ISSN 0029-3865

CBPF-NF-050/88
SOME QUESTIONS REGARDING CHIRAL SOLITONS AS BARYONS*

Juan A. MIGNACO® and Stenio WULCK'

‘Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil

TUniversidade Federal do Rio de Janeiro - UFRJ
Instituto de Fisica
Caixa Postal 68528
21944 - Rio de Janeiro, RJ - Bras11

* Contribution for the volume dedicated to the 70
Prof. Jose Leite Lopes.

th birthday of



CBPF-NF-050/88

ABSTRACT

A short description is made of the meaning and application of chiral
solitons as baryons. The hedgehog proposal for a umitary chiral field is
discussed and it is emphasized the appearance of an arbitrary parameter in

the soliton solution which may conflict with the customaxy argument on
(in)stability.
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I - INTRODUCTION

The description of hadrons and of low energy strong interaction
physics is assumed to be contained in the quantum theory of gauge colour
~dynamics known as Q. In fact, the systematic building of a set of
strongly interacting particles at low energies is performed by adding

appropriately the quantum numbers of a quark-antiquark pair or of three
quarks. i
This description, however, is so far not yet quantitative. On the
other hand, a satisfactory explanation of low energy hadronic properties

is partially obtained through the use of current algebra methods, which

in turn can be expressed in terms of effective chiral lagrangeans [1].
Actually, chiral lagrangeans are written in terms of hadron fields, and

no memory is kept of the quark or gluon degrees of freedom of the funda-
mental theory.

High energy, or more properly, high momentum transfer collisions
involving small numbers of quarks and gluons, have been sufficiently well
described from perturbative QCD [2].

This state of affairs might be summarized saying that while QCD and
the counting of quark properties are relevant to successfully describe
quantitatively phenomena at high energies, at low energies they are not
as crucial, except for bookeeping of quantum numbers.

A step to link these two regimes was given in recent years by sev-
eral authors [3,4,5], who pretended to abstract from QCD information re-
lated to chiral lagrangeans and their properties. This lead in a natural
way to introduce the so called Wess-Zumino terms, which were originally
established for the chiral non-linear o-model become consistent.

These facts are supported by theoretical experience with two dimen
sional models [6] of non-abelian gauge theories with femmions. There,
non-linear ¢-models, Wess-Zumino terms and current algebras result from
the anomalous character of the axial current in gauge invariant lagrangeans.

In short, then, it is reasonable to expect that chiral non-linear
o-model lagrangeans with suitable extension would be the effective theory
emerging from QCD at low energies.

In these theories, baryons would be semiclassical solitons, as
proposed by Skyrme long time ago (7). A term with four derivatives of the
unitary chiral field is believed to be needed to stabilize the solutions,
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which introduces a parameter in the description of their properties. The
interaction with mesons would result from introducing fluctuations of the
chiral field around the soliton solution [8].

In this note we analyze some mathematical aspects of this proposal
and introduce some new aspects of the problem which deserve further con-
sideration, and at the same time may open interesting possibilities for
development.

II - CHIRAL SOLITONS AS NUCLEONS

As mentioned before, the proposal of a description of baryons by
chira) solitons could be summarized as follows:

Nucleon at low energies = Solitan from {(non-linear o-model) +

+ (Skyrme term) + (Wess-Zumino term))

In lagrangean form, we write:
L= - [ @ x ) £ Triauh G+ ply TV 0,V DI

1
iNc » ijklm + +
togmer | At | a&x T T (WG (350) (U° (3, 0))

o}

(u"(alu)l) UCROPY (1

where U is a unitary chiral field which maps a chiral flavour group, which
remains after symmetry breaking onto some 3-dimensional manifold ( R® or
§’, the 3-dimensional sphere). We use the notation such that repeated
indices means summation and the complete antisymmetric symbols are it M
in m indices.

The first term in the lagrangean contains the physical information
that permits to describe low energy pion dynamics. This term may have a
soliton solution, as we shall discuss later. It is proportional to the
square of the pion-decay constant, fn .

The second is the Skyrme term, which "stabilizes" the soliton solu-
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tion for the first term. We shall comment on it. It introduces an addi-
tional parameter, e.

The third term is the Wess-Zumino term, and is absent for the SU(Z)L
x SU(2); case, it only appears for SU(S)L x SU(3)p. Its coefficient, Nc’
turns out to be the possible number of colours or varieties of quarks with
a given flavour [4].

