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1 Introduction

In order to understand the structure of the QCD vacuum [1] one should analyse possible
mechanisms for chiral symmetry breaking and the formation of fermion condensates. The
existence of such correlators can be understood as the result of condensation of pairs
of particles and holes and it can have interesting implicancies in particle physics and
cosmology. For example, a color nonsinglet condensate may be related to super
uidity
and color superconductivity of cold quark matter at high fermion densities [2]. In this
respect the results of Deryagin, Grigoriev and Rubakov [3] are of particular importance.
Analysing the large Nc limit of QCD these authors have shown that the order parameter
for chiral symmetry, the quark condensate h �  i, is at high quark densities inhomogeneous
and anisotropic so that, regarding the order parameter, the ground state of quark matter
has the structure of a standing wave.

Two-dimensional models like the Schwinger model and QCD2 provide a natural labo-
ratory to test these phenomena since, although simpli�ed, the basic aspects (chiral sym-
metry features, non-trivial topological sectors, etc) are still present and exact calculations
can be in many cases performed.

An analysis of two-dimensional QED at �nite density was originally presented in
[4]-[5]. More recently, studies on this theory [6]-[7] showed that inhomogeneous chiral
condensates do exist as a result of the contribution of non-trivial topological sectors.

Extending our work on QED2 [7] we analyse in the present paper vacuum expecta-
tion values of products of local bilinears � (x) (x), at �nite density for two-dimensional
Quantum Chromodynamics with 
avor. Using a path-integral approach which is very
appropriate to handle non-Abelian gauge theories, we show that the multipoint chiral
condensates exhibit an oscillatory inhomogenous behavior depending on a chemical po-
tential matrix. Our results are exact and, remarkably, go in the same direction as those
revealed in four dimensions using the 1=Nc approximation to QCD [3].

To study the e�ect of �nite fermion density in QCD2 a chemical potential may be
introduced. Within the path-integral approach this ammounts to consider a classical
background charge distribution in addition to that produced by topologically non-trivial
gauge con�gurations. Concerning this last point, it is well-known that in two space-time
dimensions the role of instantons is played by vortices. In the Abelian case, these vortices
are identi�ed with the Nielsen-Olesen solutions of the spontaneously broken Abelian Higgs
model [8]. Also in the non-Abelian case, regular solutions with topological charge exist
when symmetry breaking is appropriately achieved via Higgs �elds [9]-[10]. In both cases
the associated fermion zero modes have been found [11]-[13].

Properties of the vortex solutions and the corresponding Dirac equation zero-modes
are summarized in section 2. We then describe in sections 3 and 4 how topological e�ects
can be taken into account within the path-integral formulation leading to a compact form
for the partition function in the presence of a chemical potential. Our approach, following
ref. [14], starts by decomposing a given gauge �eld belonging to the nth topological sector
in the form

A�(x) = A(n)
� +Aext

� + a� (1)

Here A(n)
� is a (classical) �xed gauge �eld con�guration belonging to the nth class, Aext

�

is the background charge �eld taking account of the chemical potential, and a� is the
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path-integral variable which represents quantum 
uctuations. Both Aext
� and a� belong

to the trivial topological sector and can be then decoupled by a chiral rotation with the
sole evaluation of a Fujikawa jacobian [15]. This last calculation can be easily performed
since it is to be done in the trivial topological sector.

The complete calculation leading to the minimal non-trivial correlation functions of
fermion bilinears is �rst presented for multi
avour QED2 (Section 3) and then extended
to multi
avour QCD2 (Section 4). In both cases the oscillatory behavior of correlators as
a function of the chemical potential is computed, the result showing a striking resemblance
with the QCD4 answer obtained within the large Nc approximation [3]. We summarize
our results and conclusions in section 5.

2 Zero Modes

Topological gauge �eld con�gurations and the corresponding zero-modes of the Dirac
equation play a central role in calculations involving fermion composites. We sumarize
in this section the main properties of vortices, the relevant topological objects in the
model we shall consider, both for the Abelian and non-Abelian cases. We also present
the corresponding Dirac operator zero-modes.

2.1 The Abelian case

In two-dimensional Euclidean space-time, topologically non-trivial gauge �eld con�gura-
tions are available since Nielsen and Olesen [8] presented their static z-independent vortex.
In the U(1) case the topological charge for such a con�guration, working in an arbitrary
compact surface (like a sphere or a torus) is de�ned as

1

4�

Z
d2x ��� F

(n)
�� = n 2 Z (2)

A representative gauge �eld con�guration carrying topological charge n can be written
as

A(n)
� = n ���

x�
jxj
A(jxj) (3)

with A(jxj) a function which can be calculated numerically (an exact solution exists under
certain conditions on coupling constants, [9]). The adequate boundary conditions are

A(0) = 0 ; lim
jxj!1

A(jxj) = �1 (4)

There are jnj zero-modes associated with the Dirac operator in the background of an A(n)
�

con�guration in a suitable compacti�ed space-time [14]. (For the non-compact case see
[11]). For n > 0 (n < 0) they correspond to right-handed (left-handed) solutions �R (�L)
which in terms of light-cone variables z = x0+ ix1 and �z = x0� ix1 can be written in the
form

�mR =

 
zmh(z; �z)

0

!
(5)
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�mL =

 
0

�z�mh�1(z; �z)

!
(6)

where m = 0; 1; : : : ; jnj � 1,
h(z; �z) = exp[�(n)(jzj)] (7)

and
d

djzj
�(n)(jzj) = nA(jzj): (8)

2.2 The non-Abelian case

As in the Abelian case, two-dimensional gauge �eld con�gurations A(n)
� carrying a topo-

logical charge n 2 ZN can be found for the SU(N) case. As explained in ref.[16] the
relevant homotopy group is in this case ZN and not Z as in the U(1) case.

