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Abstract

We carry out a complete examination of the e�ects of rotation on the physics of spin-

1=2 particles. The origin of these e�ects is connected to the fact that the frame of the

rotating experiment is Fermi-Walker transported, and is related to the inertia rest frame

(with respect to which the apparatus rotates with angular velocity ~!) by a Lorentz boost

with instantaneous velocity ~! ^ ~R plus a time dependent spatial rotation. Two distinct

sets of e�ects are obtained. The �rst depends on the spin-rotation interaction, and con-

sists of the Mashoon e�ect and a mass split e�ect due to the Lorentz boost mentioned

above. In a neutron interferometer the latter e�ect produces a phase shift smaller than

the Mashoon phase shift by a factor of order 0(v2=c2), where v is the velocity of the par-

ticles in the beams of the interferometer. The detection of the Mashoon e�ect is crucial

to decide if free spin-1=2 particles actually behave a gyroscopes. The second set appears

already in the eikonal approximation and is due to the dragging of the particles by the

rotating apparatus, boosting the four momentum of the particles; it results in the Sagnac

e�ect. We also discuss a criterion to �x the frame of the experiment among all mathe-

matically admissible frames in the Brill-Wheeler formulation, and show that frames used

in the literature to derive the Sagnac-Mashoon e�ect cannot be physically realized.
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1 Introduction

In the realm of Special Relativity, the laws of Physics are basically formulated on inertial

frames. However in many situations the description of a physical system may require the

use of non-inertial frames, as is the case of experiments in laboratories rotating with the

earth. The rotation of the apparatus may have a measurable e�ect on experiments, like the

Sagnac e�ect originally predicted and measured for light [1], and more recently measured

for neutrons in experiments of neutron interferometry [2]. Concerning the Sagnac e�ect

the established fact is that the rotation of the experimental apparatus relative to the

inertia rest frame [3] produces a phase-shift in the interference pattern proportional to

~! � ~A, where ~! is the angular velocity of the apparatus and ~A is the oriented area enclosed

by the interfering beams (this is correct to the �rst order of !=v, where v is the velocity

of the neutron or photon). A few years ago Mashoon [4] suggested the existence of a new

e�ect for spin-1=2 particles { the spin-rotation coupling described by the interaction term

�~! � ~S, where ~S is the spin angular momentum operator of the particle, adding a small

contribution to the Sagnac e�ect in neutron interferometry experiments.

With the exception of the paper by Dresden and Yang [5] (where a derivation of

the Sagnac e�ect is made) all derivations of the Sagnac-Mashoon e�ect are incorrect or

incomplete. The origin of this problem lies in the use of non-physical frames to describe

the motion of the experimental apparatus. We also show that two sets of e�ects are to

be distinguished in experiments with the rotating apparatus. The �rst is a typical wave

e�ect, related to the fact that the frame of the rotating experiment is non-inertial while

the second set is due to the dragging of the particles of the experiment by the rotating

apparatus. The origin of the e�ects in both cases is due to active Lorentz transformations

realized on the system, taking it from rest to a state of uniform rotation about an axis.

In the following we adopt a procedure analogous to Dresden and Yang [5] in their

derivation of the Sagnac e�ect, staying throughout in the inertia rest frame. For simplicity

we consider an experimental apparatus of interferometry with cylindrical symmetry. The

interfering beams have the semi-circular paths as depicted in Fig. 1. The beam is split

at S, the semi circular trajectories being produced by a large number of mirrors/cristals
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placed along the path C. Between two successive mirrors/cristals the particles of the

beams are assumed to be free.
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Fig. 1

Fig. 1: The rotating interferometry apparatus. D is the point of recombination of the

beams. The incident beam is polarized parallel to the rotation axis.