It is currently stated that a soliton for the first term cannot be
stable. The argument, in its simplest version, is as follows [9,10].
Assumc that the mass of the soliton is given, in the static limit, by:

M = Jd’ x % f; Tr[(auu‘;) (a‘.‘uo)] (2)

The subscript in U  indicates a soliton. If, inside the integral
symbol, we make the change of variable:

X - AX (3
we have
M§= /A0 (4)

so, by taking X big enough we make M, small at will. The argument can be
more sophisticated, in terms of the so called Bogomol'ny's bound [8] as
used originally by Skyrme.

The solution is to stabilize via the Skyrme term. If we apply the
same reasoning for the first two terms in eq. (1) we get:

M =1 M. e (5)

which has a stable solution at a value:

. M
A:-M_SK (6)

Having overcome this difficulty, applications have been made [11] substi-
tuting the "hedgehog" form for the chiral U field on SU(2):

U = cosF(r) + iT.n sin F(r) )]
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with ﬁﬁ/li" | and F a function depending only on the radial coordinate.
With this solution, the winding number given by:

J—__L Jd‘ x Tr[U* (2,U3) (U* (3,1)) (U* (3, 1)) ®
is:
F(s)
By | SF P gix .l sin’FdF = 1 (F(=) - F(0)} (9)
(4] F(o)

It is, as a result, an integer whenever:

F(o) = -nr F(=) = 0 | (10)

This baryonic soliton, nontheless, is not yet a particle with spin,
nor an object with isotopic properties. To introduce them, it is usual
to recur to collective coordinates which rotate it:

U, t)=A(t)U (DA™ () = cosF(r) + i1,D.()n, sinF(r) an

with Dik(t) SU(2} rotation matrices, and A an SU(2) matrix.
It is shown that the Casimir operators both for the isotopic spin
and angular momentum are the same [9,10]:

-

T = J (12)

and the hamiltonian is the one of a rotating top:

1 +2 .
H=m J' oM (13)
with:
2 .
B = %11 J r’dr sin?F { -} f:T + -g; ((—gg) + ﬁl%z—F)} (14a)
0
M=

. dF 2 . . 2 .
- J'dr\rz HIE + & simFm) « SBE@ (dFy, sinFy,

° (14b)
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Notice, however, than in SU(S)L x SU(3)p the WZ-term makes the soli-
ton (the baryon) to be a fermion{5,9].

To study low energy pion-nucleon interaction a pion fluctuation is
introduced via a chiral rotation [8]:

Uy =Y Ul (15a)

U = exp (-.r]n— it . 7))} (15b)

(where 7 is the pilon isovector field) and when this is taken into the ex-
pression for the lagrangean (1), it turns out that up to order 7 one re-
covers a chiral effective lagrangean provided the identification is
(Goldberger-Treiman {1]):

= v (16)
gy My

where (gv/gA) is the ratio of couplings for the vector and axial-vector
currents, go. is the strong pion-nucleon coupling constant and MN is the
mass of the nucleon (obtained as given in (14b)).

With all these tools at hand, several applications have been devel-
oped in the realm of static or nearly static hadronic parameters 11,
12). The success of the numerical predlctlons appears to be reasonable.

The value of e, the Skyrme parameter, 15 fixed by the nucleon mass
in eq. (14b). However, the form of the pion nucleon interaction obtained
from the introduction of the 7 field does not depend on the parameter e.

It has been recently attempted to fix e by the use of QCD sum rules,
{13], and it turned to be approximately equal to 1/f .

In the next section, we analyze mainly the contribution of the non-
-linear c-model term to the soliton.

I1I - THE NON-LINEAR o-MODEL SOLITON REVISITED

The aim of this section is twofold: Starting from the lagrangean
arrived at from eq. (1) by the substitution of the hedgehog soliton (eq.{7)}, .
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we show that:

(i) The stability argument developed before (eqs. (3)-(6)) may not
apply to the soliton obtained from the hedgehog, since an arbi
trary parameter, with dimension (lenght)'1 is necessary because
of the singularity of the Euler-Lagrange equation;

(i1i) It is hard to see from a variational calculation that the soli-
. ton solution gets stability from the introduction of the Skyrme
term.

We have, for the static hedgehog

o
2

L = -4n f: J dr r’[ggéfl] + 2 sin’F) an
0

The Euler-Lagrange equation is:

) _.
ek v wE-sinoF (18)

which can be reduced toc the form:

X' = SXX 2 @G a9
X(x) = TF(), X =57 (20

This equation is singular at x = 0 (r=0). This means that it
doesn't satisfy the Lifshitz condition [14], which ehsures the uniqueness
of the solution as determined by the boundary conditions.* Instead, they
may depend continuously on an undetermined parameter. Let us show how
this happens in our case.