Calling ' the angle characterizing the direction at in�nity, a mapping gn(') 2 SU(N)
belonging to the nth homotopy class (n = 0; 1; : : : ; N�1) satis�es, when one turns around
a close contour,

gn(2�) = exp(
2�in

N
)gn(0) (9)

Such a behavior can be achieved just by taking gn in the Cartan subgroup of the gauge
group. For example, in the SU(2) case one can take

gn(') = exp[
i

2
�3
n(')] (10)

with

n(2�)�
n(0) = 2�(2k + n) (11)

Here n = 0; 1 labels the topological charge and k 2 Z is a second integer which conects the
topological charge with the vortex magnetic 
ux (Only for abelian vortices both quantities
coincide).

We can then write a gauge �eld con�guration belonging to the nth topological sector
in the form

A(n)
� = iA(jxj) g�1n @�gn (12)

with the boundary conditions

A(0) = 0 ; lim
jxj!1

A(jxj) = �1 (13)

These and more general vortex con�gurations have been thoroughfully studied in [10]-[16].
Concerning zero-modes of the Dirac operator in the background of non-Abelian vor-

tices, they have been analysed in refs.[12]-[13]. The outcome is that for topological charge
n > 0 (n < 0) there are Nn (N jnj) square-integrable zero modes �L (�R) analogous to
those arising in the Abelian case. Indeed, one has

�
(m;i)j
R =

 
zmhij(z; �z)

0

!
(14)
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�
(m;i)j
L =

 
0

�z�mh�1ij (z; �z)

!
(15)

with
h(z; �z) = exp[�(n)(jzj)M ] (16)

and

M =
1

N
diag(1; 1; : : : ; 1�N) (17)

Here i; j = 1; 2; : : : ; N and m = 0; 1; : : : ; jnj � 1. The pair (m; i) labels the N jnj di�erent
zero modes while j corresponds to a color index. Due to the ansatz discussed in refs.[10]-
[16] for the non-Abelian vortex, the function �(n)(jzj) appearing in eq.(16) coincides with
that arising in eqs.(7)-(8) for the abelian vortex.

As it happens in the abelian case, the partition function of two dimensional Quantum
Chromodynamics only picks a contribution from the trivial sector because det(6D[A(n)]) =
0 for n 6= 0 (see eq.(68) below). In contrast, various correlation functions become non-
trivial precisely for n 6= 0 thanks to the \absortion" of zero-mode contributions when
Grassman integration is performed.

It is our aim to see how these non-trivial correlators are modi�ed when a fermion �nite
density constraint is introduced, comparing the results with those of the unconstrained
(zero chemical potential) case. As explained in the introduction, we are motivated by
the results of Deryagin, Grigoriev and Rubakov [3] in four dimensional QCD. They
were able to show, in the large Nc and high fermion density limits, the existence of
oscillatory condensates (the frequency given by the chemical potential) which are spatially
inhomogeneous. For QED2 the same oscillatory behavior was found approximately in [6]
and con�rmed analytically in [7], by examining an arbitrary number of fermion bilinears
for which the exact �-dependence of fermionic correlators was computed. In order to
improve our understanding of the large Nc results found in QCD4, we shall extend in
what follows our two-dimensional approach to the non-Abelian case but before, we shall
consider the case of 
avored QED2 as a clarifying step towards multi
avor QCD2.

3 Multi
avour QED2

We developed in ref.[7] a path-integral method to compute fermion composites for Abelian
gauge theories including chemical potential e�ects. In this section we brie
y describe our
approach while extending our treatment so as to include 
avour. We then leave for section
4 the analysis of the non-Abelian multi
avour QCD2 model at �nite density.

(i) Handling the chemical potential in the Abelian case

We start from the Lagrangian

L = �
1

4e2
F��F�� + � (i6@+ 6A� iM
0) (18)

where  is the fermion �eld isospinor. A chemical potential term has been included by
considering the diagonal matrixM de�ned as

M = diag(�1 : : : �Nf
) (19)
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where Nf is the total number of 
avors and �k are Lagrange multipliers carrying a 
avour
index, so that each k-fermion number is independently conserved. The corresponding
partition function is de�ned as

Z[�1 : : : �Nf
] =

Z
D � D DA� exp(�

Z
d2x L): (20)

Since our interest is the computation of fermionic correlators, we have to carefully
treat non-trivial topological con�gurations of the gauge �elds which have been seen to be
crucial in the obtention of non-vanishing condensates, see refs.[19]-[20]. Then, following
the approach of refs.[14]-[20], we decompose gauge �eld con�gurations belonging to the
nth topological sector in the form

A�(x) = A(n)
� (x) + a�(x) (21)

where A(n)
� is a �xed classical con�guration carrying all the topological charge n, and a�,

the path integral variable, accounts for the quantum \
uctuations" and belongs to the
trivial sector n = 0.

