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Abstract

Within generalized Boltzmann-Gibbs equilibrium statistics, we calculate the

phase diagram and the correlation length critical exponent � for the Ising ferro-

magnet in a self-dual hierarchical lattice which mimics the square lattice.
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I INTRODUCTION

A generalized entropy Sq has been recently introduced [1] which enables the generaliza-
tion of Boltzmann-Gibbs equilibrium distribution. It is given (in units of a conventional
positive constant k) by

Sq =

1 �
WX
i=1

pqi

q � 1
(q 2 <) (1)

where fpig are the occurrence probabilities of the W microstates of the system. We verify
that limq!1 Sq = �

PW
i=1 pi ln pi � SS, hence the well known Shannon entropy [2] is

recovered as a particular case. Sq is concave but not extensive [1,3-5] (more precisely
speaking, Sq is concave for q > 0 and convex for q < 0). Generalized entropies which are
extensive but not concave are also available, such as the Renyi entropy [6]

SR
q =

ln
WX
i=1

pqi

1� q
(q 2 <) (2)

as well as [7]

SC
q = �

WX
i=1

pqi ln pi

WX
i=1

pqi

(q 2 <) (3)

They also satisfy limq!1 S
R
q = limq!1 S

C
q = SS (we recall that SS is simultaneously concave

and extensive.
In the present paper we follow the line associated with expression (1). Indeed, con-

cavity is an extremely basic requirement since it guarantees the thermodynamic stability
of the system. Extensivity is a mathematically convenient property which has proved to
be correct for an enormous variety of systems; however, it might be untrue for a certain
class of essentially nonlinear systems. Furthermore, expression (1) has enabled various
(nontrivial though mathematically simple and natural) generalizations of important prop-
erties such as
(i) The canonical equilibrium distribution now becomes [1, 3], for q < 1,

pi =

8>><
>>:

[1��(1�q)"i]
1

1�q

Zq

0; otherwise

if 1� �(1� q)"i > 0 (4)

and, for q > 1,

pi =

8><
>:

[1� �(1� q)"i]
1

1�q

�i1=g1 otherwise

if 1� �(1� q)"1 > 0 (40)



{ 2 { CBPF-NF-050/93

with the generalized partition function consistently given by

Zq =
WX
i=1

[1� �(1� q)"i]
1

1�q (5)

where � � 1=kT > 0 and f"ig is the spectrum (set of given real numbers), "1 and g1 being
respectively the energy and degeneracy of the ground state, and �i1 being equal to unity
if "i = "1 and equal to zero otherwise.
(ii) The Thermodynamics associated with (4) and (4') is invariant under Legendre trans-
formations; in particular, it was proved [3] that

1

T
=

@Sq
@Uq

(6)

with

Uq �
WX
i=1

pqi "i (7)

and, also, that

Uq = �
@

@�

Z1�q
q � 1

1� q
(8)

and

Fq � Uq � TSq = �
1

�

Z1�q
q � 1

1 � q
(9)

(iii) Shannon additivity now becomes [3]

Sq(p1; p2; � � � ; pW ) = Sq(pA; pB)

+ pqASq(p1=pA; p2=pA; � � � ; pWA
=pA)

+ pqBSq(pWA+1=pB; � � � ; pW =pB) (10)

with pA �
PWA

i=1 pi and pB �
PW

i=WA+1 pi (hence pA + pB = 1).
(iv) Boltzmann H-theorem has been proved for arbitrary q (within detailed balance hy-
pothesis, by Mariz [8], and, under much less restrictive hypothesis, by Ramshaw [9]); the
connection of Sq with irreversibility has been further analysed by Ramshaw [10].
(v) Both Ehrenfest theorem and Jaynes Information Theory duality relations remain true
for arbitrary q [11]; the same happens with von Neumann equation [12].
(vi) Both Langevin and Fokker-Planck equations have been consistently generalized for
all values of q [13].
(vii) Standard additivity and the Kullback-Leibler cross entropy are respectively general-
ized as follows [14]:

Sq(fp
A
i p

B
j g) = Sq(fp

A
i g) + Sq(fp

B
j g) + (1 � q)Sq(fp

A
i g)Sq(fp

B
j g) (11)

and
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Iq(f; g) �
Z
dx f(x)

[f(x)=g(x)]q�1 � 1

q � 1
� 0 if q > 0

= 0 if q = 0 (12)

� 0 if q < 0

where the equality holds if and only if the arbitrary distributions f(x) and g(x) are equal.
(viii) Bogolyubov inequality (hence the Variational Method) is generalized as follows [15]:

