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1 Introduction

Integrable nonlinear evolution equations play important role in various topics of
the mathematics and particle physics. There is a huge class of integrable equa-
tions which admit soliton solutions [1]. The last are exact localizable solutions of
the equations of motion with �nite values of the physical observables: momen-
tum, energy, etc. [2]. Generically soliton solutions correspond to topologically
nontrivial �eld con�gurations. Within the quantum �eld theory, the solitons are
interpreted as nonperturbative particles which appear in the spectrum of the
underlying model.

Integrable evolution equations are distinguished by the existence of zero cur-
vature or Lax representation. Taking into account the Lax representation of the
equations of motion, one can look for gauge transformations which preserve the
form of the components of the Lax connection. It is clear that such kind of
transformations, called dressing transformations, are symmetries of the underly-
ing integrable model. The study of the dressing group which is a symmetry of
the soliton (integrable) equation has been initiated by the Kyoto group [3]. In
the last reference the dressing symmetry was considered on the example of the
Kadomtsev-Petiashvili (KP) hierarchy. The group of dressing transformations
admits a particularly simple and transparent expression when one introduces the
Hirota tau functions. The last provide a bridge between integrable models and
the representation theory of the a�ne Lie algebras [4]. It has been shown by
Semenov-Tian-Shansky [5] that the dressing group is a Poisson Lie group.

The application of the dressing group to the Toda �eld theories in 1 + 1
dimensions is due to Babelon and Bernard [6]. In this reference it was also argued
that the dressing symmetry is a semiclassical analog of the quantum symmetry
of the integrable model.

The N soliton solutions of the a�ne Toda models based on an arbitrary
simple Lie algebra are obtained in [7]. In particular the group-theoretical tau
functions related to the fundamental representations of the a�ne Lie algebra are
given by

��(�)

��(�0)
= e

�0��
n+1

NY
i=1

Yi� < �j(1 +X1F
r1(�1)) : : :(1 +XNF

rN (�N))j� > (1.1a)

where Xi; i = 1; :::; N are numerical factors depending exponentially on the light
cone coordinates, F ri are elements of the a�ne Lie algebra which diagonalize
the adjoint action if the principal Heisenberg subalgebra [4, 7] and j� > is the
highest weight vector of a fundamental representation of the a�ne Lie algebra
of highest weight �. Alternative expression for the tau functions is provided by
using the dressing symmetry

��(�)

��(�0)
=< �jĝ�1� (x+; x�) ĝ+(x

+; x�)j� > (1.1b)

where ĝ� and ĝ+ are triangular elements of the a�ne group.
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In [8] it has been shown that the representations (1.1a) and (1.1b) are equiv-
alent for the the sine-Gordon N{solitons. Our purpose is to extend this result

for arbitrary A
(1)
n Toda models. General analysis of the dressing symmetry of

integrable hierarchies which admit vacuum solution has been done in [9].
In the present talk we give a summary of [10]. It is organized as follows:

In Sec.1 we discuss the N -soliton solutions of the A
(1)
n Toda equations and the

related dressing problem. An explicit expression for the dressing transformation
which creates solitons from the vacuum is found. The main result of Sec.1 is
the Proposition 2. It states that the above mentioned dressing transformation
factorizes into "monosoliton" factors. In Sec.3 we exploit the free �eld repre-

sentations of the a�ne Lie algebra A
(1)
n to demonstrate the equivalence between

(1.1a) and (1.1b). Our approach is based on the observation that the solution of
the dressing problem on the a�ne group di�ers from those in the loop group by a
factor which is in the center of the a�ne group. Sec.4 is reserved for concluding
remarks and discussion of possible further developments.