As it is well-known [18], the chemical potential term can be represented by a vector
�eld Aext

� describing an external charge density acting on the quantum system. Indeed,
taking Aext

� as i times the chemical potential matrix (see eqs.(19) and (22)) it corresponds
to a uniform charge background for each fermionic 
avor. As explained in [7], it is
convenient to �rst consider a �nite length (2L) distribution and then take the L ! 1
limit. In this way translation symmetry breaking associated to the chemical potential
becomes apparent and simultaneously, ambiguities in the de�nition of the �nite density
theory are avoided (see ref.[4] for a discussion on this issue). Therefore, we de�ne

Aext
� = �iM ��0; (22)

so that the Dirac operator
i6@+ 6A� iM
0 (23)

can be compactly written as
i6@+ 6A0 (24)

with
A0
� = A� +Aext

� (25)

We shall now proceed to a decoupling of fermions from the chemical potential and the
a� 
uctuations following the steps described in [7] for the case of only one 
avor. In that
case, we wrote

a� = ����@��+ @�� (26)

and made a chiral rotation to decouple both the � � � �elds together with the chemical
potential. In order to include Nf 
avors in the analysis, one has to replace (�; �) !
(�; �)1f and � !M as we shall see below. Then, we can straightforwardly apply what
we have learnt for one 
avor [7] in the multi
avor case. The change of variables accounting
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for the decoupling of fermions from the a� �eld together with the chemical potential is
given by

 = exp[
5 (�(x)1f + iMx1) + i�(x)1f ] �

(27)
� = �� exp[
5 (�(x)1f + iMx1)� i�(x)1f ]

6a = (�i6@U) U�1 (28)

where
U = exp[
5 (�1f + iMx1) + i�1f ] (29)

For notation compacteness we have included in 6a the external �eld Aext
� describing the

chemical potential term. From here on we choose the Lorentz gauge to work in (which in
our notation corresponds to � = 0).

After transformation (27) the resulting Dirac operator takes the form

i 6D = i6@+ 6A(n)+ 6a ! i6@+ 6A(n): (30)

The jacobian associated with the chiral rotation of the fermion variables can be easily
seen to be [7]

J = exp
�
1f
2�

Z
d2x (�+ iMx1)2(�+ 2�(n))

�
(31)

where �(n) is de�ned by
A(n)
� = ����@��

(n)1f

Together with eq.(27) we consider the change in the gauge-�eld variables a� so that

Da� = �FP �(�)D�D� (32)

with �FP = det2
As thoroughly analysed by Actor [18], Aext

� does not correspond to a pure gauge. Were
it not so, the introduction of a chemical potential would not have physical consequences
and this would be the case in any space-time dimensions. In fact, one cannot gauge
away Lchem by means of a bounded gauge transformation. As explained in [7], the chiral
rotation which decouples the chemical potential, although unbounded can be properly
handled by putting the system in a spatial box, then introducing adequate counterterms
and �nally taking the in�nite volume limit.

After the decoupling, the partition function, can be written in the form

Z = N
X
n

Z
D��D�D� exp(�S(n)

eff) (33)

where S
(n)
eff is the e�ective action in the nth topological sector,

S
(n)
eff =

Z
d2x ��(i6@ + 6A(n))��

1f
2e2

Z
d2x

�
(2�)2 + ���F

(n)
�� 2�

�
�
1f
4e2

Z
d2x(F (n)

�� )
2
�
1f
2�

Z
d2x (�+ iMx1)2(�+ 2�(n)) + Sc (34)



{ 7 { CBPF-NF-050/96

The usual divergency associated to the electromagnetic energy carried by fermions has
to be eliminated by an appropriate counterterm Sc [4]. In our approach the divergency
manifests through the term iMx12�

(n) in eq.(34). This counterterm is the Lagrangian
counterpart of the one usually employed in the Hamiltonian approach to handle this
problem [4]. In the canonical formulation of QFT this is equivalent to a rede�nition
of creation and annihilation operators which amounts to a shift in the scale used to
measure excitations. Note that with the choice of the counterterm discussed above, the
e�ective action written in terms of the decoupled fermions does not depend on the chemical
potentials �k. This does not mean that this term has no physical consequences. In fact,M
reappears when computing correlation functions of fermion �elds, once � and  are written
in terms of the decoupled �elds �� and � through eq.(46). We shall see in the following
sections how fermionic correlators are changed, exhibiting oscillatory inhomogeneities in
the spatial axes which depend on M. The fact that zero modes make certain v.e.v.'s not
to vanish, leads to a highly non-trivial dependence on the chemical potentials.

