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A Family of Nonextensive Entropies
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Abstract

A generalized nonextensive two-parameter entropy is developed, along lines which unify
current nonextensive frameworks. It recovers, as particular cases, the Tsallis and symmetric
entropies, as well as the Boltzmann-Gibbs entropy. The properties of the new (q; q0)-entropy are
analysed.
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Systems presenting long range interactions and/or long duration memory have been shown
to be not well described by the Boltzmann-Gibbs statistics. Some examples may be found in
gravitational systems, L�evy ights, fractals, turbulence physics, and even economics (see [1]
and references therein). An attempt to deal with such systems was formulated by Tsallis [2].
He postulated a nonextensive entropy that generalizes the Boltzmann-Gibbs formalism through
an entropic index q. The usual statistical mechanics is recovered as a particular case in the
q ! 1 limit. Tsallis formalism has been applied to a variety of systems, such as L�evy anomalous
di�usion [3], self-gravitating systems [4], peculiar velocities of galaxies [5], turbulence in pure
electron plasma [6], solar neutrinos [7], linear response theory [8], perturbative and variational
methods [9], Green's functions [10], phonon-electron interactions [11], low dimensional dissipative
systems [12]. For an up-to-date bibliography, see [13]. Tsallis generalization is not unique.
As a matter of fact, a generalization had already been suggested by R�enyi [14] previously.
These generalized entropies (and also the Boltzmann-Gibbs entropy) were postulated and then
their properties investigated. It was recently proposed by Abe [15] a way to generate entropy
functionals. The procedure is rather simple. Consider the probabilities fpig associated with W
microstates and consider the function g(�) =

PW
i=1 p

�
i . Obviously g(1) = 1. It can be shown

[15] that the Boltzmann-Gibbs entropy is obtained by the action of the derivative operator on
g(�):

S1 = �k
dg(�)

d�

����
�=1

= �k
XW

i=1
pi ln pi ; (1)

where k is a positive constant. Tsallis entropy is generated by the same procedure, but using
the Jackson's q-derivative operator [16]

dqf(x)

dqx
=

f(qx)� f(x)

qx� x
� (2)

Applying it on g(�), yields

STq = �k
dqg(�)

dq�

����
�=1

= k
1�

PW
i=1 p

q
i

q � 1
; (3)

where q is the entropic index and the limit q ! 1 recovers the Boltzmann-Gibbs entropy in the
same way that the Jackson's derivative recovers the usual derivative.

Another particular case was analysed by Abe using this time the symmetric q-derivative

dSq f(x)

dSq x
=

f(qx)� f(q�1x)

(q � q�1)x
(4)

that is invariant under q $ q�1, a symmetry that plays a central role in the physical context of
quantum groups [17]. The entropy generated is, thus,

SSq = �k
dSq g(�)

dSq �

�����
�=1

= k

WX
i=1

pq
�1

i � pqi
q � q�1

� (5)
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In this Letter, we show that it is possible to use g(�) in order to obtain a family of nonex-
tensive entropies. We consider here the following derivative

dq;q0f(x)

dq;q0x
=

f(qx)� f(q0x)

(q � q0)x
, q; q0 2 R (6)

already proposed by Chakrabarti and Jagannathan [18], that is a generalization of the Jackson
(q0 = 1), symmetric (q0 = q�1) and McAnally (q ! q1��; q0 ! q��, where q and � are the
parameters in McAnally [19] formulation) derivatives. We notice that equation (6) presents
invariance under the exchange q $ q0. It follows naturally our proposal for a generalized (q; q0)-
entropy:

Sq;q0 = �k
dq;q0g(�)

dq;q0�

����
�=1

= k

WX
i=1

p
q0

i � p
q
i

q � q0
� (7)

The two-parameter (q; q0)-entropy may be expressed in terms of Tsallis entropy as

Sq;q0 =
(1� q0)STq0 � (1� q)STq

q � q0
� (8)

Next we discuss some properties of this (q; q0)-entropy.
i) Positivity. Sq;q0 � 0; 8q; q0. In the case of certainty (pi = 1; pj 6=i = 0), Sq;q0 = 0, for both

q > 0 and q0 > 0.
ii) Expansibility. If we add events with vanishing probabilities, the entropy remains invariant,

for both q > 0 and q0 > 0.
iii) Nonadditivity. If we consider a system composed by two independent sub-systems A and

B, with factorized probabilities fpi;Ag and fpi;Bg, it is possible to express the entropy of the
composed system in the following ways (hereafter we assume k = 1):

S
(A+B)
q;q0 = S

(A)
q;q0 + S

(B)
q;q0 + (1� q0)(S

(A)
q;q0S

(B)
q0;1 + S

(B)
q;q0S

(A)
q0;1) + (q0 � q)S

(A)
q;q0S

(B)
q;q0 ; (9)

and

S
(A+B)
q;q0

= S
(A)
q;q0

+ S
(B)
q;q0

+ (1� q)S
(A)
q;q0

S
(B)
q;1 + (1� q0)S

(B)
q;q0

S
(A)
q0;1 � (10)

Of course we have Sq;1 = STq . When we put q0 = 1, these expressions yield the Tsallis nonaddi-

tivity rule (see equation (2) of [21]), S
T (A+B)
q = S

T (A)
q + S

T (B)
q + (1� q)S

T (A)
q S

T (B)
q .

iv) Equiprobability. In the microcanonical ensemble (pi = 1=W; 8i) we obtain

Sq;q0 [1=W ] =
W 1�q �W 1�q0

(q0 � q)
� (11)

