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Abstract

Classical three dimensional Yang-Mills is seen to be related to the topological

Chern-Simons term through a nonlinear but fully local and covariant gauge �eld

rede�nition. A classical recursive cohomological argument is provided.
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1 Introduction

Since many years topological three dimensional massive Yang-Mills theory [1] is a contin-
uous source of investigation and has led to a large amount of interesting applications in
di�erent areas of theoretical physics.

As it is well known, the action of the model is characterized by two parameters (g;m),
a gauge coupling and a mass term respectively, and can be written as the sum of a
Yang-Mills and of a Chern-Simons term, i.e.

SYM (A) + SCS(A) ; (1.1)

where, adopting the same parametrization of refs.[2, 3],

SY M(A) =
1

4m
tr
Z
d3xF��F

�� ; (1.2)

and

SCS(A) =
1

2
tr
Z
d3x"���

�
A�@�A� +

2

3
gA�A�A�

�
; (1.3)

with.

F�� = @�A� � @�A� + g[A�; A�] : (1.4)

Although being only power counting superrenormalizable, topological massive Yang-Mills
(1.1) turns out to be ultraviolet �nite to all orders of perturbation theory. This remarkable
feature was �rst detected by explicit one loop computations [4] and later on has been put
on �rm basis and extended to all orders by [2] with a careful study of the behaviour of
higher loops three dimensional Feynman integrals. More recently, this result has been
proven to hold [5] by similar arguments for the N = 1 supersymmetric version of (1.1).

It is also worthwhile to mention that a partial proof of the ultraviolet �niteness of the
N = 2 version of (1.1) in the Wess-Zumino gauge has been achieved in [6] with a purely
algebraic cohomological analysis. The interesting result obtained here is that the possible
invariant counterterms turn out to be related to only one of the two parameters (g;m).

Let us come now to the main purpose of this work. Our aim here is to report on a
very elementary classical geometrical aspect which we shall hope to be useful for a better
understanding of the model. We shall be concerned, in particular, with the observation
that the topological massive Yang-Mills action (1.1) can be actually traced back to a pure
Chern-Simons action through a nonlinear rede�nition of the gauge �eld, namely

SYM (A) + SCS(A) = SCS( bA) ; (1.5)

with

bA� = A� +
1X
n=1

1

mn
#n�(D;F ) (1.6)
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where the coe�cients #n�(D;F ) turn out to be local and covariant, meaning that they are
built up only with the �eld strength F and the covariant derivative (D� = @� + g[A�; ]).
The above formulas represent the essence of the present letter. Their meaning is that, at
the classical level, topological massive three dimensional Yang-Mills can be seen as being
related, through a nonlinear but local and covariant �eld rede�nition, to the topological
Chern-Simons term.

However, before going any further, some necessary remarks are in order. We underline
that the equation (1.5) has to be understood here in pure classical terms. Although the
quantum aspects are out of the aim of this work, let us observe here that at the level
of the quantized theory the nonlinear �eld rede�nition (1:6) could seem to allow for a
transfer of the properties of topological massive Yang-Mills theory from the initial action
(1.1) to the gauge �xing and the Faddeev-Popov terms. However, as one can easily
infer from the presence of the expansion parameter 1=m in the eq.(1:6), the use of the
rede�ned gauge �eld bA� will introduce in these terms an in�nite number of power counting
nonrenormalizable interactions which would render the quantum analysis more involved.
In other words, as far as the quantum aspects are concerned, the use of a manifest power
counting renormalizable gauge coordinate system and of the usual action (1.1) as the
starting points are more suitable, as proven by [1, 4, 2, 5, 6].

Nevertheless, in our opinion the formulas (1.5) ; (1.6) could give a simple pure geo-
metric set up in order to improve our knowledge about three dimensional gauge theories.
This is our motivation for the present letter.

The paper is organized as follows. Sect.2 is devoted to the computation of the coef-
�cients #n�(D;F ) up to the fourth order in the 1=m expansion. In Sect.3 we present a
simple classical cohomological argument which supports the formulas (1.5) ; (1:6). Sect.4
deals with the N = 1 superspace generalization. Finally, we conclude with a few remarks
concerning possible further applications.