(ii) The Correlation Functions

The introduction of a 
avor index implies additional degrees of freedom which result in
Nf independent fermionic �eld variables. Consequently, the growing number of Grassman
(numeric) di�erentials calls for additional Fourier coe�cients in the integrand.

It is well known that each coe�cient is related to the quantum numbers of the chosen
basis, which is normally builded up from the eigenfunctions of the Dirac operator. As
we have for one 
avor, one has that n of these eigenfunctions are zero-modes, implying a
vanishing fermionic exponential. Hence, in order to make Grassman integrals non-trivial,
one has to insert several bilinears depending on the number of zero modes. When the
path-integral measure contains Nf independent fermionic �elds instead of one, the number
of composite insertions is multiplied by Nf in order to saturate Grassman integration
algebra, with some selection rules which will become apparent below.

For the sake of brevity let us readily give the result for general correlation functions
of p points with arbitrary right and left insertions

C(w1; w2; : : :) = h
NfY
k=1

rkY
i=1

sk+(w
i)

skY
j=10

sk�(w
j)i (35)

where
sk�(w

i) � � k
�(w

i) k
�(w

i) ; (36)

p =
NfX
k=1

pk

and
rk + sk = pk

is the total number of insertions in the 
avor sector k.
After the abelian decoupling, eq.(35) results in

C(w1; w2; : : :) =
1

Z

1X
n=1

Z
D� exp[

Nf

2�

Z
d2x �2(�+ �(n))]�
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exp[�
1

e2

Z
d2x (�+ �(n))22(�+ �(n)) ]�

exp[2
NfX
k=1

(
rkX
i=1

�(wi)�
skX
j=10

�(wj))]�

NfY
k=1

exp[2i�k(
rkX
i=1

wi
1 �

skX
j=10

wj
1)]
Z
D��kD�k

rkY
i=1

��k+(w
i)�k+(w

i)�

skY
j=10

��k�(w
j)�k�(w

j) exp[�
Z
d2x ��k(i6@+ 6A(n))�k] (37)

where wi
1 is the space component of wi. We see from eq.(37) that the chemical potential

contribution is, as expected, completely factorized. Concerning the bosonic integral, it
can be written as

B =exp[Nf=2�
Z
d2x �(n)2�(n)] exp[�2

NfX
k=1

(
rkX
i=1

�(n)(wi)�
skX
j=10

�(wj))]�

exp[�2
NfX

k;k0=1

pkX
i=1

pk0X
i=1

eiejO
�1(wi; wj)] (38)

with
O�1(wi; wj) = K0(mjw

i � wjj) + ln(cjwi � wjj); m = e
q
Nf=�

The fermionic path-integral determines the topological sectors contributing to equation
(35). More precisely, once the correlator to be computed has been chosen, Grassman
integration leads to a non-zero answer only when the number of right insertions minus the
number of left insertions is the same in every 
avor sector. It means that rk � sk = t 8k,
where t is the only topological 
ux number surviving the leading sumatory in eq.(37).
(Notice that mixed 
avor indices in the elementary bilinear are avoided, i.e. we are not
including 
avor-violating vertices, in accordance with QED4 interactions). It is important
to stress that each term explicitly including the classical con�guration of the 
ux sector
cancels out. Consequently, classical con�gurations only appear through by means of their
global (topological) properties, namely, through the di�erence in the number of right and
left handed bilinears [14].

To conclude, we give the �nal result for the general correlator de�ned in eq.(35) making
use of the explicit form of abelian zero modes

h
NfY
k=1

rkY
i=1

sk+(w
i)

skY
j=10

sk�(w
j)i = (�

me


4�
)p

exp[2i
NfX
k=1

�k(
rkX
i=1

wi
1 �

skX
j=10

wj
1)]

NfY
k>k0=1

exp[�4
pkX
i=1

pk0X
j=1

eiej ln(cjw
i � wjj)]

exp[�
NfX
k;k0

pkX
i=1

pk0X
j=1

eiejK0(mjw
i � wjj)] (39)

(see Ref.[7] and [24] for details).
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In order to clearly see the meaning of this expression, let us show the result for the
simplest non-trivial 
avored correlation functions including mixed right and left handed
insertions X

n

h � 1 1(x) � 1 1(y) � 1 1(z) � 2 2(w)in =

2 cos[�1(z1 � x1 � y1)� �2w1]hs
1
+(x)s

1
+(y)s

1
�(z)s

2
+(w)i1 +

2 cos[�1(y1 � x1 � z1)� �2w1]hs
1
+(x)s

1
�(y)s

1
+(z)s

2
+(w)i1 +

2 cos[�1(x1 � z1 � y1)� �2w1]hs
1
�(x)s

1
+(y)s

1
+(z)s

2
+(w)i1; (40)

X
n

h � 1 1(x) � 1 1(y) � 2 2(z) � 2 2(w)in =

2 cos[�1(x1 � y1)� �2(z1 � w1)]hs
1
+(x)s

1
�(y)s

2
�(z)s

2
+(w)i0 +

2 cos[�1(x1 � y1) + �2(z1 �w1)]hs
1
+(x)s

1
�(y)s

2
+(z)s

2
�(w)i0 +

2 cos[�1(x1 + y1) + �2(z1 + w1)]hs
1
+(x)s

1
�(y)s

2
�(z)s

2
+(w)i2 (41)