We introduce inertial cylindrical coordinates (T;R; �; Z). The apparatus rotates about the

Z-axis with angular velocity ! as observed from the inertia rest frame. The coordinates

of each cristal/mirror of the apparatus are given by (T;R; �+!T;Z) with corresponding

four velocity

u(0) = (@T + !@�) (1)

where  = (1 � !2R2)�1=2. To complete the description of the apparatus we introduce

three spacelike vector �elds, as prescribed by Irvine [6],

u(1) = @R

u(2) = (!R@T +
1

R
@�) (2)

u(3) = @Z

connected to the inertia rest frame by the Lorentz boost

L B
A =

0
BBBBBBBB@

 0 !R 0

0 1 0 0

!R 0  0

0 0 0 1

1
CCCCCCCCA
A;B = 0; � � � ; 3 (3)
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A general prescription for describing the dynamics of spin-1=2 particles in non-inertial

frames is given by the Brill-Wheeler formulation [7]. The equation of motion for the

spin-1=2 Dirac particles in the rotating frame (1)-(2) is then given by [7, 8]

h
i(@T + !@�) + i01

�
@R + 1

2R

�
+ i02

�
!R@T + 

R
@�
�
+

� �3
�
Ĉ + !

2
()2

�i
 = 0 (4)

where  is the relativistic factor of the Lorentz boost (3) and

Ĉ =M35 � i5
@

@Z
(5)

is a constant of motion (M is the mass of the particle). From (4) we see that Ĉ corresponds

to a trivial symmetry of the inertial equation (! = 0) involving the longitudinal motion

along a given direction, the Z axis. If we choose  inert to be simultaneously eigenstate of

�̂3 = �i@Z and Ĉ we obtain

Ĉ  inert = e
q
M2 + �23  inert ; e = �1 : (6)

Ĉ ceases to be trivial when the system rotates because the associated degeneracy is

raised by the interaction of the spin of the Dirac particle with rotation; the symmetry

is preserved but the degeneracy is raised by a split in the energy spectrum due to the

split term Ĉ + ()2 !
2
appearing in (4). For planar motion (�3 = 0), as is the case of

the experiment of Fig. 1, and low rotation approximation, this actually corresponds to

a mass split term M ! M + e!=2. Equation (4) also results from the inertial equation

(�iADA +M) inert = 0 by the substitution

 inert = U (7)

U = e
02�(R)=2 = cosh �=2 + 02sh�=2

where DA = (@T ; @R + 1
2R ; 1

R
@� ; @z) and tgh� = !R. The matrix U is a spin-1=2

representation of the Lorentz tranformation (3).

In the remaining of the paper we adopt the low rotation approximation !2R2 << 1

so that in (3) and (4) we may take  ' 1. We choose  in the form

 = �0(R;Z)e
�iET+ip�� (8)
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where E and p� are respectively eigenvalues of the energy and angular momentum oper-

ators i@T and �i@�. Equation (4) reduces then to

(E � !p�) = �i5
�
�1
�
@R +

1

2R

�
+ �2

�
�iE!R+ i

p�
R

�
+ �3

�
Ĉ +

!

2

��
 (9)

Now by two successive Foldy-Wouthuysen transformations [9], [10] the Hamiltonian equa-

tion (9) and the constant of motion (5) are diagonalized to

(E � !p�) 
00 =

"
�@2R �

1

R
@R +

(p� � �3=2)2

R2
� 2E!p� � E!�3 +

�
Ĉ 00 +

!

2

�2#1=2
0 00

(10)

Ĉ 00 =
q
M2 + �23 

0�3 (11)

with Ĉ 00 00 =
q
M2 + �23 e 

00. If we are now restricted to positive energy states 0 00

e =  00

e ,

namely,  00

e = 1
2

�
1+e

1�e
0

0

�
fe (as in the non-relativistic limit), we can interpret the constant

of motion Ĉ (or the quantum number e) as proportional to the projection of the spin of

the particle along the rotation axis [11].

Squaring (10) we obtain

(E � !p�)
2fe =

2
4�@2R � 1

R
@R +

 
(p� � e=2)

R

!2

� 2E!p� � eE! + (12)

+
�
e
q
M2 + �23 +

!