2 Some computations

In order to have a more precise idea of the coe�cients #n�(D;F ) let us give here the explicit
value of some of them. Their computation is really straightforward, one only needs to
insert the eq.(1.6) into the eq.(1.5) and identify the terms with the same power in 1=m.
For instance, the �rst four coe�cients are found to be

#1� =
1

4
"���F

�� ; (2.7)

#2� =
1

8
D�F�� ;

#3� = �
1

16
"���D

�D�F
�� +

g

48
"���

h
F ��; F �

�

i
;

#4� = �
5

128
D2D�F�� +

5

128
D�D�D

�F��

�
7

192
g
h
D�F�� ; F

�
�

i
�

1

48
g
h
D�F��; F

��
i
:
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Observe that, as already remarked, all the coe�cients of eq.(2.7) are covariant, depending
only on F�� and its covariant derivatives. Although the higher order coe�cients can be
easily obtained, let us now focus on a cohomological argument which will justify the
formulas (1.5) ; (1.6).

3 A cohomological argument

In order to provide a cohomological argument for the eqs.(1.5) ; (1.6) we shall make use of
the BRST anti�eld formulation. The construction of the corresponding classical Slavnov-
Taylor (or master equation) identity does not present any di�culty and is easily carried
out [2]. Only two anti�elds1 (A��; c

�) are needed, corresponding respectively to the gauge
connection A� and to the Faddeev-Popov ghost c. Let us observe now that within the
BRST framework the reabsorption of the pure Yang-Mills term

R
FF through a gauge �eld

rede�ntion, as it is implied by the eqs.(1.5) ; (1.6), lies in the possibility of (re)expressingR
FF in the form of an exact BRST cocycle. That this is indeed the case follows from a

simple inspection of the BRST transformation of the anti�eld A��, i.e.

sA�� =
1

2
"���F

�� +
1

m
D�F�� +

n
c;A��

o
; (3.8)

s denoting the BRST di�erential.
The last term in eq.(3.8) states the simple fact that under a rigid gauge transformation

the anti�eld A�� transforms according to the adjoint representation of the gauge group,
and can be neglected when the BRST di�erential s acts on the space of the gauge invariant
quantities, as for instance

R
FF . Contracting2 now both sides of eq.(3.8) with "���; the

eq.(3.8) can be cast in the following more convenient form

F�� = s("���A
��)�

1

m
"���D�F

�� � fc; "���A
��g : (3.9)

It becomes now apparent that the above formula3 allows us to replace in any gauge
invariant quantity the �eld strength F�� by a pure BRST variation with, in addition, a
term of the order 1=m containing a covariant derivative D�, i.e.

tr
Z
d3xF��F

�� = tr
Z
d3x

�
s(A��"���F

��) �
1

m
F ��"���D�F

��

�
= tr

Z
d3x s

�
A��"���F

�� +
2

m
A��D�F��

�
+ O(

1

m2
)

= ::::::::::::: : (3.10)

The expression (3.9) yields then a recursive procedure since F�� appears on both sides.
At each step of the iteration a new factor ("D=m) will appear in the right hand side of

1As it is well known [7] the introduction of the anti�elds allows to implement in cohomology the
classical equations of motion.

2We use here the euclidean normalization "
���

"��� = (����
�
� � �

�
��

�
� ).

3A similar cohomological argument has been already used by [6] (see for instance eqs.(6.31)) in the
algebraic analysis of the N = 2 version of the topological massive Yang-Mills.
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eq.(3.10). We will end up therefore with an in�nite power series whose generic element
of the order n is characterized by the presence of a factor of the kind ("D=m)n. The
eq.(3.9) implies thus that the Yang-Mills term

R
FF can always be rewritten as a pure

BRST variation of an in�nite series in the expansion parameter 1=m. It is this property
which allows us to reabsorb

R
FF into the Chern-Simons action by means of a nonlinear

gauge �eld rede�nition. Moreover, all coe�cients will be local and covariant4:
Let us conclude this section with the following remark. If we had started with the

pure Yang-Mills term as initial action, it would be impossible to reach such a kind of
conclusion. In fact the left hand side of the expression (3.9) would be vanishing, due to
the absence of the Chern-Simons term. The formula (3.9) would become thus useless.
However, as soon as the Chern-Simons is switched on, the Yang-Mills term can be seen
as being generated by pure Chern-Simons by means of a local and covariant gauge �eld
rede�nition.