These expresions make apparent: (i) How the topological structure of the theory
exhibits itself through the existence of non-trivial vacuum expectation values of fermionic
bilinears. (Notice that those on the right hand side are the only surviving terms of the
whole sumatory). (ii) In the multi
avor case, the path-integrals are non-zero only when
the number of right insertions minus the number of left insertions are identical in every

avor sector. (iii) The sum over spatial coordinates dramatically exhibits the translation
symmetry breaking discussed above. (iv) The �xing of various fermion densities implies a
somehow reacher spatial inhomogeneity of the results with respect to the one 
avor case
that we have analyzed in [7], in the sense that now the \angles" depend on various chemical
potentials. (v) Another di�erence with respect to the one 
avor case, concerns the trivial
cancellation of logarithms coming from bosonic and fermionic integration respectively.
Now, this cancellation occuring for one 
avor, does not take place anymore, see eq.(39).

4 Multi
avour QCD2

In the present section we consider two dimensional SU(Nc) Yang-Mills gauge �elds coupled
to massless Dirac fermions in the fundamental representation. Due to the non-Abelian
character of the gauge symmetry, gluons are charged �elds that preserve color 
ux at each
vertex. Since a colored quark density is not a quantity to be kept constant, no chemical
potential related to color should be considered but only that associated with the global
symmetry that yields fermion number conservation. Hence, we �rst include one chemical
potential term and then consider a di�erent lagrange multiplier for each fermionic 
avor.

Let us stress that once the topological e�ects arising from vortices are taken into
account and the chemical potential behavior of fermion correlators is identi�ed, we do
not pursue calculations in the bosonic sector (neither we consider the inclusion of Higgs
scalars, necessary at the classical level for the existence of regular vortex solutions). As
we shall see, the boson contribution to the fermion condensate just factorizes and all
the chemical potential e�ects can be controlled by calculations just performed within the
fermionic sector.
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(i) Handling the Chemical Potential in QCD2

We start from the massless QCD2 (Euclidean) Lagrangian

L = � q(i@�
��
qq0 +A�;at

qq0

a 
� � i�
0�
qq0) q0 +

1

4g2
F a
��F

a
�� : (42)

where we have included a chemical potential term in the form

Lchem = �i� y (43)

in order to take care of the fermion density constraint. Here a = 1 : : : N2
c � 1; and

q = 1 : : : Nc. The partition function reads

Z[�] =
Z
D � D DA� exp[�

Z
d2x expL]: (44)

Again, one can decouple the chemical potential by performing an appropriate chiral ro-
tation for the fermion variables. Indeed, under the transformation

 = exp(i�
5x1)�
� = �� exp(i�
5x1) (45)

the fermion Lagrangian becomes

L = � 6D[A;�] ! �� 6D[A]� (46)

so that the chemical potential completely disappears from the fermion Lagrangian. As
we have seen, chiral transformations may generate a Fujikawa jacobian which has to
be computed using some regularization procedure. For example, using the heat-kernel
regularization one introduces a resolution of the identity of the form

1 = lim
M!1

exp(� 6D(�)2=M2): (47)

where D�(�) (� 2 (0; 1)) is an interpolating Dirac operator such that D�(� = 0) =
D�[A;�] and D�(� = 1) = D�[A].

After some standard calculation [21] one ends with a Jacobian of the form

J = exp
�
i���=4�

Z 1

0
d2x d� trc[�x1F��(�)]

�
(48)

where trc is the trace with respect to color indices and

F��(�) = F a
��(�)t

a; a = 1; 2; : : : ; N2
c � 1 (49)

Now, the color trace in eq.(48) vanishes and then the chiral Jacobian is in fact trivial,

J = 1 (50)

We can then write the partition function (44) after the fermion rotation de�ned in
eq.(27) in the form

Z[�] =
Z
DA�D��D� exp(�

Z
d2xL) (51)

As we have seen in the Abelian case, although � is absent from the r.h.s. of eq.(51) one
should not conclude that physics is independent of the chemical potential. For correlation
functions of composite operators which are not chiral invariant, the chemical potential
will reappear when rotating the fermion variables in the fermionic bilinears. As in the
abelian case, this happens when computing v.e.v.'s of products � (x) (x)
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(ii) Correlation functions in QCD2 with chemical potential

Our main interest is the computation of fermionic correlators containing products of
local bilinears �  (x) for which non-trivial topological gauge �eld con�gurations, and the
associated Dirac operator zero-modes, will be crucial to the obtention of non-vanishing
results as explained in refs.[7],[14]-[20].