F �
Fo

H
+
�
1 �

1

H

�
1

�(1� q)
if q < 2

=
Fo

H
�
�
1�

1

H

�
1

�
if q = 2 (13)

�
Fo

H
+
�
1 �

1

H

�
1

�(1� q)
if q > 2

where

H �<
1� �(1� q)H0

1� �(1� q)H
>0 (14)

H and H0 being respectively the real and trial Hamiltonians and < � � � >0 denoting the
canonical thermal average associated with H0 (F and Fo are respectively the exact and
trial generalized free energies).
(ix) The 
uctuation-dissipation theorem has been generalized [16] for all values of q; the
same holds for Callen's identity [17].
(x) Fermi-Dirac and Bose-Einstein statistics have been generalized [18] for all values of q.

A physical application is already available for this generalized statistics. Indeed, the
use of standard (q = 1) Statistical Mechanics to discuss collisionless stellar dynamics [19]
(within the polytropic model as studied by Chandrasekhar and others) leads to a phys-
ically undesirable result, namely that the galaxy is in�nitely massive (untrue). Plastino
and Plastino recently showed [20] that this unphysical consequence is removed if q su�-
ciently di�ers from unity; in fact, this situation nicely illustrates Balian's point [21] that
nonextensive entropy might be relevant for the discussion of astrophysical matter stabil-
ity. A second physical application has been recently found [22] for d-dimensional Levy

ights, q being directly determined by the fractal dimension associated with these 
ights.
Finally, it might be not useless mentionning that this nonextensive physics exhibits in-
triguing analogies with very recent quantum group developments [23, 24] (q-deformations,
q-oscillators, Eqs. (4.1) and (4.34) of [25]).

Some one-body systems have already been discussed within the present generalized
statistics: the two-level system [1, 26], the harmonic oscillator [26], the free particle [5].
One many-body system, namely, the d = 1 Ising model, has been discussed as well [27].
However, the study of a system presenting a phase transition has never been undertaken
for q 6= 1. This is the purpose of the present work, and we shall address the square-lattice
Ising ferromagnet. To do this we shall discuss its criticality, more precisely, its phase
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diagram and its correlation length critical exponent �. The theoretical framework will
be that of a simple real space renormalization group (RG) which replaces the (self-dual)
square lattice by the (self-dual) Wheatstone-bridge hierarchical one. This approach has
already proved, for q = 1, its e�ciency for both classical (Ising, bond percolation, Potts
models; see [28] and references therein) and quantum (Heisenberg and Hubbard models;
see [29] and references therein) systems. In Section II we present the formalism, in Section
III the results, and we �nally conclude in Section IV.

II MODEL AND RENORMALIZATION GROUP

We consider the dimensionless Ising Hamiltonian

� �H = K
X
<i;j>

SiSj +K0 (15)

where Si = �1; < i; j > runs over all pairs of �rst-neighbouring spins on a square lattice,
K � �J andK0 = �J0 (J > 0 is the coupling constant and J0 �xes the origin of the energy
scale). In the framework of the generalized statistics, the probability of a con�guration
fSig is given, for q < 1, (see Eq. (4)) by

p(fSig) =

8<
:

[1�(1�q)�H]
1

1�q

Zq
if 1� (1 � q)�H > 0;

0; otherwise
(16)

with
Zq �

X
fSig

[1� (1 � q)�H]
1

1�q (17)

while, for q > 1, an analogous expression is obtained from Eq. (4')
In order to study the criticality of this model, we shall use the hierarchical lattice

generated by the Wheatstone-bridge cluster indicated in Fig. 1. This cluster being self-
dual (as the square lattice itself), the RG will provide, for q = 1, the exact critical
temperature kTc=J = 2:269 � � � (see, for instance, [28]). More precisely, to the left side
cluster of Fig. 1 we associate the Hamiltonian

� �H1234 = K(S1S3 + S1S4 + S3S4 + S2S3 + S2S4) +K0 (18)

and to its right side cluster we associate

� �H0
12 = K 0S1S2 +K 0

0 (19)

We then impose, for S1; S2 = �1,

[1� (1 � q)�H0
12]

1
1�q =

X
S3=�1

X
S4=�1

[1� (1� q)�H1234]
1

1�q (20)
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which completely determines the RG recursive relation in the (K;K0) space, or, equiva-
lently, in the (t; x) space with t � 1=K = kT=J and x � K0=K = J0=J . Eq. (20) holds,
for q < 1, as it stands for all fS1; S2; S3; S4g con�gurations satisfying [1�(1�q)�H1234] � 0
and only for them (i.e., it excludes all the con�gurations for which the condition is not
satis�ed); this equation implies

