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Abstract

We have done a study of the zero-dimensional �'4 model. Firstly, we exhibit the

partition function as a simple exact expression in terms of the Macdonald's function for

Re(�) > 0. Secondly, an analytic continuation of the partition function for Re(�) < 0

is performed, and we obtain an expression de�ned in the complex coupling constant

plane �, for jarg �j < �. Consequently, the partition function understood as an analytic

continuation is de�ned for all values of �, except for a branch cut along the real negative

� axis. We also evaluate the partition function on perturbative grounds, using the Borel

summation technique and we found that in the common domain of validity for Re(�) > 0,

it coincides precisely with the exact expression.
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1 Introduction

It is largely accepted that some insight on the behavior of Green's functions in Field

theories and Statistical systems may be obtained by the analysis of zero-dimensional

models [1] [2]. In particular it is expected that an exact understanding of some aspects

of zero-dimensional �eld theories could leave trails about the non-perturbative behaviour

of these theories in higher dimensions. In this sense, Bender et al. [3] for instance, have

proposed an analytical approach to study non-perturbativelly quantum �eld theories,

which requires to solve the corresponding zero-dimensional model. In the context of

perturbative �eld theory, for the study of the summability of series giving evaluations

of physical quantities, an exact analysis of a zero-dimensional �eld theory could help to

obtain information about the large order terms behavior in the perturbative series of

realistic models. In particular, we may have in mind the paper of Bender and Wu [4],

who have obtained the precise asymptotic behavior for n!1 of the n-th order Rayleigh-

Schr�odinger coe�cient in the series for the energy levels of the anharmonic oscillator. A

precise knowledge of these coe�cients for arbitrary n is still missing, only bounds for their

absolute values are available for �nite generic values of n, even large.

Zinn-Justin [5] studying perturbation around instantons has used explicitly the zero

dimensional �'4 model in order to introduce some basic ideas to perform a detailed

analysis based on numerical simulations, of the large order behavior of the perturbative

expansion of various models. As noticed by Parisi [6] and also by Khuri [7] the nature of the

large order estimates is strongly dependent on the analytic structure of the (presumably)

summed perturbative series F (�) =
P

n
fn�

n as a function of the coupling constant

�. A pioneering work on the subject was done by Dyson [8], who remarked that for

negative � = e2 in (QED)4 the vacuum is metastable with a meanlife � e
�

1

j�j , and that

a cut along the negative real �-axis is present. Dyson emphasizes that since any physical

quantity evaluated by perturbative methods is not analytic at vanishing value of the

coupling constant, the asymptotic expansion is not su�cient to determine the quantity

uniquely. Parisi, [6] using a functional representation of F (�) for Re(�) < 0, still makes

the important observation that a detailed knowledge of the imaginary part at negative
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values of � would be necessary to improve Dyson's work. In other words, to obtain more

detailed estimates for the coe�cients in the perturbative series, a better control of the

imaginary part of F (�) for negative Re(�) is required. It is worthwhile to remark that

non-hermitian or unbounded Hamiltonians, in particular (i�'3) and (��'4) models have

been recently investigated by Bender et al. [9]. Arguing from the fact that the model

(��'4) is asymptotically free, these authors suggest that this theory should be useful for

describing the Higgs boson. Historically, this idea of investigating the negative coupling

scalar model in view of implementing asymptotic freedom is in fact present in the literature

since the 70's [10].

In another branch or theoretical physics, zero-dimensional �eld models can have a

direct interest to the study of disordered systems, in particular to systems presenting

frustration, which is associated to negative couplings in �eld theory language. These

systems have been studied, both from a diagrammatic lattice viewpoint (quenched random

graphs) by for instance Bachas et al. [11] and Baillie et al. [12], or on more rigorous

mathematical grounds by Derrida [13] and Aizeman et al. [14].

Perhaps an exact solution of the zero-dimensional �'4 model could throw some light

on the above described situations. In any case, it is clear that a main step to these kind

of studies should be to understand how correlation functions behave for complex coupling

constant, in particular for complex coupling constants having a negative real part. In

this note we intend to go in this sense, by reducing an interacting system to its simplest

possible form, the zero-dimensional �'4 model. As a counterpart, an exact treatment is

possible.

This paper is organized as follows. In section 2 the basic features of zero-dimensional

�eld theory are reviwed. In section 3 we exhibit a non-perturbative (exact form) for the

zero dimensional partition function and the analytic continuation in the coupling constant

to the whole complex plane is performed. Also the exact form of the partition function

is compared to the expression obtained from Borel summation of the perturbative series.

In this paper we use the standard convention �h = kB = 1. Concluding remarks are in

section 4.
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2 Zero-dimensional �eld theory

Let P (') � 0 be a probability distribution over a random variable. The moments< 'n >

of the probability distribution are obtained from the generating function,

Z(J) =

Z
d'P (')eJ'; (1)

by successive derivatives,

< 'n >=

R
d''nP (')R
d'P (')

=
1

Z(0)

�
@nZ(J)

@Jn

�
J=0

(2)

Suppose that P (') in Eq.(1) has the general form

P (') = e�
1

2
'A�1'+f(';�); (3)

f('; �) being a regular function depending on some parameter � (coupling constant).