As in section 3, we start by writing a gauge �eld belonging to the nth topological
sector, in the form

Aa
�(x) = Aa(n)

� (x) + aa�(x) (52)

where Aa(n)
� is a �xed classical con�guration (as described in section 2.2) carrying all the

topological charge n, and aa�, will be the actual integration variable which belongs to
the trivial sector n = 0. Then, we decouple the a� �eld from the fermions through an
appropriate rotation (the calculation of the Fujikawa Jacobian being standard since the
decoupling corresponds to the topologically trivial sector). Now, it will be convenient to
choose the background so that

A
a(n)
+ = 0 (53)

In this way, the Dirac operator takes the form1

6D[A(n) + a] =

 
0 @+ + a+

@� +A
(n)
� + a� 0

!
(54)

and we are left with the determinant of this operator once fermions are integrated out

Z[�] =
X
n

Z
Da� exp[

1

4g2
F 2
��[A

(n) + a]] det 6D[A(n) + a]: (55)

As before, we have introduced a sum over di�erent topological sectors. Now, we shall
factor out the determinant in the classical background so as to control the zero mode
problem. Let us start by introducing group valued �elds to represent A(n) and a�

a+ = iu�1@+u (56)

a� = id(v@�v
�1)d�1 (57)

A
(n)
� = id@�d

�1: (58)

Consider �rst the light-cone like gauge choice [22]

A� = A
(n)
� (59)

implying
v = I: (60)

In this gauge the Dirac operator (54) reads

6D[A(n) + a]jlc =

 
0 @+ + iu�1@+u

@� +A
(n)
� 0

!
(61)

1We are using 
0 = �1 and 
1 = ��2:
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where subscript lc means that we have used the gauge condition (59). One can easily see
(for example by rotating the + sector with u�1 while leaving the � sector unchanged)
that

det 6D[A(n) + a]jlc = N det 6D[A(n)]� exp(W [u;A(n)]): (62)

Here W [u;A(n)] is the gauged Wess-Zumino-Witten action which in this case takes the
form

W [u;A(n)] =W [u] +
1

4�
trc

Z
d2x(u�1@+u)(d@�d

�1) (63)

and W [u] is the Wess-Zumino-Witten action

W [u] =
1

2�
trc

Z
d2x@�u

�1@�u+
eijk

4�
trc

Z
B
d3y (u�1@iu)(u

�1@ju)(u
�1@ku): (64)

Note that in writing the fermion determinant in the form (62), the zero-mode problem
has been circumscribed to the classical background fermion determinant.

One can easily extend the result (62) to an arbitrary gauge, in terms of the group-
valued �elds u and v de�ned by eqs.(56)-(57), by repeated use of the Polyakov-Wiegmann
identity [23]

W [pq] = W [p] +W [q] +
1

4�
trc

Z
d2x(p�1@+p) (q@�q

�1) (65)

The answer is

det 6D[A(n) + a] = N det 6D[A(n)]� exp(Seff [u; v;A
(n)]) (66)

Seff [u; v;A
(n)] = W [u;A(n)] +W [v] +

1

4�
trc

Z
d2x (u�1@+u)d(v@�v

�1)d�1

+
1

4�
trc

Z
d2x (d�1@+d)(v@�v

�1): (67)

Once one has the determinant in the form (66), one can work with any gauge �xing
condition. The gauge choice (59) is in principle not safe since the corresponding Faddeev-
Popov determinant is � = detDadj

� [A(n)] implying the possibility of new zero-modes. A
more appropriate choice would be for example A+ = 0, having a trivial FP determinant.
In any case one ends with a partition function showing the following structure

Z =
X
n

det( 6D[A(n)])
Z
Da�� �(F [a])

exp

 
�Seff [A

(n); a�]�
1

4g2

Z
d2xF 2

��[A
(n); a�]

!
(68)

Concerning the divergency associated to the external charge distribution, we have learnt
from the Abelian case that one has to carefully handle this term in order to de�ne exci-
tations with respect to the external background. In section 3 we have seen that it came
from the interaction of Aext with F (n)

�� , appearing in the fermionic jacobian. Performing
a similar calculation in the present case we would �nd the non-Abelian analogue of this
term with trc acting on it. As we have mentioned above, this color trace operation implies
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the vanishing of the corresponding divergency so that no counterterm might be added in
QCD2, meaning that the relevant vacuum is properly de�ned.

As we have seen, the Lagrangian for QCD2 at �nite density can be written in terms of
�-rotated �elds which hide the chemical potential from the partition function. This result
however, does not exhausts the physics of the theory in the sense that correlation functions
do depend on �. Actually, it will be shown that the chemical potential dependence appears
as a factor multiplying the result for correlators of the unconstrained theory. For this
reason, we shall �rst describe the computation of vacuum expectation values of fermion
bilinears in the � = 0 case and then consider how this result is modi�ed at �nite fermion
density. Hence, we proceed with the analysis of v.e.v's of products of bilinears like ���.
Let us start by noting that with the choice (53) for the classical �eld con�guration, the
Dirac equation takes the form

6D[A(n) + a]

 
�+

��

!
=

 
0 u�1i@+

dvd�1D�[A(n)] 0

! 
�+
��

!
(69)

where � is de�ned as

�+ = dvd�1�+

�� = u�1�� (70)

so that the Lagrangian in the nth 
ux sector can be written as

L = �� 6D[a +A(n)]� = ���i@+�� + ��+ 6D�[A
(n)]�+

� �� fD[A(n)]�: (71)