Z 0
q(12) = Zq(1234) (21)

where

Z 0
q(12) �

X
S1;S2

[1� (1� q)�H0
12]

1
1�q (22)

and

Zq(1234) �
X

S1 ;S2;S3;S4

[1� (1� q)�H1234]
1

1�q (23)

hence (using (20))

p0(S1S2) =
X
S3;S4

p(S1; S2; S3; S4) (24)

Eq. (20) straightforwardly leads, for q < 1, to

t0 =
2(1 � q)t

(f1 + 2f2 + f4)1�q � 21�q(f2 + f3)1�q
(25.a)

x0 =
(f1 + 2f2 + f4)1�q + 21�q(f2 + f3)1�q � 2t

(f1 + 2f2 + f4)1�q � 21�q(f2 + f3)1�q
(25.b)

where

fi =

8>><
>>:

g
1

1�q

i if gi > 0
(i = 1; 2; 3; 4)

0 otherwise

(26)

with

g1 � t+ (1� q)(x� 3)

g2 � t+ (1� q)(x� 1)

g3 � t+ (1� q)(x+ 1)

g4 � t+ (1� q)(x+ 5) (27)

Analogous expressions are obtained for q > 1.
Eqs. (25-27), together with the corresponding ones for q > 1, determine the criticality

of the system for arbitrary q. Although exact for a single cluster, the present RG proce-
dure is only approximative for the entire hierarchical lattice. This is due to the fact that
generically p(H1H2) 6= p(H1)p(H2);H1 and H2 being the Hamiltonians associated with
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two di�erent clusters of the lattice. However, it is easy to see that it becomes asymptoti-
cally exact in the limit (q� 1)� ! 0, i.e. for all temperatures if q = 1, or for all values of
q if the temperature is high enough. This situation is very analogous to what occurs for
q = 1 quantum systems (see [29] and references therein).

III RESULTS

It is convenient to discuss (for t � 0 and �1 < x <1) separately the q = 1, q < 1
and q > 1 cases.

III.1 - q=1 Criticality

The q! 1 recurrence relations (25) become (see,for instance, [28])

t0 =
2

lnf2[e�2=t cosh(1=t) + e2=t cosh(3=t)]g � lnf4 cosh(1=t)g
(28.a)

x0 =
2x=t+ lnf2[e�2=t cosh(1=t) + e2=t cosh(3=t)]g+ lnf4 cosh(1=t)g

lnf2[e�2=t cosh(1=t) + e2=t cosh(3=t)]g � lnf4 cosh(1=t)g
(28.b)

where we notice that t0 depends only on t (for q 6= 1, t0 depends on both t and x). The
RG 
ow diagram includes a t = 0 invariant subspace and is indicated in Fig. 2. Two
trivial (fully stable) �xed points exist, namely (t; x) = (0; 3) and (1;1), respectively
characterizing the ferromagnetic (Fe) and paramagnetic (P) phases. The two correspond-
ing attractive basins are separated by the critical line t = 2:269 � � � (8x), thus recover-
ing the square lattice exact result. The correlation length critical exponent is given by
� = ln 2= ln(dt0=dtj2:269���) ' 1:149 (b = 2 is the RG length rescaling). This result is exact
for the Wheatstone-bridge hierarchical lattice, and is to be compared with the square
lattice exact result (� = 1).

III.2 - q < 1 Criticality

We see, from Eqs. (27), that g4 > g3 > g2 > g1, consequently three di�erent situations
occur, namely

(i) t � �(1 � q)(x + 5), hence g4 � 0, hence f1 = f2 = f3 = f4 = 0, hence the
normalization condition

P
S1;S2 p0(S1S2) = 1 cannot be satis�ed. This region

is physically unaccessible and we refer to it as thermally forbidden (Fo);
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(ii) �(1 � q)(x + 5) < t � �(1 � q)(x + 1), hence g4 > 0 and g3 � 0, hence
f1 = f2 = f3 = 0. Consequently, the only spin con�guration whose prob-
ability is nonzero (hence, necessarily equals unity) is the ground state, i.e.,
all spins aligned to each other (and aligned to a vanishing external magnetic
�eld which, rigorously speaking, ought to be included in the present theory).
The existence of �nite frozen (as well as forbidden) temperature intervals is a
common phenomenon within q 6= 1 statistics (see [5] and references therein).
However, in the present case, this is a �nite size e�ect introduced by the RG
approach; indeed, improved RG approximations based on larger clusters (e.g.,
clusters of higher order in the hierarchy generated by the Wheatstone-bridge
cluster of Fig. 1) will drive the Fo and Fr regions towards x = �1. Con-
sequently, such regions disappear in the limit of an in�nite cluster, this is to
say, for the full hierarchical lattice;