Then using the identity f( @

@J
)eJ' = f(')eJ' the generating function may be written in

the form,

Z(J) = Z(0)ef(
@
@J

;�)e
1

2
JAJ = Z(0)

1X
n=0

1

n!

�
f(

@

@J
)

�n
e

1

2
JAJ ; (4)

which generates the diagrammatic expansion.

In this note we consider the model with a quartic probability distribution in which

the partition function is given by,

Z(m2; g) =

Z
1

�1

d'p
2�

e�
m2

2
'2
�

g

4!
'4

: (5)

The even order moments of this probability distribution can be obtained by successive

derivatives respect to m2,

< '2n >=
@n

@(m2)n
lnZ(m2; g): (6)

The partition function given by Eq.(5) has a contribution from the vacuum diagrams,

and its perturbative expansion may be written in the form [15],

Z(m2 = 1; g) =
1X
n=0

(�g)nzn; (7)
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where the coe�cients are given by

zn =
(4n� 1)!!

(4!)nn!
: (8)

Since the coe�cient zn increases as nn, the series that de�nes the partition function

is divergent. In this perturbative context, many authors claim that the point g = 0 is an

essential singularity of Z(m2 = 1; g), with a cut on the negative real axis. In other words,

the perturbative series may have zero radius of convergence. Nevertheless, resummation

techniques can be used to deal with this non-convergent series. It is important to stress

that in real models in �eld theory the same kind of problem appears when the perturbative

series is asymptotic but divergent for �nite values of the coupling constant. Actually,

't Hooft and Lautrup [16] showed that in the �'4 model the Borel transform of the

perturbative series has renormalons, which prevents Borel summability. In this case an

alternative method which takes into account the existence of renormalons was developed

by Khuri [7].

In the zero dimensional model, although for negative g the partition function is not

de�ned, an analytic continuation from positive g can be performed by considering the

contribution from the saddle points, as was remarked by Langer [17]. In this paper, we

adopt an easier way to obtain information from the region Re(g) < 0. Although the

partition function, when Re(g) < 0 is divergent, we are able to recover this divergence as

singularities of a function de�ned on the complex coupling constant plane. In other words,

we will obtain �rst an exact expression in terms of Bessel functions of the second kind for

the partition function in the domain Re(g) > 0, and after this step, we analytically extend

this function to the complex plane (i.e. also in the region where the original partition

function diverges, Re(g) < 0). We take this analytic continuation to the whole coupling

constant complex plane as our de�nition of the partition function.
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3 The analytic continuation of the partition func-

tion

We have two di�erent steps to accomplish: the �rst one is to �nd a representation in terms

of special functions of Eq.(5), and the second one is to perform the analytic extension in

the g-variable to the region Re(g) < 0. We accomplish our �rst step by a simple inspection

in Gradhstein and Ryzhik [18]. Integrals of the type in Eq.(5) can be expressed asZ
1

�1

dxe�2�x
2
��x4 =

1

2

r
2�

�
e
�
2

2�K 1

4

(
�2

2�
); (9)

for Re(�) > 0, which means that the partition function given by Eq. (5) may be exactly

expressed in terms of the Bessel function of the second kind K 1

4

(Macdonald's function)

in the form,

Z(m2; g) =

r
2

�

s
3m2

4g
e

3m4

4g K 1

4

(
3m4

4g
); (10)

in the domain Re(g) > 0. De�ning a rescaling of the coupling constant, � = 4g
3m4 , the

partition function becomes

Z(m2; �) =

r
2

�

1p
m2�

e
1

�K 1

4

(
1

�
); (11)

valid for Re(�) > 0. An inspection of Eq. (11) seems to indicate in the analytic structure

of Z(m2; �) the existence of an essential singularity at � = 0. Actually, as we will see

later on, this is only apparent, the only singularity present in the analytically continued

partition function is a branch cut for values of � lying along the negative real axis. We

will perform our second step, by analytically extending the partition function Z(m2; �)

to the region Re(�) < 0, i.e. to the whole complex �-plane.

This analytical continuation may be done by simply starting from the following rep-

resentation for the Bessel functions of the second kind [19],

K�(z) =

r
�

2z

e�z

�(� + 1
2
)

Z
1

0

ds e�ss��
1

2

h
1 +

s

2z

i�� 1

2

; (12)

valid for jarg(z)j < �, Re(�) > �1
2. Replacing the above equation in Eq.(11) we obtain

an analytic continuation for Z(m2; �) in the whole complex �-plane except for a cut along
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the negative real �-axis,

Z(m2; �) =
1

m�(34)

Z
1

0

ds e�ss�
1

4

�
1 +

s�

2

�
�

1

4

; (13)

for jarg(�)j < �.

We have thus as a starting point a formula for the partition function de�ned for

Re(�) > 0. It happens that this function has a representation de�ned as an analytic

function on the domain jarg �j < �. Hence, we have an analytic extension of the partition

function for the whole complex plane of the coupling constant �, except for jarg �j =
�. In other words, we have an exact expression for the partition function valid in the

whole coupling constant complex plane except for a branch cut on the real negative axis.