In terms of these new �elds, the bilinears ��� take the form

��� = ���udvd
�1�+ + ��+dv

�1d�1u�1��: (72)

We observe that the jacobian associated to (70) is nothing else but the e�ective action
de�ned in the previous section by eq.(67). Hence, an explicit expression for the non-
abelian correlators reads

h���(x1) : : : ���(xl)i =
X
n

Z
Da� � �(F [a�]) exp[�Seff(A

(n); a)]

Z
D��D� exp(��

 
0 i@+

D�[A(n)] 0

!
�)

Bq1p1(x1) : : : Bqlpl(xl) ��q1� �p1+ (x1) : : : ��ql� �pl+ (x
l) +Bq1p1(x1) : : :

B�1qlpl(xl) ��q1� �p1+ (x1) : : : ��ql+ �pl� (x
l) +Bq1p1(x1) : : :

B�1ql�1pl�1(xl�1)B�1qlpl(xl) ��q1� �p1+ (x1) : : : �
�ql�1
+ �

pl�1
� (xl�1)��ql+ �pl� (x

l)

+ : : : (73)

where the group-valued �eld B is given by

B = udvd�1:
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For brevity we have written the gauge �eld measure in terms of the original �elds
a� although for actual calculations in the bosonic sector one has to work using u and v
variables and proceed to a de�nite gauge �xing. That is, the measure should be written
according to

Da� ! DuDvJB(u; v; d)

and then the gauge condition and Faddeev-Popov determinant should be included (For
example, in the light-cone gauge a+ = 0, u = 1 and the FP determinant is trivial).
Finally, notice that we have obtained a general and completely decoupled result, from
which one sees that due to color degrees of freedom, the simple product that one �nds in
the Abelian case becomes here an involved summatory.

Now that we have an expression for correlators in the unconstrained case, let us include
the chemical potential in our results. Recall that in this theory the partition function is
(see eq.(51))

Z =
Z
DA�D��D� exp

 
�
Z
d2x ��(i6@+ 6A)�+

1

4g2
F��F��

!
(74)

where ��;� represent the fermion �elds after the chiral rotation (45) which eliminated the
chemical potential from the Lagrangian. Since fermionic bilinears can be written as

�  = � + + + � � �;

one has
h �  i = exp(2i�x1)h��+�+i + exp(�2i�x1)h�����i: (75)

It can be easily seen that the same factorization occurs when 
avor is introduced. The
corresponding transformation is now

 = exp(iM1c
5x1)�
� = �� exp(iM1c
5x1) (76)

and the bilinear v.e.v takes in this case the form

h �  i = exp(2iM1cx1)h��+�+i + exp(�2iM1cx1)h�����i: (77)

We shall then include from here on 
avor degrees of freedom with the corresponding
constraint on each fermion density. Since in this case one deals with Nf fermions coupled
to the gauge �eld, we can use the fermionic jacobian we have computed for one 
avor to
the power Nf while the bosonic measure remains untouched. In the light-cone gauge it
can be easily seen that the e�ective bosonic sector now involves Nc � 1 massive scalars,
their mass depending on 
avor and color numbers by means of a factor (2Nc+Nf )1=2 with
respect to the abelian counterpart (There is also the same number of unphysical massless
particles [25]).

As we have previously explained, the Dirac operator has jnjNc zero modes in the nth

topological sector, this implying that more fermion bilinears are needed in order to obtain
a non-zero fermionic path-integral. Moreover, since the 
avor index implies a factor Nf
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on the number of Grassman coe�cients, the minimal non-zero product of fermion bilinears
in the nth sector requires jnjNcNf insertions.

Since the properties of the topological con�gurations are dictated by those of the torus
of SU(Nc), one can easily extend the results already obtained for QED2. In particular,
the chirality of the zero modes is dictated by the same index theorem found in the Abelian
theory, this implying that in sector n > 0 (n < 0) every zero mode has positive (negative)
chirality. In this way, the right (left) chiral projections of the minimal non-zero fermionic
correlators can be easily computed. One gets

h
NfY
k

NcY
q

jnjY
i

� q;k
+  q;k

+ (xq;ki )in =
1

Z(0)

Z
GF
DuDvJB e

�S
(n)
Beff

(u;v;d)

NfY
k

NcY
q

jnjY
i

NcX
pi;li

B0q;pili
k (xq;ki )

�Z
D��D� e

R
��6eD[A(n)]� ��pi+ �

li
+(x

q
i )
�
k

(78)

where
B0q;pili

k (x) = exp(2i�kx1)u
piq(x)(dvd�1)qli(x); (79)

��+ = ��� and fD[A(n)] stands for the Dirac operator in the r.h.s of eq.(71). We have
used the notation Z(0) for the partition function since it is completely determined within
the n = 0 sector, see eq.(68). We have showed every color and 
avor indices explicitly
indicating sum and product operations. The GF label stands for the gauge �xing. The
action S(n)

Beff(u; v; d) = NfSWZW (u; v; d) + SMaxwell(u; v; d) is given by the full gluon �eld