2 N-solitons and the solution of the dress-

ing problem in the a�ne group

The A
(1)
n Toda equations in 1 + 1 dimensions [11]

@+@�'i = m2(e'i�'i+1 � e'i�1�'i);

@� =
@

@x�
; i 2Zn+1 (2.1)

are equivalent to the zero curvature condition

F+� = @+A� � @�A+ + [A+; A�] = 0 (2.2a)

of a connection which belongs to the loop Lie algebra esl(n + 1) = sl(n + 1) 

C [�; ��1]

A� = �@��+m��1e�ad�E�

@� =
@

@x�
(2.2b)

where � is in the Cartan subalgebra of sl(n+ 1) = An

� =
1

2

X
i

'iji >< ij (2.2c)

and

E� =
X

k2Zn+1

jk >< k � 1j: (2.2d)
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The adjoint action of the element S 2 SL(n+ 1)

S = !
n
2

X
k2Zn+1

!1�kjk >< kj ; ! = e
2�i
n+1 (2.3a)

de�nes an inner automorphism � of order n+ 1 of the algebra An

�(X) = SXS�1; �n+1 = 1: (2.3b)

Applying � on the components of the Lax connection (2.2b) we conclude that

A�(x; !�) = �(A�(x; �)) = SA�(x; �)S
�1 (2.4)

Since (2.2b) is a 
at connection, there is a covariantly constant vector w(x; �):

D�w(x; �) = (@� + A�)w(x; �) = 0 (2.5)

Taking into account (2.4), one concludes that Sr(w)(x; �) = Srw(x; !�r�) for
any r 2Zn+1 is covariantly constant also. This observation allows us to construct
a matrix solution of the linear system (2.5)

W (x; �) = k w(x; �); !
n
2 (S�1w)(x; �) : : :!

n2

2 (S�nw)(x; �) k (2.6)

To obtain N{soliton solutions of (2.5) we introduce the expansion

ŵ(x; �) =
NX
j=0

�jw(j)(x)e(x;��)

w(j) =
X

k2Zn+1

w
(j)
k jk >

e(x; �) = expfm(�x+ +
x�

�
)g (2.7)

where N is an integer which will be identi�ed with the number of solitons and
w(j)(x), j = 1; :::; N are �{independent n + 1{dimensional vectors. We shall
need the following

Proposition 1 [12] Let w(N) =
P

k2Zn+1
jk > in the expansion (2.7). Suppose

also that for each j = 1; :::; N there is an integer rj = 1; : : : ; n and complex
numbers �j, �

n+1
i 6= �n+1j such that

(S�rj ŵ)(x; �j) = !�
rjn

2 cjŵ(x; �j)

(2.8)

for arbitrary constants cj ; j = 1; : : : ; N .
Then ŵ is a solution of the system

(@� + Â�(x; �))ŵ(x; �) = 0

Â+(x; �) = 2@+�(x) +m�E+

Â�(x; �) =
m

�
e�2ad�(x)E� (2.9)
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for certain traceless diagonal matrix �.
As a consequence from the above Proposition we see that the entries of �

satisfy the A
(1)
n Toda equations (2.1) Alternatively, the components ŵk of ŵ

(2.7) can written as

ŵk(x; �) =
NY
j=1

(�+ �kj(x))e(x;��); k 2Zn+1

and from the Proposition 1 it follows that the evolution of the N -soliton system
assumes the form

NY
l=1

�kl + !rj�j

�kl + �j
= cj!

rj(1�k)
e(!rj�j)

e(�j)
: (2.10a)

The components of the Toda �eld are given by

e�'k = (�)N
NY
j=1

�kj

�j
; k = 1; : : : ; n+ 1 (2.10b)

Note that ŵ(x; �) (2.9) is covariantly constant vector with respect to the con-
nection D̂� = e��D�e

� where D� = @� + A� is given by (2.2b). Therefore,
w = e�ŵ.