(iii) t > �(1 � q)(x + 1), hence g4 > 0 and g3 > 0. Consequently di�erent spin
con�gurations can occur, thus characterizing a thermally active region. In fact,
in the present model, two macroscopic phases can occur within this region,
namely the ferromagnetic (Fe) and the paramagnetic (P) phases.

Let us now analyze the recurrence equations (25). We see that, as for the q = 1 case,
t = 0 constitutes an invariant subspace of the (t; x) parameter space. In this case, x0(x) is
not de�ned for x � �5, equals unity for �5 < x � �1, and behaves as indicated in Fig. 3
for x > �1. A special value q� ' 0:852 exists such as for q < q� only one attractive �xed
point exists (namely x = +1), whereas for q > q� two new �xed points appear (namely
an attractive (trivial) one located at x1(q), and a repulsive (critical) one located at xc(q)).
When q increases from q� to 1, (x1(q); xc(q)) continuous and monotonously varies from
(x�; x�) (with x� ' 6:14) to (3;1), thus recovering, in the q ! 1 � 0 limit, the q = 1
result presented in Section III.1. Consistently, the x1(q) attractor is to be associated
with the Fe phase, whereas the xc(q) repulsor corresponds to a Fe-P phase transition at
vanishing temperature. The x = 1 attractor corresponds to the P phase. We present
in Fig. 4 the q-evolution of the critical point xc. The corresponding critical exponent is
given by

�(q) =
ln b

ln (@x0=@x) t=0
xc(q)

(b = 2) (29)

and is represented in Fig. 5.
The frozen region (�5 < x � �1) deserves a word. Indeed, the entire region is driven,

under RG, towards x = 1; in other words, the 
ow in this region is a discontinuous one.
The presence, for q 6= 1 and T = 0, of a (continuous) phase transition can be under-

stood by looking at the T = 0 limit of Eqs. (4) and (5), namely pi !
j"ij

1
1�qPW

i=1
j"ij

1
1�q

for all

states i which satisfy (q � 1)"i > 0, while the same limit (i.e., T = 0) for q = 1 yields,
only for the ground state, a non vanishing probability.

In our case, for x! +1 (i.e., J0 ! �1, keeping J constant) all spin con�gurations
fSig will have an energy � �J0, hence pi(fSig)!

1
W
. Such distribution corresponds to a

disordered (i.e., P ) phase. On the other hand, for J0 � J , the ground state probability will
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be larger than the probabilities of all other con�gurations, thus allowing for the existence
of an ordered (i.e, Fe) phase. The competition between these two tendencies yields a
continuous (i.e., critical) phase transition when varying J0=J .

If we enlarge now our discussion to the entire (t; x) space, we can see that the RG 
ow
associated with Eqs. (25) is attracted by the t = 0 axis, which controls, consequently,
the criticality of the system. In Fig. 6(a) (Fig. 6(b)) we have represented the RG 
ow
for a typical q < q� (q > q�) case. Therefore, for q < q� we have three regions in the
phase diagram, namely (in order of increasing x or increasing t) the Fo, the Fr and the P
ones; the latter is attracted by the (t; x) = (0;1) fully stable �xed point. For q > q� we
have four regions, namely (in order of increasing x or increasing t) the Fo, the Fr, the Fe
and the P ones; the Fe (P) region is attracted by the fully stable (0; x1(q))((0;1)) �xed
point. The Fe-P critical line is attracted by the semistable (0; xc(q)) �xed point, which
determines the criticality of the entire line (in particular, along this line, �(q) is given
by Eq. (29)). In Fig. 7 we present the critical temperature tc corresponding to J0 = 0
(x = 0).

III.3 - q > 1 Criticality

For arbitrary values of q > 1 three di�erent situations occur, namely

(i) t � (q � 1)(x� 3). This is a physically unaccessible region (Fo)

(ii) (q � 1)(x� 3) < t � (q � 1)(x+ 5). In this region the only spin con�guration
whose probability is nonzero is the ground state (ferromagnetic). Hence we
have (as for q < 1), a frozen ferromagnetic region.