2

�2#
fe

The solutions of (12) which are regular at the origin R = 0, are Bessel functions of the

�rst kind [13]

fe = Jp��e=2(P (!)R) (13)

where

P (!) =

s�
E +

e!

2

�2
+ !2

�
p2� �

1

4

�
�
�q

M2 + �23 +
e!

2

�2
(14)

We must now impose boundary conditions on the solutions (13) connected to the

interferometry apparatus described in Fig. 1. Let us consider the inertial case (! = 0)

which corresponds to the experiment at rest. The presence of cristals/mirrors at R0,

producing the semi-circular beams, imply that boundary conditions must be imposed at

R0. Although we have not a model for the cristals/mirrors, the boundary conditions
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imposed by them will actually correspond to �xing the momentum of the beams at R0.

In fact from (13) we have

P (! = 0)R0 = j0p��e=2 (15)

where j0p��e=2 is a number depending on p� � e=2, associated to the boundary conditions

at R0. On solving (15) we obtain for the inertial energy

E =

vuuut
�
j0p��e=2

�2
R2
0

+M2 + �23 (16)

leading us to interpret P0 = (j0p��e=2=R0) as the azimuthal momentum of the particles in

the beams. For instance in the eikonal approximation [15] for the classical radius R0 we

have j0p��e=2 � p� � e=2 which corresponds to impose that j 00j2 has its �rst maximum

approximately at R0. We remark that in the circular beams of the experiment the particels

have a �xed polarization e, and therefore a �xed energy. The spin polarization dependence

of (16) is an e�ect analogous to the spin-orbit interaction in atoms. The azimuthal

momentum P0 does not coincide with the eikonal momentum (p� � e=2)=R0 due to the

contribution of the spin-orbit type interaction to the kinetic energy of the planar motion.

For the non-inertial case (! 6= 0) { noting from (7) and (8) that the energy eigenvalue E

remains equal to the inertial energy { we must have at R0,

P (!)R0 = j0p��e=2 + �j0p��e=2

corresponding to a momentum in the beams (�3 = 0)

P (!) =
j0p��e=2 + �j0p��e=2

R0
' P0

s
1 +

e!

E +M

where P0 = P (! = 0) =
p
E2 �M2. This gives a momentum variation

�Pmass�split
�= e!

2(E +M)
P0 ' e!

4
v� (17)

which depends basically on the mass-split term discussed above, where v� is the velocity

of the particle along the circular beams [20].

We now derive the Mashoon e�ect, a wave e�ect of the same nature of (17). On

completing the description of the apparatus we introduced in (2) a triad which is Frenet-

Serret transported [6] but not Fermi Walker transported. The need for a Fermi-Walker
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transported triad comes from our assumption that free spin-1=2 particles behave as gy-

roscopes and may be used to de�ne the inertia rest frame of our problem. The frame

of the apparatus (Fermi-Walker transported) is obtained from the frame (1)-(2) by the

additional time-dependent rotation RA
B =

0
BBBBBBBB@

1 0 0 0

0 cos� sin� 0

0 � sin� cos� 0

0 0 0 1

1
CCCCCCCCA
, with � = !T .

In other words, we go from the inertia rest frame to the frame of the apparatus by the

composed transformation RA
CL

B
A , with L B

A given in (3). To avoid cumbersome calcula-

tions of the e�ects of this additional rotation, we instead extend the procedure used in

obtaining (17) by noting the following.

A solution ~ of the Dirac equation in the Fermi-Walker frame constructed above

and a solution  of equation (4) are related by ~ = S�1 , where S = ei�
3 !T

2 satis�es

RA
B

B = S�1AS. Now we note that under the Foldy-Wouthuysen transformations

leading from (9) to (10) the operator �3 is transformed into

~� =
(�~ � ~� +M)q
�(~ � ~�)2 +M2

�3

where ~ � ~� = 1�1 + 2�2 = �i(1DR + 2D�). A straightforward calculation gives that

the Foldy-Wouthuysen transformed of ~ , which we denote by ~ 00, is

~ 00 = e�i
e!
2
T 00+ie

�
1� M

E

�
sin

!T

2
 00�eP (!)