Assume that we develop a regular solution to (19) in power series
near the origin

x (x)

: E(O) + X'(0)x + é&-x’x"(ﬂ) + oaes | (21)
X

[.3
We thank Prof. Jair Koiller, Inst. de Matemitica, UFRJ, for having
directed our attention to this point.
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Substituing it into (19), we need that

x(0) =0 (22a)

x'(0) == 2nm ne ZV (22b)

The. first result is the condition that F(r) be finite at the origin.
The second, which turns to be necessary for eq. (19) to have a regular
solution, is precisely the same needed to guarantee that the (winding) baryon
number is an integer. Proceeding further, we get a trivial identity for
x''(0), and from there on all coefficients are expressed in terms of powers
of this quantity. The result is:

32.

X(x) = -2mmx + 5 X" (Ox2[1 ~ gy X (O)x* + Fy Xt -
1 17 et . 1 3.7.73 x(0)X® - ...] (23)
- . X" (0x® + o
8T 2535 P25

To study the solution at infinity, we perform the usual transformations
y=1/x , Ty k@ = xx) (24)
and the equation looks:
d2Ky) _ 2 .
1}72X— = yz s1n K(Y) (25)
with
_ 1 t 2 1 "5 1] [ 3 1 3“-5 15 10
K(Y) =T K (O)Y + (34 (- TI)K' (0))’ + 0T (—'-n—') K (0))’ + ..

(26)

Again, K'(0) is a parameter with undetermined value. This is right,
since confirms the property manifested from eq. (19).



CBPF-NF-050/88

Let us remark that the addition of a Skyrme term does not modify the
situation, since the contribution of the Skyrme term is less singular than
the o-model one. We shall add a few comments in the next section.

Let us turn our attention to the stability problem. The second vari
ation of the lagrangean should correspond to a minimum, and have a definite
{positive) sign. To check this, let us write:

F(r) = Fy(r) +eu () + 3 € u, (1) 27

where u, (r) and u_(r) are arbitrary functions and € a small parameter. We
then obtain

L=l +cl +y €'L, + 0(eM) (28)
where
- 2 ® 2 dFO ] 2 v 2
LO =g fTT Id‘r T { (H.I-'—) + 'I—,f S1n FO} (28&)
o
. g . @F, aF,
L = L,{ux} = -8n f_ J-dr u,{ -r? " - 2r o+ sin 2F 1 (28b)
o
Lo=L P er @ )
2 2 -2 ) 2
L Wy - (28¢)
(*) tu 2 e du 2 2
La M.} =-8n £ | dr{r () + 2 cos_ZFOIJI} (284)

o]

The contribution of u_ vanishes when the Euler-Lagrange equation is
satisfied. So, in the vicinity of the solution, it is (28d) that gives
the sign of the second variation. It is not definite. The inclusion
of the Skyrme term does not improve this.
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IV - SUMMARY AND CONCLUSION

In this note we have sketched the fundamentals of the''skyrmeon” con
cept as recently used rather widely in hadronic physics [15]. We have em-
phasized the role that chiral dynamics, as suggested from current algebra,
must have in the choice of this way to try to reconcile QCD and hadron
physics. .

On the other hand, we have stressed that chiral non-linear static,
o-model lagrangeans in the "hedgehog" approximations, needs the introduc-
tion of an arbitrary parameter to make sense of the Euler-Lagrange equa-
tion at its singularity. |

The appearance of this parameter may spoil the argument against the
stability of the soliton. Several scenarios appear to be possible: the
less attractive is that physically interesting quantities, like the mass
of the soliton, depend monotonically on this parameter. That is, there
is no solution for the equation.

M__o
dx" (o)

except at a maximum. The other possibilities which may be speculated
(work is in progress on them) are certainly attractive.

As said before, there is no need of the Skyrme term in order to re-
cover formally a chiral-dynamics lagrangean from the static soliton.

On the other hand, work with fermionic determinant [6] and effective
actions show that whereas the non-linear o-model and the Wess-Zumino term
appear often naturally, it is hard to obtain a kind of Skyrme term.

Acknowledgements: The authors thank Prof. L.D. Faddeev for conversations
on this subject, and to the Theoretical Physics Departments of the Univer
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