r�; u�; f
�
) has a complex value for u� if the number of components of the order

parameter is less than 365.9 [13]. This behavior is usually interpreted as indicating a �rst

order phase transition driven by uctuations.

However, this behavior is changed for � > 0. In this situation, real superconducting

�xed points are found. Typically, we �nd two physical superconducting �xed points, one

with two attractive infrared directions and one infrared repulsive while the other one has

two infrared repulsive directions and one attractive. For instance, for � = 5 and � = 10 we

�nd the following �xed points with two infrared attractive directions (�0:28; 2:16; 0:44) and

(�0:21; 0:43; 2:37), respectively. This type of behavior con�rms the already mentioned fact

that the topological mass damps the critical uctuations of the order parameter. Indeed, for

very large values of �, the critical exponents tend to their mean �eld values. For example,

for � = 100 we �nd for the exponent of the order parameter correlation function, the value

� = �0:0006. We conclude that the mean �eld exponents becomes exact for very large

values of the topological mass.
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To summarize, we studied a topologically massive version of the GL model. The mean

�eld theory gives a critical temperature larger than the usual one by a factor proportional

to the topological mass. This gives an enhancement of the critical temperature driven by

topological e�ects. Even when the uctuations of the order parameter are taken into account

this enhancement persists and we conclude that the topological term has the e�ect of increase

the order of the system. In this sense the topological term may be thought as an inductor of

higher critical temperatures in unconventional superconductors. The �xed point structure

exhibits superconducting �xed points with real values for u� if � > 0. The critical exponents

have a � dependence such that they tend to the mean �eld values for � very large. This

means that the Chern-Simons term has the e�ect of stabilize the critical uctuations.

It is an interesting question if this topological macroscopic theory could have some rele-

vance to the HTSC case. In order to discuss this case it is necessary to improve considerably

the proposed model. The HTSC are highly anysotropic and we are dealing here with an

isotropic situation. Also, the coherence length is very small as compared to the coherence

length of conventional superconductors and the e�ects of the critical uctuations are very

important. This means that a more careful study of the RG equations is necessary with an

explicit evaluation of the critical exponents. However, it is quite remarkable that the critical

region for these materials are large as compared to conventional superconductors due to the

smallness of the correlation lenght. Therefore, Ginzburg-Landau like models are suitable for

a macroscopic description of the superconducting phase transition in HTSC.

We hope that this note could estimulate further investigation on the subject, both from

the theoretical and experimental point of view.
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