In accordance with the general de�nition, [3, 6, 9], the dressing transforma-

tions are represented by loop group elements g(x; �) 2 fSL(n + 1) which act on
the Lax connections (2.2b) as gauge transformations A� ! A

g
�

A
g
� = �@�gg

�1 + gA�g
�1; (2.11a)

such that the connection A
g
� has the same form as the original one (2.2b) with

�! �g. Since under gauge transformations the curvature transforms as F+� !
gF+�g

�1, we see that the dressing group is a symmetry of the equations of
motion. Equivalently, the action of the dressing group can be described in terms
of the normalized transport matrix

T (x; �)! T g(x; �) = g(x; �)T (x; �)g�1(0; �) (2.11b)

where T (x; �) is a solution of the linear system

(@� +A�)T (x; �) = 0 (2.11c)

together with the initial value conditions

T (0; �) = T jx+=x�=0 = 1

The loop group eG (in the present talk we consider G = SL(n + 1) only) is
de�ned [13] as a group of smooth maps of the unit circle S1(j�j = 1) into the
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Lie group G. It is clear that the loop group has two subgroups eG+ and eG� :eG+ ( eG�) contains all the elements which admit analytic extension on � inside
(outside) the unit disc. In view of (2.2b) A+; (A�) is holomorphic Lie valued
function for j�j < 1, (j�j > 1). Therefore, one can look for two solutions g� 2 eG�
of the dressing problem (2.11a). Since g+ and g� produce the same result, from
(2.11b) it follows that they provide a solution of the factorization problem

g�1� (x)g+(x) = T (x)g�1� (0)g+(0)T
�1(x) (2.12)

Note that the transport matrix related to the vacuum solution � = 0 (2.1), (2.2c)

is T0(x; �) = e�m(�E+x++
x�

�
E�). In [10] we have shown that there is a solution

of (2.11a) which interpolates between the vacuum and the N -soliton solution �
(2.10a)-(2.10b)

g(N)(�; f�g; �) = e��(N)(�; f�g; �)
�1

�
(N)
kl

(�; f�g; �) = !(k�1)(l�1)
NY
j=1

�+ !1�l�kj(x)

�� !1�l�j


ij = !(i�1)(j�1) ; � 2 S1 (2.13a)

which belongs to loop group fSL(n+ 1) and obeys the relation (c.f. (2.4))

g(N)(�; f�g; !�) = Sg(N)(�; f�g; �)S�1 (2.13b)

To proceed, we have to introduce some Lie algebraic background [4, 7]. First of
all, note that the automorphism � (2.3a), (2.3b) de�nes a Zn+1{gradation in the
Lie algebra G = sl(n+ 1)

G = �k2Zn+1Gk ; �(Gk) = !kGk

(2.14)

On the other hand, the elements

Ei =
X

k2Zn+1

jk >< k + ij ; i 2Zn+1nf0g (2.15a)

are mutually commuting and diagonalizable


�1Ek

�1 = !�

kn
2 S�k

E1 = E+ ; E�1 = En = E� (2.15b)

where 
 is de�ned by the last equation (2.13a). Therefore, the set of generators
Ek, Ek 2 Gk span a new Cartan subalgebra. To complete it to a base of the Lie
algebra we de�ne the elements

F i = 
ji+ 1 >< ij
�1 ; i 2Zn+1nf0g (2.16a)
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and consider their grade expansions

F i =
X

k2Zn+1

F i
k ; �(F i

k) = !kF i
k (2.16b)

The commutation relations in the new basis are

[F r
i ; F

s
l ] =

!sk � !rl

n + 1
F r+s
k+l (2.17a)

where

F r
k =

8<
:

F r
k r = 1; : : : ; n; k 2Zn+1

1
n+1Ek r = 0 k = 1; : : : ; n

(2.17b)

In the above basis the invariant non degenerate scalar product (X; Y ) = tr(X:Y )
(the trace is taken in the de�ning representation ) is given by

(F r
k ; F

s
l ) =

!sk

n + 1
�
(n+1)
k+l;0 (2.17c)

�
(n+1)
i;j is the Kronecker symbol on the cyclic group.
To treat integrable evolution equations one has to extend the classical Lie

algebra by introducing a spectral parameter � (c.f. (2.2b)). The Lax connection
is in the loop Lie algebra ~G = C [�; ��1] 
 G. ~G is spanned on the elements
Xn = �nX . Generic loop algebra posses a central extension [4, 13] known as
a�ne Lie algebra bG = eG � Cbc � C bd

[Xk; Yl] = [X; Y ]k+l +
k

(n+ 1)
ĉ �k+l;0 (X; Y )h

d̂; Xk

i
= kXk ;

h
ĉ; Ĝ
i
= 0 (2.18a)

The derivation bd = � @
@�

de�nes a Z-gradation

~G = �k2Z
~Gk ;

h bd; bGki = k bGk (2.18b)

Note also that setting bc = 0 in (2.18a), one recovers the commutation relations
in the loop algebra.