(iii) t > (q � 1)(x + 5). This is a thermally active region, where di�erent spin
con�gurations can occur. Moreover, two macroscopic phases occur within this
region for all q > 1, namely the Fe and the P phases.

The t = 0 recurrence equation x0(x) presents an unstable �xed point xc(q) (in fact, it is
fully unstable in the (t; x) space). As q increases from 1 to in�nity, xc(q) continuously
increases from �1 to -5; xc(q) is represented in Fig. 8. The points x < xc(q) exhibit
a continuous 
ow towards an attractive �xed point at x = �1; for x ! �1, the
probability associated with every spin con�guration equals 1=W (like the x! +1 limit
in the q > 1 case); hence, the x = �1 �xed point is associated with a P phase; xc(q)
plays the role of an unstable (critical) �xed point. The points xc(q) < x < �5 are driven
discontinuosly into the Fr region, which is a Fe region.

We enlarge now our analysis to the entire (t; x) space. Besides the Fr and Fo regions
above mentioned, we found two active regions in the phase diagram, namely (for decreas-
ing x or increasing t) the Fe region and then the P one. The P region is attracted by a
�xed point located at t =1. The Fe region is characterized by a discontinuous 
ow into
the Fr region. The Fe� P critical line, which starts, for t = 0, at xc(q), is attracted by
a �xed point located at (+1;+1); the associated critical exponent �(q) is represented
in Fig. 5 and the critical temperature tc corresponding to J0 = 0 is shown in Fig. 7.
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IV CONCLUSION

We have shown that, within the framework of the present generalized statistics, the
criticality of the Ising ferromagnet in square lattice is modi�ed in a continuous manner
when we slightly depart from q = 1. Below a critical value q� ' 0:852 (i.e., q < q�) the
system is paramagnetic for all nonvanishing temperatures for which it is not forbidden nor
frozen. When q further increases, the reduced critical temperature tc � kTc=J for J0 = 0
monotonously increases with increasing q; tc = 1 for q = q�, tc = 2:269 � � � (exact answer
for both square and hierarchical lattices) for q = 1, and tc � Aq for q!1 with A ' 5:5
(this fact can be compared with the mean �eld square lattice result tc = 4q; 8 q � 0).
Consistently, the thermal critical exponent � is de�ned only above q*, and monotonously
decreases with increasing q; � diverges for q ! q �+0, equals 1:149 � � � (exact answer for
the hierarchical lattice [28] and 15% wrong for the square lattice) for q = 1, and vanishes
for q!1.

When T increases for q 6= 1, we might have a �nite forbidden region (physically
unaccessible), above which always is present a frozen region (which possibly shrinks and
�nally disappears in the limit of an in�nite lattice), above which thermally active phases
exist: paramagnetic if 0 < q < q�; ferromagnetic and then paramagnetic if q� � q. In the
q ! 1 limit, the forbidden and frozen regions shrink into the T = 0 point.

We have also performed the RG analysis for the d = 1 case. For q < 1 the system
qualitatively behaves as the d = 2 case for q < q�, i.e., the entire active region is attracted
by the �xed point (t; x) = (0;+1). For q > 1 the entire active region for t 6= 0 is attracted
by a �xed point located at t =1. In other words, the system presents no phase transition
for any value of q, and, as expected, is paramagnetic for all temperatures outside from
the Fr and Fo regions.

While the present RG results clearly seem quite reliable (for both square and hierar-
chical lattices) for q ' 1 and not too low temperatures, one can not exclude the possibility
that some of them be spurious when we depart from this situation. Consequently, the
study of this system through di�erent techniques (e.g., Monte Carlo) would be very wel-
come.
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FIGURE CAPTIONS

Fig. 1: Renormalization group cell transformation. The two-rooted cluster on the left
of the �gure generates , through in�nite iterations, an hierarchical lattice. (K0;K) and
(K 0

0;K
0) are the parameters of the Hamiltonians H and H0 respectively.

Fig. 2: Schematic RG 
ow for q = 1.
Fig. 3: Recurrence equation x0 = x0(x) for q < 1, t = 0 and x > �1.
Fig. 4: Inverse of the critical point xc vs q at t = 0 for q� < q < 1(q� � 0:852).
Fig. 5: Correlation length critical exponent � of the Fe� P transitions vs q.
Fig. 6: Schematic RG 
ow for q < 1. (a) q = 0:8 < q�; (b) q = 0:9 > q�. Fig. 7:
Dimensionless critical temperature tc vs q for J0 = 0.
Fig. 8: Critical point xc vs q at t = 0 for q > 1 (this �gure is the continuation of Fig. 4).
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