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ABSTRACT

. We discuss the detection of spacetime torsion and matter
vorticity by using ﬁhe splitting of the energy spectrum of
fermions coupled gravitationally to torsion and matter  vor-
ticity. We show that matter vorticity splits the spec-
tral'iines of fermions in the same manner as torsion. ' These
effects are additive and result from the existence of the same
constant of motion for the fermions in both cases. The two
effects can be more precisely distinguiéhed;by a further test

involving Klein-Gordon particles.

Key-words: Fermions in Einstein-Cartan theory; Detection .of
torsion and vorticity; Torsion versus matter vorticity; Gra-

vitational splitting of fermion spectra; G8del-type spacetimes.
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It seems well established that spacetime torsion can in
principle be detected by means of a body endowed ' with a get
intrinsic spin. According to Stbegercl) such detection .could
otherwise be achieved by the spectral line splitting of a feg-
mion, by the classical paths of massive particles with spin or
by the precession of the spin vector of a large polarized body.
These tests concern to general theories of gravitation ~ with-
torsion. Here we.deal with fermions in . the context of Hehl's
gravitational theory(?). .Our purpose is to show that the
matter vorticity can also split the spectral lines in the same
manner as torsion,-and a further test involving the = spectra
of Klein-Gordon particles is discuggéd'to.distinguish'the two

effects, allowing to determine matter vofticity_and'torsion sep

arately.
We assume that the torsion is generated by the spin S;jk.of
a Weyssenhoff-Raabe fluid(®),
i _ i i.  _ -
S e u Sjk . u Sij =0 ’ (1)
where ui is the fluid four-velocity and Sij = —Sji is the spin.

dengity. It turns oﬁt that the spin tensor and - i'the torsion
rijkare related by the field equation(?)

. l . . . ’ -
o, = itr‘ -7,y = kulsj (2)

ik kT ik k'

k being the gravitational constant. From the metricity pos-

tulate (gij-k.= 0) equation (2) can be solved for the connec- -
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tion Fijk:which is found to be

io_ iy i i _ . ai n
T T {jk} k (u Sjk + ujS K uks_j) (;)

Por an observer comoving with the fluid we choose the four-ve-
locity

o (4

and assume the fluid spin vector to be constant and directed

along the x’-axis, that is,

| §,, =S = const. , Sij = 0 (other indices) (5)

Now let us consider a spacetime endowed with a Mihkowski

metric (expressed in Cartesian ¢oordinates) and a . connecbion

given by (3), (4) and (5). In this background Dirac's equa- .

tion(*) for a spinorial test field ¥ with mass M becomes (%)

il%%é (v® I.p + My° -'%SZ-alw_= Hy (6)

Here

T

I

= 1'8, + I'5, + I'5, (7a)

with the spin matrices and momentum opeﬁators giveén by
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R At o SIS - IR (7b)

The operator i defined by the second equality in (6) ik .~ the
Hamiltonién of the fefﬁidnic system. It explicitly includes a
term of interaction of ihe spin f with the torsion. As the e-
nergy and the momenta are constants of motion we can perform the
separation of variables |

v =-$ a-i(3.§'+ et) (8)
wheré ¢ and 5 are the eingenvalues of the operators of energy
and momenta, and E.; = pyX + p,y + P4Zi % is a constant four-
spinor. For zero mass y° is also a constant of motion and the
number of independent components of.£ is reduced to only two.
In the génera1 case (M # 0) a similar role is played . by .: the
operator

-~

Ce-uytLamyys , [EE] =0 (9)

Choosing y to be simultaneous eigenstate of ¢:.and ﬁ, we obtain

from (8) and (9)

Cy =‘-e&'2.+(p3')z vV , e=zt1 M # 0) (X0a)

€}
<
I

-p,Ly * = 0) . (10b)
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L =tl1 is the eigenvalue of the helicity operator v®, and is

related to e by

e = Lp,/|p,] (11)

in the limit M -+ 0. Now the substitution of (8) - intc:@ {1l0a)

-

yields
0.
where vy, = (iM +e/Mis (py) 2)/ps.. Replacing (8).and (12) ‘“into

the equation
= {~B V1 "2 2,4 _KS _ -
ey = {y*(}'p, + I’6,) + I*c-=k , 13)

(which is equivalent to (6)) we obtain a system of algebraic e-
0 0
quations for the two independent spinor components wl and wz.

The compatibility condition for this systems gives
o ” |
e? = (Pi)z + (]?2)-.2 + I}&z'i:"tpa)z + 5‘?‘] ((14)

This . is all we need. If S = 0 this formula coincides with the
familiar one for flat-space. If however S # 0 we have for a

given value of momenta a splitting &f the energy level . into
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 two lewels, one for each value of the quantum number e. “In
this manner the effect mentiocned by Stoeger manifests =~ itself
due to the existence of the double valued gquantum :mumber .e.
Now, the second part of our argument: the splitting of e-
nergies can also be generated by matter vorticity (this effect
is present even in Rieﬁannian spacetimes, as found in Refs. 6
and 7). In the context of Hehl's theory and for technical sim
plicity let us consider GBdel-type metrics(®)£?) yhich are the
simplest known cosmologicai solutions with matﬁer vorticity.
These spacetimes have as a particular case the spacetimes pre.
viously considered with Minkowski metric and torsion. In cy~-

lindrical coordinates (t,r,¢,z}) they can be expressed as

ds?