The symmetry of the Lax connection (2.4) suggests the following.
De�nition: The a�ne ( loop) Lie algebra bsl(n + 1) (esl(n + 1)) is in the

principal gradation i� its elements X(�) =
P

l2Z�
lXl satisfy the restriction

X(!�) = �X(�) (2.19)

In view of the above de�nition, (2.4) is in the loop algebra ( ~sl(n + 1)) in the
principal gradation. The a�ne algebra analog of the base (2.17b) is

F r
k ; r = 1; : : : ; n; k 2Z

F 0
k ; k 2Z(n+ 1)Z (2.20a)
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and the commutation relations are

[F r
k ; F

s
l ] =

!sk � !rl

n+ 1
F r+s
k+l +

k!rl

(n+ 1)2
ĉ �

(n+1)
r+s;0 �k+l;0 (2.20b)

In the above notations and in what follows we will perform a slight abuse of
notations: the lower index will be used to indicate both the cyclic Zn=1 charge
(2.14) as well as to label the Zgradation (2.18b). The elements Ek = (n +
1)F 0

k ; k 6= 0mod (n+ 1) form an in�nite set of decoupled harmonic oscillators

[Ek; El] = k ĉ�k+l;0 k 6= 0mod(n+ 1) (2.20c)

The subalgebra spanned on Ek is known as the Heisenberg subalgebra in the
principal gradation. In order to formulate one of the main results of [10] we have
to introduce some notations. Let (2.10a) be an arbitrary N -soliton solution. To
it we associate the diagonal traceless matrices

Fi =
1

2

X
k2Zn+1

fkijk >< kj; Pi =
X

k2Zn+1

pkijk >< kj

K(Fi) =
X

k2Zn+1

Kk(Fi)jk >< kj; i = 1; : : : ; N (2.21a)

Kk(Fi)�Kk+1(Fi) =
fk i + fk+1 i

2
; k 2Zn+1 (2.21b)

The last of the above equations agrees with the periodicity property Kk =
Kk+n+1 since trFi = 0. Following [10], one imposes the relations

X
k2Zn+1

!r(1�k)
�
�kl(!r�l)

�kl(�l)
� !�r

�k+1l(!r�l)

�k+1l(�l)

�
�k(Fl) = �r;rlXlYl

Xl = (1� !rl)
Y
a6=l

!rl�l � �a

�l � �a

Y
a

�l + �1a

!rl�l + �1a

Yl =
X

k2Zn+1

�
1 + �l

d

d�
ln

�kl�1

�k+1l�1
(�l+1)

�
�(Fl) (2.22a)

where

�k(Fl) = eKk(Fl)�
fkl
2 (2.22b)

In view of (2.21b) one has

e�fkl =
�k(Fl)

�k�1(Fl)
(2.22c)

The functions �al ; a 2 Zn+1 ; l = 1; :::; N are components of (n + 1)-
dimensional vectors

�l(�) = D(l l�1)(�)�l�1(�) ; �l�1(�) = D(l�1 l)(�)�l(�) (2.22d)
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where the entries of the matrices D(l l�1) and D(l�1 l) are

D
(l l�1)
ab

(�) =

l�b(Fl)

(n+ 1)�bl�1(�l)

X
q2Zn+1

!q(a�b)
�� !qefbl�l

�� !q�l

D
(l�1 l)
ab

(�) =
�al�1(�l)

(n+ 1)
l�b(Fl)

X
q2Zn+1

!q(a�b)
�� !qe�fbl�l

�� !q�l


l =

0
@ Y

p2Zn+1

�pl�1(�l))

1
A

1
n+1

(2.22e)