2E

0
@ 0

0
1�e
1+e

1
A Jp��e=2�1(PR)

N(p� � e=2)
e(�iET+ip��) sin

!T

2

where N(p� � e=2) is a normalization factor for  00. In the limit E � M , we have ~E �
h ~ 00=i@T ~ 00i = E+ e!

2
, implying that ~ 00 behaves approximately as  00 with E ! E+e!=2.

An estimate of higher corrections to ~E may be obtained by calculating ~E = h ~ 00=i@T ~ 00i,
averaging in time, and considering that we may approximate

N2(p��e=2)

N2(p��e=2�1)
' 1 for large

quantum numbers p� � e=2. We obtain

~E = E +
e!

2
+O(v4�)

Hence in the non-relativistic limit ~ 00 will describe particles in the beams with az-

imuthal momentum given by equation (14) with E ! E + e!=2, namely

P (!) '
s
(E + e!)2 �

�
M +

e!

2

�2
' P0

 
1 +

e!

2

E

E2 �M2
+

e!

2(E +M)

!
(18)
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where E is the inertial (! = 0) energy. The third term in (18) is exactly (17), having its

origin from the pure Lorentz boost (3). The second term appears as a direct consequence

of the time-dependent rotation RA
B, and gives the Mashoon shift

�PMashoon =
e!

2

E

P0
' e!

2v�

 
1 +

v2�
2

!
(19)

We note in (19) a O(v2�) correction to the Mashoon e�ect predicted in Ref. [4] Although

of distinct origin, it is equal to the mass-split term (17).

The origin of the Mashoon e�ect is thence the additional time dependent rotation

necessary to produce a Fermi-Walker frame. Therefore the existence of the Mashoon e�ect

is crucial to decide if free spin-1=2 particles actually behave as gyroscopes when rotational

motion is involved. The phase shift resulting from (17) and (19) will be calculated at the

end of the paper.

This exhausts the wave e�ects due to the motion of the frame of the experimental

apparatus.

The second set of e�ects is due to the fact that the rotating apparatus drags the

particles in the beams, producing a boost in their energy-momentum. It results in the

Sagnac e�ect. The dragging of the particles by the apparatus is not described in the

Brill-Wheeler formulation [14] but we may incorporate this e�ect in the formalism by the

following procedure. Let us rewrite equation (4) in the form

(�iADA +M)U = 0 (20)

where the matrix U de�ned in (7) is a solution of

L A
B 

B = U�1AU (21)

and gives a spin-1=2 representation of the Lorentz transformation (3). The solution U

of (21) is de�ned up to an operator V satisfying [U; V ] = 0 = [V; A], and we use V to

describe the boost due to the apparatus. If in (20) we substitute U by W = V U , we

obtain

f�i(U�1AU)V �1DAV � iU�1A(DAU) +Mg = 0 (22)

To describe the drag of the particle by the apparatus we de�ne V by

V �1DAV = L B
A DB (23)
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and the wave function of the experiment is now

 = V �1U�1 inert (24)

In the eikonal approximation for the circular rayR0 [15](cf. experiment of Fig. 1) equation

(23) has the solution

V = e�(R0)L(R0) ' 1 + !R0L(R0) (25)

where L(R) =
�
T
R
@� +R�@T

�
. The wave function (24) is an inertial solution with boosted

four-momentum, and

W�1 = V �1U�1 = e��(R0)(
02=2+L(R0))

is the complete boost operator of the rotating experiment. In fact, under (25) the coor-

dinates XA transform as ~XA = V �1XAV , and we have

~T = T � !R2
0�

~� = �� !T

implying that V �1e�i(ET�p��)V = e�i(
~ET�~p��) where

~E = E + !p� (26)

~p� = p� + !R2
0E

The eikonal wave function of the experiment has thus the form (cf. (8))

 = e�
~ET+i�~p��U�1(R0)�(R0; Z)

where U�1�(R0) is the boosted inertial spinor.