(dt +. Hd$)? - dr? - D?@¢? - dz? , | (15%
H = 9 sinh? (£r) , D = 8inh(2fr)

22 28

‘When the source of spacetime - curvature is a Weyssenhoff-Raabe
fluid with spin vector along the vorticity field, we have in
the realm of Hehl's theory that(?%)

2= Q, - ks (16)
where no ils the magnitude of the vorticity and S is the spin

density of the fluid (cf., Egs. (1) and (5)). 1In the tetrad

basis
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RO RN B ()

Dirac's equation now reads

{17)
| ) idp iH o _ 1 -i 9
= =i °r D t Ty =TT "D T i 3z

The operator Cé) is again a constant of motion with respect to
the Hamiltonian defined by (17). We then choose .‘simultaneous
elgenstates of (9) and the Hamiltonian, and in the momenta modes
defined by the Killing vectors(1?),(11) 3% and 3% the eigen-
values of (9) are diven'by (10). The solutions of (17) which

are regular at r = 0 have the expression

L Npv (eomra (x)
_Y+)£v_(e K)o, (x)

v = a e“i(€t+m¢+P32) - {18)
ii;)£(2m+l)a;(x)
for m > 1/2, and
1 Nev (1-2m) 8, (x)
¥, .
v = A g ifettmé+pyz) (19)

t f
( .Y_)x (e+K) B_ (%)
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for m < - 1/2. Here e,p_a.and the half-integer m are eigenvalues
of the Hamiltonian and of the momenta operators i %‘md i %.

respectively. We have also denoted

1. 0.0 0

501 0 W oy
A= .0 Lo o v Yy = p3 —-—

0 6 0 1.

K= e&z'ﬁ(PS)zﬂ- '%-ls-g-, x = cosh(28r) ,
and
- 2m*l g _
o, = 21 ¢ @02 pla,b,mel 24, L%, (19)
2mtl e 1 -
B, = (x2=-1) (1+x} 2t 2F(l-—a,1—b,1—m;§-21= H %) ‘ . (2@')

where F(a,b,qy) is the hypergeometric function(!?2),with the para-

meters

(21)
a2-g2 , . K2 1/2
IR * 22

n=

Due to the character of test field we are ascribi:ig to ¥, we
must require that the solutfens (18)-(21) be finite at any space-

time point. If we restrict our attention to the  class of
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hyperbobic metrics with 22 3 £2 > 0 we obtain(!®) the discrete

energy spectrum

| . »
el = tal@sen + (@2-en Gyt + [ohirey? - 5]

o (22)

i=-1/2, 1/2, 3/2,...
The term (f-kS)/2 is again responsible for a splitting. of each
energy level-into a doublet. In.the Riemannian limit -(8;=0) :this
splitting does remain but it disappears in a Riemann~Cartan
spacetime with Q@ = kS. So the presence (or absence) of the
splitting in general does not imply the presence (or absence)
of torsion.or vorticity._ What matters is the simultaneous ef-
-fect of torsion and vorticity. It is remarkable that even if
no splitting is found in the fermion case, yet this is an evi-

dence for the existence of spacetime torsion S = 0/k.
Finally we ask how to find out whether a given gpaceétime

with matter vorticity presents torsion. In the context of
Hehl's theory and for a Gbdel-type spacetime this. quastion could
in principle be decided by the measurement of the energy levels
of fermions, which is sufficient to determine from (22) the
parameters i, £? and consequently S. However, as this procedure
involves adjustment to experimental values (and the effect of
splitting being expected to be very small), we could improve
the precision of the determination of Q and £ if we perforrrad-n an
independent experiment involving scalar test particles. in
fact we find that the solutions of the Klein-Gordon  eguabion

(for 92 > £2 > 0) "possess the discrete energy spectrum(i*)
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where j is now a non-negative -integer. By méasuring the separation
of ‘adjacent 1evéls of energy we can determine (for a known value
of P,) the cosmological parameters aﬁd zz.-.REturning to the
fermion case we can adjust the value of § in (22) so as to re-
produce the pbserved lines of those spectra: and.consequently we
are in principle able to say whether the spacetime presents tor
sion or not.

In a forthmﬁiﬁg paper (!*) we shall accomplish- a. complete ana
lysis of scalar and spinorial solutions for all metrics com-
prised in (15} includiﬁg'the Som-Raychandhuri metric (£2 = 8).
In the present paper our interest was to call attentlion to the
possible'influenée of matter vorticity on the splitting due to
the torsion field,fbreseen by Stoeger. .It would also be in-
teresting to study the influence of matter vorticity _on the
other tests proposed to detect torsion.
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