The relation (2.22d) together with

�j0(�) =
1

n+ 1
(2.22f)

determines uniquely �l ; l = 1; :::; N . Finally the entries of the diagonal matrices
Pl are �xed by

eKa(Fl�1)+
pal�1

2 =
�al�1(�l)


l
(2.22g)

Now we are in a position to formulate the following
Proposition 2 [10]: Consider the N -soliton solution (2.10a), (2.10b). De-

note by g+ (g�) the analytic continuation of (2.13a) around � = 0 ; (� =1).
Then the following factorization is valid

g� = g�(N)g�(N � 1):::g�(1); g�(i) = eK(Fi)+PieW�(i) (2.23a)

where K(Fi) and Pi are �xed recursively by (2.22a)-(2.22f) and W�(i) are the
loop group elements

W�(i) =
X

k2Zn+1

fkiW
k
�(�i)

W k
+(�) = �

nX
r=1

0
@1� !�rk

1� !�r
F r
0 + !r(1�k)

X
p>1

F r
p

�p

1
A

W k
�(�) =

nX
r=1

0
@�1� !r(1�k)

1� !�r
F r
0 + !r(1�k)

X
p6�1

F r
p

�p

1
A : (2.23b)

Note thatW k
�(�) do not contain contributions belonging to the principal Heisen-

berg subalgebra. Moreover

W k(�) = W k
+(�i)�W k

�(�i) = �
nX

r=1

!r(1�k)F r(�)

F r(�) =
X
p2Z

F r
p

�
p
i

(2.24a)
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and the element F r(�) diagonalize the adjoint action of the principal Heisenberg
subalgebra:

[Ek ; F
r(�)] = (!rk � 1)�kF r(�) (2.24b)

The Proposition 2 together with (2.24a)-(2.24b) suggests a relation between the
dressing symmetry and vertex operator representation of the soliton tau function
[3, 7].

3 Vertex operator representation for the

soliton tau functions

The A
(1)
n Toda models have a conformally invariant extension [14] known as the

An Conformal A�ne Toda (CAT) model. The An (CAT) equations are also
integrables and admit zero curvature representation for the connection (2.2b) in

the a�ne Lie algebra Ĝ = Ŝl(n+ 1) = A
(1)
n . The a�ne algebra counterpart of �

(2.2c) is

�! �+ �d̂+
ĉ

2(n+ 1)
� (3.1)

where d̂ and ĉ stand for the derivation and the central charge respectively (c.f.
(2.18a)). Combining (2.2a), (2.2b) and (3.1) one obtains the An CAT equations

@+@�'i = m2e2�(e'i�'i+1 � e'i�1�'i)

@+@�� = 0

@+@�� = m2e2�
X

i2Zn+1

e'i�'i+1 (3.2)

The �rst of the above equations coincides with the a�ne Toda equations (2.1) for
� = 0. According to [8], a�ne solitons arise after imposing the last restriction,
it is also worthwhile to recall the Hirota bilinear representation [15]

@+�k@��k � �k@+@��k = m2(�k+1�k�1 � �2k )

e�'k =
�k

�k�1
; e�0�� =

Y
k2Zn+1

�k ; k 2Zn+1

�0 = (n+ 1)m2x+x� (3.3)

of the system (3.2) for � = 0. Setting � = �0 with 'k = 0 ; k 2Zn+1 and � = 0
in (3.1) one ends with the vacuum solution of the An CAT equations (3.2)

�0 =
m2

2
ĉx+x� (3.4)

In [8] it was argued that the Riemann problem (2.12) is related to a similar
factorization problem in the a�ne group. More precisely, the following relation

bg�(x) = e
�

�0��
2(n+1) ĉg�(x) (3.5)
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holds. In the above equation g� represent a dressing transformation in the loop
group which by (2.11a) creates N -soliton solutions from the vacuum; bg�(x) stand
for the a�ne group analog of g�(x) (2.12).