It is important to note here that the dragging of the particles by the apparatus is

associated to a boost. No drag e�ect arises associated to the time dependent rotation

RA
B.

We remark that the c-number p� is the eigenvalue of the operator ~n � ~J , where ~J is

the total angular momentum of the particle and ~n is the unitary vector of the axis for

de�nition of �, which coincides with axis of rotation. To see this we use that the inertial

wave function in cylindrical coordinates and Cartesian coordinates are related by [16]

 inert Cartes = P inert cyl
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where P = e�
i�

2
~n�~�, and therefore we have

P (�i@�)P�1 = (�i@� + �3=2) = ~n � (�i ~R ^ ~r+
~�

2
)

and

~n � ~J  inert Cartes = p�  inert Cartes (27)

(the domain of p� are half-integer values).

Now for an observer at the inertia rest frame the phase shift due to the rotation of

the interferometer is given by the variation of the di�erence of wave numbers along the

two semi circular paths of the interfering beams at a given instant of time, namely

�f =
Z
C
�~p � d~x

where the line integral is calculated along the closed path C of the beams (cf. Fig. 1).

In the approximations considered we may assume that the momentum variations arising

from (17), (19) and (26) are additive, and it results

�f = 2�!

 
(p� � e=2)

v�
+

e

2v�
+ 2

ev�
4

!
R0

where we have used that v� =
dE

d(p�=R0)
' (p��e=2)

R0E
in the eikonal approximation. From (27)

we may �nally express

�f = �Sagnac + �Mashoon + �mass�split (28)

where

�Sagnac =
2�R 2

0

v�

h~! � ~Li
R0

�Mashoon =
2�R0

v�

 
1 +

v2�
2

!
h~! �

~�

2
i

�mass�split = � v� h~! �
~�

2
iR0

The �rst e�ect appears already in the eikonal approximation and is due to the drag of

the particles by the rotating apparatus, in agreement with the derivation by Dresden and

Yang [5] of the Sagnac e�ect. The third e�ect is due to an e�ective mass split, being of

0(v2�) smaller than the predicted Mashoon shift.
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To conclude our analysis we show that other frames used in the literature give a null

Sagnac e�ect, although they are mathematically admissible and the Hamiltonian in these

frames contains interaction terms analogous to the ones in equation (3). Let us adopt

the frame introduced in Ref. [17] , which is frequently used to discuss the interaction

of spin-1=2 particles with rotation. We restrict ourselves to the case of the experiment

of Fig. 1. We denote Cartesian inertial coordinates by x� = (T;X; Y; Z), and Cartesian

rotating coordinates by x0� = (T 0;X 0; Y 0; Z 0), related by

T 0 = T

X 0 = X cos!T + Y sin!T

Y 0 = �X sin !T + Y cos!T (29)

Z 0 = Z

It is straightforward to show that a solution of Dirac equation in Hehl-Ni's frame is related

to the inertial solution by [18]

 HN(x
0) = U inert(x) (30)

where U = e
i
2
T 0~!�~�. From (30) we can check that �~p 0 = ~pHN � ~p 0

inert = 0, or equivalent

~pHN = R�1pinert where R is the 3 dim time dependent rotation matrix de�ned through

(29). Thus no interference Sagnac e�ect would be measured by the apparatus [19]. In

other words the Hehl-Ni frame cannot be physically realized as the frame of the experi-

ment. A non-null Sagnac e�ect indicates that the experiment is rotating with respect to

the inertia rest frame, de�ning a rotating frame connected to the inertia rest frame by an

active (instantaneous) Lorentz boost.
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