Actually, we may obtain in a closed form an expression for the partition function. From the

representation of Macdonald's function in terms of the conuent hypergeometric function,

K�(z) =
p
(�)(2z)�e�z	(� +

1

2
; 2� + 1; 2z); (14)

we obtain replacing the above representation in Eq. (11) the simple expression,

Z(m2; �) =
1

m
(
2

�
)
3

4	(
3

4
;
3

2
;
2

�
): (15)

We remark that the 	(a; c; z) is a many-valued function of z, and we shall consider in

the above equation its principal branch in the plane cut along the negative real axis. The

analytic continuation of K 1

4

( 1
�
) corresponds to the de�nition of Z(m2; �) on the whole

complex �-plane except for a branch cut for jarg �j = �.

The plots of the real and imaginary parts of the analytically continued partition func-

tion given by Eq. (13) are in (�g.1) and (�g.2). We see from these �gures that the real

part of the partition function is perfectly regular for any complex values of �. The branch

cut for � on the negative real axis appears only in the imaginary part of the partition

function. It does not appear in those graphics an essential singularity at � = 0, as claimed

by many authors. Indeed, using the expansion for the Bessel function of the second kind

for small �, we get from Eqs. (13), (12) and (11) a Taylor series for the partition function,

Z(m2; �)jm2=1 = 1� 3

32
�+

105

2048
�2� 3465

65536
�3+

675675

8388608
�4� 43648605

268435456
�5+O(�6) (16)
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valid for jarg(�)j < �, which clearly shows the absence of an essential singularity of the

partition function at � = 0.

It is interesting to compare our exact result in Eq.(15) or Eq.(13) with the partition

function obtained from perturbative methods as in Eqs.(7) and (8). Since, as argued in

[15] the series in Eq.(7) is asymptotic, we de�ne its Borel transform as

B(b) =
1X
n=0

zn

n!
(�b)n; (17)

and replacing zn from Eq.(8) in the above expression we can show that the Borel trans-

formed series B(b) is convergent, given by an hypergeometric function,

B(b) = F (
1

4
;
3

4
; 1;�2b

3
): (18)

Then, from the Watson-Nevanlinna-Sokal theorem [21], the divergent series in Eq.(7)

is Borel summable and, remembering that � = 4g
3 and using Eq. (18), its Borel sum is

given by

Zpert(m
2 = 1; �) =

4

3�

Z
1

0

db e�
4b
3�B(b) =

r
2

�

1p
�
e

1

�K 1

4

(
1

�
): (19)

The above representation for the partition function obtained using the Borel summation

technique is valid for Re(�) > 0, � belonging to a disc CR = f� : Re(��1) > 1
R
g, that

is, the Borel summed expression for the partition function is restricted to positive values

of the real part of the coupling constant. In this region the Borel summed expression

for the partition function coincides precisely with the exact partition function Eq. (11)

for Re(�) > 0. For Re(�) < 0 the Borel summed partition function is no longer valid.

The analytically continued exact expression given by Eq.(15) or by E.(13) should then be

used.

The even order moments '2n for all complex values of � except for � lying on the

real negative axis can be obtained exactly from Eq.(15) or from Eq.(13) (remembering

that � = 4g
3m4 ) by direct application of Eq.(6). We note, in connection to the idea of

perturbation around some kinds of non-Gaussian probability distributions (instantons)

in the paper by Zinn-Justin [5], that we can work out perturbation theory around the

quartic probability distribution Eq.(5) using its exact analytically extended expression

(15) or (13), not necessarily restricted to positive real � values. Then a possible extension
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of this work is to introduce a �'6 term in the partition function to discuss the tricritical

singularity in this oversimply�ed model [22].

4 Conclusions

In quantum �eld theory it is well known that the separation of the Hamiltonian into

the free and the interaction part leads to conceptual problems in many models, since

the perturbative expansion based on the free part is divergent. In these situations the

interaction part should not be used as a small perturbation, because at the origin of

the interaction parameter an essential singularity would be present. The main idea is to

include the interaction part in the new de�nition of a unperturbated Hamiltonian. It is

expected that if it is possible to implement such a program, it would be equivalent to the

resummation of the perturbative series taking into account non-perturbative e�ects. In

this paper we have used this idea to solve the zero dimensional �'4 model. Using the

principle of analytic continuation, we have obtained an exact expression for the partition

function of the model de�ned on the complex coupling constant plane, which presents no

essential singularity at the origin. We compare the Borel summed form Zpert(m2 = 1; �) of

the partition function and our exact expression and we have a perfect agreement between

the two functions in their common domain of validity.
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Figure 1: Plot of the real part of the partition function Z(m2; �) in the complex coupling

constant plane. We take m2 = 1.
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Figure 2: Plot of the imaginary part of the partition function Z(m2; �) in the complex

coupling constant plane. We take m2 = 1. Note the branch cut for Re(�) < 0.