In what follows we shall need some basic facts concerning the representation

theory of the Lie algebrasA
(1)
n in the principal gradation [4]. We will be interested

on highest weight representations which are generated by the action of arbitrary
polynomials on the negative grade elements (2.18b) on certain highest weight
state j� >. The later is annihilated by the elements of positive grade

Xnj� >= 0 ;
h
d̂; Xn

i
= nXn; n > 0 (3.6a)

In the particular example of A
(1)
n , the highest weight state is characterized by

(2.20a)

F r
0 j� >= �(F r

0 )j� >; r = 1; : : : ; n

d̂j� >= �(d̂)j� >; ĉj� >= �(ĉ)j� >

(3.6b)

where � is a linear functional on the subalgebra Ĝ0 of elements of Z{grade zero
(cf. (2.18a)).

The principal Heisenberg subalgebra (2.20c) admits a Fock representation. It
is built up on the Fock vacuum j0 >

Ek j0 >= 0; k � 1

< 0jEk = 0; k � �1: (3.7)

When the value of ĉ (2.18a) is one, all the irreducible highest weight representa-

tions of the Lie algebra A
(1)
n are expressed in terms of the (principal) Heisenberg

subalgebra. The corresponding A
(1)
n modules are identi�ed with the Fock space

(3.7). To be more precise, we introduce the "vertex operators":

V r(�) = expf
X
k6�1

1� !�kr

k

Ek
�k
gexpf

X
k>1

1� !�kr

k

Ek
�k
g

r = 1; :::; n (3.8)

The following theorem is due to Kac
Theorem1 [4]: Consider the Fock space representation (3.7) of the principal

Heisenberg subalgebra. For each l 2Zn+1 and r 2Zn+1n f0g de�ne

F r(�) =
!rl

(n+ 1)(!r � 1)
V r(�) (3.9a)

Then
(i) (3.9a) admits a Laurent expansion

F r(�) =
X
p2Z

F r
p

�p
(3.9b)
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(ii) For each l 2 Zn+1 the Laurent coe�cients F r
p ; p 2 Zand r 2 Zn+1n f0g

together with the harmonic oscillators F 0
k = 1

n+1Ek ; k 2 Zn(n + 1)Zobey the
commutation relations (2.20b).

(iii) For each l 2 Zn+1, the Fock vacuum j0 > (3.7) is a highest state j�l >

characterized by

F r
0 j�l >=

!rl

(n+ 1)(!r � 1)
j�l > ; ĉj�l >= j�l > ; d̂j�l >= 0: (3.9c)

The meaning of the above theorem is that there are at least n+1 irreducible

representations of the Lie algebra A
(1)
n which can be expressed in terms of bosonic

oscillators. The value of the central charge is ĉ = 1. It was shown in [4] that the
representations with highest weight vector j�l > (3.9c), l 2 Z(n+1) exhaust the
inequivalent fundamental representations of the a�ne algebra.

In what follows, it will be important to consider also the group theoretical
tau functions

��(�) =< �je�2�j� >= e�2�(�) (3.10)

where � is given by (3.1) and j� > is a highest weight vector. Setting � = 0
in (3.1) and taking into account (3.9c), one gets a relation with the Hirota tau
functions (3.3)

��k(�) = e�
�0
n+1 �k(�) (3.11)

Let us recall the following result [8, 16]

��(�)

��(�0)
=< �jĝ�

�1(x)ĝ+(x)j� > (3.12)

where ĝ�(x) (3.5) are the elements of the a�ne group which generate by dressing
transformation a solution �, starting from the vacuum �0 (3.4). Let us consider

an N -soliton solution (2.10a), (2.10b) of the A
(1)
n Toda model. Then the Propo-

sition 2, (3.5) together with (3.12) suggest us to study the following a�ne group
element

h(�) = e��W�(�)e�W+(�);

W�(�) =
X

k2Zn+1

'kW
k
�(�);

X
k2Zn+1

'k = 0 (3.13)

where W k
�(�) are given by (2.23b). As a corollary of the Theorem 1 one gets the

Proposition 3 Consider an arbitrary fundamental representation of the Lie

algebra A(1)
n . Then the following commutation relations are valid

W�(�)V
r(�)� V r(�)W+(�) =

1

n + 1

nX
s=1

!s(k+1)