4 Supersymmetric generalization

It is very easy to generalize the previous set up to the supersymmetric version of topolog-
ical massive Yang-Mills (1.1). Considering for instance the case of N = 1 in superspace
we have, following [5],

SCS(�) = �
1

2
tr
Z
dV

 
��D�D��� +

g

3
��
h
��;D(���)

i
+
g2

6
��
h
��; f��;��g

i!
; (4.11)

and

SY M(�) =
1

m
tr
Z
dV W �W� ; dV = d3x d2� ; (4.12)

where �� is the spinor gauge super�eld and W� is the super�eld strength given by

W� = D�D��� + g
h
��;D���

i
+
g2

3

h
��; f��;��g

i
; (4.13)

with D� being the ordinary superspace supersymmetric derivative (�; � are now spinor
indices). Introducing the covariant supersymmetric gauge derivative

r� = D� + g [��; ] ; (4.14)

for the �rst coe�cients #n�(r;W ) of the supersymmetric version of the expansion (1.6)
we get

#1�(r;W ) = �W� ; (4.15)

4The covariance of the coe�cients �
n
� in eq.(1:6) easily follows from the requirement of gauge in-

variance of SCS( bA). As a consequence, the rede�ned �eld bA transforms as a connection under gauge
transformations.
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#2�(r;W ) = �
1

2
r�r�W� ;

#3�(r;W ) = �
1

2
r�r�r


r�W
 +
1

3
g
h
W �;r�W�

i
:

Again, they are all covariant. Of course, the previous cohomological argument applies to
the present supersymmetric case as well.

5 Conclusion

Let us conclude with a few comments and remarks on possible further applications.

The �rst remark concerns the use of a nonlinear �eld rede�nition. Although the
present work deals with pure classical considerations, it is worthy to remind that nonlinear
�eld rede�nitions have already been used in several cases, being typically needed when
dimensionless �elds are present. This is the case, for instance, of the two dimensional
nonlinar sigma model [8] and of the N = 1 superspace super Yang-Mills theories [9].
Let us underline that these nonlinear �eld rede�nitions are, in analogy with our case,
completely local and given explicitely by an in�nite power series in the �elds. Other
kinds of nonlinear but nonlocal �eld rede�nitions are also known. They are used in
order to compensate the nonlocal divergences which arise when noncovariant gauges are
employed. An example of such a kind of nonlinear nonlocal �eld rede�nition is provided
by [3] who analysed in fact the one loop renormalization of massive topological Yang-Mills
theory in the light-cone gauge. It should be clear, however, that this nonlinear nonlocal
�eld rede�nition is completely di�erent from that of eq.(1.6) :

Although the higher order coe�cients #n� of the series (1.6) can be computed straight-
forwardly, the possibility of obtaining a closed expression for the in�nite expansion (1.6)
is very tempting. We limit to observe here that the covariant character of the coe�cients
#n� naturally remind us the normal coordinate expansion frequently used in the nonlinear
two dimensional sigma models [8].

Let us point out, �nally, that the recursive cohomological argument of eq.(3.9) applies
also in the case in which terms of higher order in F and its covariant derivatives (FD2F; :::; etc:)
are introduced in the classical initial action. As one can easily understand, the recursive
cohomological argument relies essentially only on the presence of the Chern-Simons term.
Of course, this follows from the fact that the variation of the Chern-Simons term yields
exactly the �eld strength F . It is this basic property which is at the origin of the re-
cursive cohomological argument (3.9) : In other words, provided the Chern-Simons term
is present in the game, the recursive argument still holds for whatever metric dependent
gauge invariant Yang-Mills type term one likes to start with.

Possible quantum aspects related to the nonlinear �eld rede�nition (1.6) as well as to
a pure algebraic analysis of the ultraviolet �niteness of topological massive Yang-Mills are
under investigation.
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