A(n)(d) + a(u; v), and yields a high order Skyrme-type lagrangian [17].
Let us consider Nc = 2 and Nf = 2 in order to present the simplest illustration for

the last expression. The minimal fermionic correlator then looksX
n

h � 1;1
+  1;1

+ (x1) � 1;2
+  1;2

+ (x2) � 2;1
+  2;1

+ (y1) � 2;2
+  2;2

+ (y2)in =

1

Z(0)

Nc=2X
p;q;r;s

2Y
k=1

exp[2i�k(x1 + y1)
k]
Z
GF
DuDvJB e

�S
(1)
Beff

(u;v;d) �

B1;pq
k (xk)B2;rs

k (yk)
Z
D��kD�k e

R
��k eD[A(1)]�k ��p;k+ �q;k+ (xk) ��r;k+ �s;k+ (yk): (80)

The fermionic path-integral can be easily done, resulting in the product of eigenfunc-
tions discussed in the sections above, as followsZ

D��kD�k e
R

��k eD[A(1)]�k ��p;k+ �q;k+ (xk) ��r;k+ �s;k+ (yk) = det 0(fD[A(1)])��
���(0;1)p;k+ �

(0;1)q;k
+ (xk)��(0;2)r;k+ �

(0;2)s;k
+ (yk) + ��(0;1)p;k+ �

(0;2)q;k
+ (xk)

��(0;2)r;k+ �
(0;1)s;k
+ (yk)� ��(0;2)p;k+ �

(0;1)q;k
+ (xk)��(0;1)r;k+ �

(0;2)s;k
+ (yk)

+��(0;2)p;k+ �
(0;2)q;k
+ (xk)��(0;1)r;k+ �

(0;1)s;k
+ (yk)

�
: (81)

Here det 0(fD[A(1)]) is the determinat of the Dirac operator de�ned in eq.(71) omitting
zero-modes and (e.g.) �(0;1)q;k(xk) is a non-Abelian zero-mode as de�ned in section 2,
with an additional 
avor index k. Concerning the bosonic sector, the presence of the F 2

��
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(Maxwell) term crucially changes the e�ective dynamics with respect to that of a pure
Wess-Zumino model. One then has to perform approximate calculations to compute the
bosonic factor, for example, linearizing the U transformation, see [17]. In any case, once
this task is achieved for the � = 0 model, the modi�ed (�nite density) result can be
obtained in an exact way.

5 Summary

We have presented the correlation functions of fermion bilinears in multi
avour QED2

and QCD2 at �nite fermion density, using a path-integral approach which is particu-
larly appropriate to identify the contributions arising from di�erent topological sectors.
Analysing correlation functions for an arbitrary number of fermionic bilinears, we have
been able to determine exactly its dependence with the chemical potentials associated to
di�erent 
avor indices. As stressed in the introduction, our work was prompted by recent
results by Deryagin, Grigoriev and Rubakov [3] showing that in the large Nc limit, con-
densates of QCD in four dimensions are inhomogeneous and anisotropic at high fermion
density.

Two-dimensional models are a favorite laboratory to test phenomena which are ex-
pected to happen in QCD4. In fact, an oscillatory inhomogeneous behavior in h �  i
was found in the Schwinger model [6] using operator bosonization and then the analysis
was completed by �nding the exact behavior of fermion bilinear correlators in [7]. Here
we have extended this analysis in order to include 
avor and color degrees of freedom
within a path-integral scheme which makes apparent how topological e�ects give rise to
the non-triviality of correlators.

Remarkably, the oscillatory behavior related to the chemical potential that we have
found with no approximation, coincides exactly with that described in [3] for QCD4 within
the large Nc approximation (appart from the anisotropy that of course cannot be tested in
one spatial dimension). In particular, the structure of the multipoint correlation functions,
given by eqs.(39) and (78), shows a non-trivial dependence on spatial coordinates. This
makes apparent that the ground state has, at �nite density, an involved structure which is
a superposition of standing waves with respect to the order parameter. Being our model
two-dimensional, we were able to control the chemical potential matrix behavior in an
exact way so that we can discard the possibility that the formation of the standing wave is
a byproduct of some approximation. This should be considered when analysing the results
of ref.[3] in d = 4 dimensions, where one could argue that use of a ladder approximation as
well as the fact of neglecting e�ects subleading in 1=Nc play an important role in obtaining
such a behavior.

Several interesting issues are open for further investigation using our approach. One
can in particular study in a very simple way the behavior of condensates at �nite tem-
perature. The chiral anomaly is independent of temperature and plays a central role in
the behavior of condensates through its connection with the index theorem. Therefore,
one should expect that formulae like (39) or (78) are valid also for T > 0. Of course,
v.e.v.'s at � = 0 in the r.h.s. of this equation, should be replaced by those computed
at �nite temperature and hence the issue of zero-modes in a toroidal manifold should
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be carefully examined (see e.g. [24]). At the light of recent results concerning QCD2

with adjoint fermions [26]-[28] it should be of interest to extend our calculation so as to
consider adjoint multiplets of fermions.

Finally, it should be worthwhile to consider massive fermions and compute fermion
correlation functions at �nite density, via a perturbative expansion in the fermion mass
following the approach of [29]. We hope to report on these problems in a future work.
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