!s � 1
'̂sV

r+s(�); (3.14a)
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k 2 Zn+1 labels the fundamental representations of A
(1)
n ; V r(�) are the "vertex

operators" introduced by (3.8) and '̂s, s 2Zn+1 is the discrete Fourier transform
of 's (

P
s 's = 0)

'̂s =
X
k

!�ks'k; 'k =
1

n+ 1

X
s

!ks'̂s (3.14b)

From the above Proposition it follows that the a�ne group element (3.13)
admits the following (Taylor) expansion

h(1) = e�W�(�) eW+(�) =

=
1X
l=0

(�1)l

l!

nX
s1 ;:::;sl=1

lY
j=1

	(k)
sj
(�)V s1+:::+sl(�)

	(k)
s (�) =

1

n+ 1

!s(k+1)

!s � 1
b's; k 2Zn+1 (3.15)

In view of the periodicity condition V r = V r+n+1 (cf. (3.8)), it is opportune to
introduce the commutative associative algebra F of (complex) dimension n+ 1.
It is generated by V s, s 2Zn+1. The multiplication is

V r ? V s = V r+s (3.16)

It is worthwhile to note that the above equation describes "fusion rules" of a
class of Rational Conformal Field Theories [17]. Introducing the invariant inner
product

< V r; V s >F= �
(n+1)
r+s;0 ; (3.17)

F becomes a Fr�obenius algebra. Taking into account (3.15) and (3.16) one gets

h(1) = F expf�
nX

s=1

	(k)
s (�)V sg(�) (3.18)

where the symbol F means that the exponential is taken in the algebra (3.16).
Diagonalizing the "fusion rules" (3.16) we get
Proposition 4 The a�ne group element h = h(1) (3.13) is given by the

expression

h =
�̂0(�)

n+ 1
+
X

p2Zn+1

(!p � 1)�̂p(�)F
p(�) (3.19)

within any fundamental representation (3.9a){(3.9c). The numbers �̂p(�) are
the discrete Fourier transform (3.14b) of �k(�) (2.21b), (2.22b).



{ 13 { CBPF-NF-050/98

In [10] we derived an exact expression for the adjoint action of the elements
g�(i), i = 1; : : : ; N de�ned by (2.23a), (2.23b) on the a�ne Lie algebra. The
result is

g�1+ (i)F s(!c�)g+(i) =
X

r;v2Zn+1

Rsc
rv(i;�) (F

r(!v�)� Zrv [Fi](i;�))

j�ij > j�j (3.20a)

where

Rsc
rv(i;�) = P c

v (i;�)Q
s+c
r+v(i;�): (3.20b)

The matrices P , Q and the vector Z are expressed in terms of the quantities
(2.22d) and (2.22e) as follows

P c
v (i;�) =


i

n + 1

X
a;b2Zn+1

!(a�1)v�(b�1)c
1

�ai�1(�i)
D
(i�1 i)
ab

(�)�bi(�i+1)

Qs
r(i;�) =

1

(n + 1)
i

X
a;b2Zn+1

!(a�1)s�(b�1)r
1

�ai(�i+1)
D
(i i�1)
ab

(�)�bi�1(�i)

Zsc[Fi](i; �) =
�!c


i(n+ 1)2(!s+c�� �i)

X
a;b2Zn+1

!(s+c)a�bcD
(i i�1)
ab

(�)
�bi�1(�i)

�a(Fi)
+

+
�!c�

(n+1)
s;0

(n + 1)(�i � !s+c�)
(3.20c)

As a consequence of (3.20b), (3.20c), (2.22d) and taking into account the inden-
tity

d �kj

d�
(�) = �

1

n+ 1

jX
l=1

X
a;a0;r2Zn+1

!r(a
0�a)

�� !r�l
D
(j l�1)
ka0

(�)�a0 l�1(�)

�
�al(�)


l�a(Fl)
�

�al�1(�)

�al�1(�l)

�

one arrives at
Proposition 5 Let �1; : : : ; �N are radially ordered complex numbers j�1j >