The (q; q0)-entropy is monotonically increasing with W , 8q; q0 except when both q > 1 and
q0 > 1, and consequently, in this case, it is not possible to have a physical meaning for Sq;q0 .

v) Power-law behavior. When considering the canonical ensemble, Curado and Tsallis [20]
introduced the generalized q-expectation value of the observable Ô,

hÔiq =
XW

i=1
pqi Ôi ; (12)
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and the canonical distribution is obtained with the constraint hĤiq =constant. In the work of
Abe [15], the canonical ensemble was obtained with the usual hĤi1 expectation value. Here we
introduce a generalized (q; q0)-expectation value of an observable Ô:

hÔiq;q0 �
XW

i=1
p
(q+q0�1)
i Ôi � (13)

With this de�nition, the (q; q0)-entropy may be rewritten as Sq;q0 = �


lnq;q0 pi

�
q;q0

, where the

(q; q0)-logarithm follows from the functional form of the entropy for the microcanonical ensemble
(equation (11)),

lnq;q0 x �
x1�q � x1�q

0

q0 � q
�

We �nd the following implicit canonical distribution

�
q0

q0 � q
pq

0�1
i

h
1� (q � q0)�"ip

q�1
i

i
�

q

q � q0
pq�1i

h
1� (q0 � q)�"ip

q0�1
i

i

+ �"ip
q�1
i pq

0�1
i � � = 0 (14)

where f"ig are the eigenvalues of the hamiltonian Ĥ and � and � are the Lagrange multipliers
associated with the constraints

P
i pi = 1 and hĤ iq;q0 = Uq;q0 = constant (Uq;q0 is the generalized

(q; q0)-internal energy).
vi) Concavity. Let us consider @2Sq;q0=@p

2
i (or, alternatively, equation (8)). Sq;q0 presents a

de�nite concavity if one of the parameters lies between 0 and 1 (say, 0 < q0 < 1). It is concave
for q > 1 and convex for q < 0. Sq;q0 is also convex when both q < 0 and q0 < 0. For the
remaining regions (q0 < 0; q > 1), (0 < q < 1; 0 < q0 < 1) and (q > 1; q0 > 1), there is a
competition of e�ects and Sq;q0 does not present, in general, a de�nite concavity. If we �x one
of the parameters equal to 1 (q0 = 1), we are reduced to Tsallis entropy, and Sq;1 is concave
(convex) for q > 0 (q < 0). Another particular case is when we �x one of the parameters equal
to zero. Now, Sq;0 is concave (convex) for q > 1 (q < 1). The two limiting cases S1;1 and S0;0
are concave and convex, respectively (the former is the usual Boltzmann-Gibbs entropy).

vii) H-theorem. The time evolution of the probability distribution is given by the master
equation

dpi
dt

=
WX
j=1

(Ajipj �Aijpi) ; (15)

where Aji is the probability of transition, per unit time, from the microscopic state j to the
microscopic state i. Tsallis entropy satisfy the H-theorem, that is dSTq =dt > 0 for q > 0,

dSTq =dt = 0 for q = 0, and dSTq =dt < 0 for q < 0. This result is obtained if one assumes [22] or
not [23] the detailed balance (Aij = Aji). If we assume that the detailed balance holds for Sq;q0 ,
we �nd

dSq;q0

dt
=

1

2

1

q � q0

X
i;j

Aij(pi � pj)[q
0(pq

0�1
j � pq

0�1
i )� q(pq�1j � pq�1i )] � (16)

We see that dSq;q0=dt > 0 for 0 < q0 < 1 and q > 1, dSq;q0=dt = 0 for q0 = 0 and q = 1, and
�nally dSq;q0=dt < 0 for 0 < q0 < 1 and q < 0. We �nd the same results if we do not assume the
detailed balance, according to the lines given in [23]. The detailed balance also shows us that
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dSq;q0=dt < 0 for q < 0 and q0 < 0. For the remaining regions, dSq;q0=dt does not have a de�nite
sign. When we consider the particular case q0 = 1, we are reduced to Tsallis entropy, already
mentioned above. The particular case that one of the parameters is equal to zero (say, q0 = 0),
the detailed balance, then, gives

dSq;0
dt

= �
1

2

X
i;j

Ai;j(pi � pj)(p
q�1
j � pq�1i ) ;

and we �nd dSq;0=dt > 0 for q > 1, dSq;0=dt = 0 for q = 1 and dSq;0=dt < 0 for q < 1.
We therefore have a self-consistent result, i.e., the regions of q and q0 where Sq;q0 is increasing
(decreasing) with time are coincident with those that it is concave (convex), and the regions
that the (q; q0)-entropy does not have a de�nite concavity, its time derivative does not have a
de�nite sign.

We have thus shown that the present (q; q0)-entropy exhibits the relevant properties for a
generalized entropy and that for particular values of the parameters it is possible to obtain the
usual Boltzmann-Gibbs entropy (q = q0 = 1) and also Tsallis (q0 = 1) and symmetric (q0 = q�1)
Abe entropies. The symmetry q $ q0 put the entropic indexes on equal footing. We may
conjecture, as a possible interpretation, that the indexes q and q0 express two di�erent sources
of nonextensive behavior of the system, e.g., two kinds of long range interactions, or a long
range interaction and a long duration memory. It is reasonable to expect that these features
lead to di�erent nonextensive behaviors that are somehow superimposed. The description of
these systems may request two di�erent parameters to deal properly with space nonextensivity
and time nonextensivity.
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