: : : ; > j�N j. Then the matrices R(j;�i) (j < i) which act on Cn+1 
 Cn+1 as
well as the vectors Z[Fj ](j; �i) 2 C

n+1 
 Cn+1 (j < i) satisfy the equations

X
p2Zn+1

!p(1�k) (R(j;�j+1) : : :R(1;�j+1))
p0
rv
= !r(1�k)�

(n+1)
v;0

�kj(!r�j+1)

�kj(�j+1)X
1�l�j
p2Zn+1

!p(1�k) (R(j;�j+1) : : :R(l;�j+1)Z[�Fl](l;�j+1))
p0 = �

�j+1

n + 1

d ln�kj
d�

(�j+1)

(3.21)

Combining the above Propsition with Proposition 2 and the Proposition 4 we
obtain the following
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Theorem2 [10] Let � = 1
2

P
k2Zn+1

'kjk >< kj be an N{soliton solution

of the A
(1)
n Toda equations (2.10a), (2.10b), with j�1j > : : : ; > j�N j. g� are

supposed to be same as in the Proposition 2. Then for each fundamental repre-

sentation of the Lie algebra A
(1)
n , the following identities are valid

Ad
�eg�1+ (1) : : :eg�1+ (i� 1)

� eg(i) = Yi (1 +XiF
ri(�i)) (3.22)

The factors Xi; Yi were introduced in (2.22a).
As a corollary of the above Theorem and taking into account (3.5) and (3.12)

we get

��(�)

��(�0)
= e

�0��
n+1

NY
i=1

Yi� < �j(1 +X1F
r1(�1)) : : :(1 +XNF

rN (�N))j� >

(3.23)

Therefore (1.1a) and (1.1b) are equivalent provided that

NY
i=1

Yi = exp

�
� � �0

n + 1

�
(3.24)

Note that as a consequence of (3.3), (3.11), the last identity can be equivalently
written as

Y
k2Zn+1

NY
i=1

Yi < �j(1 +X1F
r1(�1)) : : :(1 +XNF

rN (�N ))j� >= 1 (3.25)

We hope to go back to the demonstration of the above identity in a future
publication.

4 Remarks and conclusions

The present talk is devoted to the study of the relation between the vertex op-
erator representation of the (soliton) tau functions and the group of dressing
transformations. We recall [5, 6] that the dressing group is dual to the corre-
sponding loop (or a�ne) Lie group. On the other hand, from the general analysis
advanced by Leznov and Saveliev [16], it follows that

�
g

� =< �jexpf�mx+E1g g expfmx�E�1gj� > (4.1a)

where E�1 are the elements of Z{grade �1 of the Heisenberg subalgebra (2.20c),
g is a constant element of the a�ne Lie group and j� > is a highest weight vector,
is a tau function (3.10) of the corresponding CAT equations. More precisely,

expf�2�(�g)g =< �jexpf�2�ggj� > (4.1b)
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is a solution of the An CAT equations (3.2). On the other hand, it was observed
in [7] that setting in (4.1a)

g = expf�1F
r1(�1)g : : :expf�NF

rN (�N)g (4.2)

where

F r(�) =
X

p2Zn+1

F r
p

�p

were introduced by (2.20b), one recovers the N{soliton solutions of the CAT
model. However, the relation with the dressing symmetry seems rather obscure.
A hint of how to relate the group{algebraic approach [7, 16] with the group of
dressing transformations has been suggested in [8] on the particular example of
the sine{Gordon equation.

Our approach generalizes the the results of [8] for arbitrary A
(1)
n Toda models.

However, some problems remain open. First, we have not considered the relation
with the B�acklund transformations. We believe that the solution of this problem
can shed a new light on the geometry of a�ne Toda models. For arbitrary simple
Lie algebras one can generalize the Proposition 2, but it is not generally possible
to obtain a matrix solution of the underlying linear problem. The reason is
that the order of the automorphism (2.3a), (2.3a) is generically smaller than the
dimension of any irreducible representation of the Lie algebra.
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