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Abstract

Compact orientable 3-manifolds have been thoroughly used in probing a possible non-
trivial topology of the space-like sections of spacetime and in the construction of mini-
and midi-superspaces in quantum cosmology. However, there is in the physics litera-
ture a widespread misunderstanding concerning a class of compact orientable euclidean
three-manifolds, namely the sixth class in Wolf's classification. This misunderstanding
is rectified by constructing a fundamental polyhedron and glueing data for a manifold
of this class using a method based on the action of discrete groups of isometries on the
euclidean space E3. The correctness of this construction is checked by computing its first
homology group.

Key-words: Topology; Cosmology; Local homogeneous universes.

� This work is an expanded version of a talk presented at the Workshop A Estrutura Topol�ogica do

Universo held at the Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN-Brasil, from

August 5th to August 9th of 1996.
y
e-mail: german@cat.cbpf.br



CBPF-NF-049/97 1

1 Introduction

Compact orientable 3-manifolds have been used in cosmology in mainly two different ways.
On the one hand, it has become usual to try to establish correlations between observational
data (CMBR, periodic distribution of cosmic objects, etc.) and the possible non-trivial
topology of the space-like sections of spacetime. On the other hand, these manifolds
have been used in the construction of mini- and midi-superspaces in models of quantum
cosmology (See [1] and references therein). Thus, classifications of these manifolds and
determination of their main properties are of primary importance in almost any study
involving the topological structure of the space-time.

There exists a diffeomorphism classification for euclidean 3-manifolds due to Wolf
[2]. Corresponding to the compact orientable case Wolf found only six classes denoted
by G1; : : : ;G6 (Theorem 3.5.5 in [2]). Two manifolds of one class, say G1 (a 3-torus), are
diffeomorphic but they may be non-isometric, for example one may be bigger than the
other. Wolf's classification is given in terms of free actions of discrete groups of isometries
on euclidean space E3 and is by now well understood.

However, there has been a misunderstanding in the physics literature, concerning the
fundamental polyhedron and glueing data of a specific euclidean 3-manifold, since the
pioneering paper by Ellis on topology and cosmology [3]. This 3-manifold is of class G6
and has been described in [3] (therein listed as the fourth manifold) as being constructed
by identifying opposite sides of a translation lattice with all pairs rotated by �. It has
generally been inferred that the �-rotation axes pass through the center of the lattice cells
[1, 4]. However, as will be shown in this paper, with these glueing data we do not obtain
a manifold, but an orbifold [5, 6].

In this note we construct a fundamental polyhedron and glueing data for a manifold
of class G6 using Wolf's results formulated in terms of isometry groups acting on the
euclidean space E3. This construction has already been used by Fagundes and Gausmann
in the context of Cosmic Crystallography [7]. We have chosen this method of construction
because when used in the five other euclidean cases it gives rise to the correct descriptions
which appear in [3, 4] and [1].

To make our paper as clear and self contained as possible, in the next section we
briey review some important results in geometry and topology needed to establish our
claims. In the third section we construct a fundamental polyhedron and glueing data for
a manifold of class G6 according to Wolf's prescription (Theorem 3.5.5 in [2]). Then we
show, using a theorem due to Poincar�e, that the space so built is indeed a manifold, and
we check that our construction gives rise to a manifold of class G6 by computing its first
homology group. The �nal section is devoted to some discussion and comments.

2 Mathematical preliminaries

We begin by recalling two classical theorems on riemannian geometry. The �rst one
characterizes the universal covering space of a constant curvature manifold and can be
stated as follows. If Mn is a complete riemannian manifold with constant curvature k
then its universal covering space fMn, with the covering metric, is isometric to [2, 8]
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� Euclidean space (En) if k = 0.

� Spherical space (Sn) if k = 1.

� Hyperbolic space (Hn) if k = �1.

The second theorem gives a procedure to construct a complete constant curvature
manifold1. Let fMn be euclidean, spherical or hyperbolic space, then perform the following
steps in order to obtain a manifold with constant curvature [2, 8]:

� Take a discrete subgroup � of isometries of fMn acting freely, i.e., such that the set
fp 2 fMn = gp = pg is empty for each g 2 �, except for the identity element.

� Define an equivalence relation in fMn by putting p � q iff there exists g 2 � such
that gp = q, and take the quocient Mn = fMn=�. This means that two points on
fMn are looked upon as the same if they are related by the action of �. This group �
turns out to be an embedding (a faithful representation) of the fundamental group

of Mn in the group of isometries of fMn.

� Define in the quocient space Mn the following distance function

d([p]; [q]) = min
g;h2�

fd(gp; hq)g:

Due to the discreteness of � this distance function is well defined, the line element
in the quocient Mn is the same as that in fMn and, as a consequence, so is the
curvature.

As a consequence of this second theorem the problem of constructing all complete
riemannian manifolds of constant curvature k becomes a problem in group theory, namely,
that of classifying all discrete subgroups of isometries acting freely on fMn. This problem
has been solved in the spherical case for all dimensions, and in the euclidean case for
dimensions two and three (see [2] for a detailed mathematical exposition). The hyperbolic
case remains unsolved even for dimension two [5, 6].

In order to give a useful description of the quocient manifoldMn it is usual to construct
a fundamental domain for it, and a very common and simple procedure is that of Dirichlet
[6, 10]. The Dirichlet domain of � with center p 2 fMn is the set

Dp = fq 2 fMn = d(p; q) � d(gp; q); 8g 2 �g:

The Dirichlet domain is a convex polyhedron and, if the quocient space Mn is compact,
it is totally finite, that is, for each k < n the number of faces of Dp of dimension k is
finite. However the shape of the polyhedron, in general, depends on the center p. This is
a manifestation of the global inhomogeneity of the quocient Mn, in contrast to the global
homogeneity of the universal covering fMn.

1This second theorem is valid in a more general setting (see [5]) of interest to cosmology, i.e., that of

locally homogeneous spaces [9].
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In the remainder of this section we shall consider only the 3-dimensional case although
our statements can be generalized to any arbitrary dimension [11]. When dealing with
3-dimensional polyhedra it is usual to rename the faces according to their dimension, so a
0-dimensional face is called a vertex, a 1-dimensional face is an edge, and a 2-dimensional
face is simply a face.

Two fundamental properties of Dp are [11, 12]

1) Glueing data. For each face F of Dp there exists another face F 0, and an isometry

gF of fM3 such that

� gF (F ) = F 0,

� gF moves the interior of Dp out of Dp,

� gF 0 = g�1F ,

� fgF 2 Isom(fM3) = F is a face of Dpg is a generating set for �.

2) Cycles of edges. Since every edge of Dp is shared by exactly two faces one can form
the following sequences of elements: Take an edge C1 and one of the faces that
contain C1, say F1, let F 0

1 = gF1(F1); take C2 = gF1(C1) and F2 the other face
of C2 different from F 0

1, let F
0
2 = gF2(F2); take C3 = gF2(C2) and so forth. It

turns out that after a finite number r of steps we return to C1 in such a way that
gFrgFr�1

: : : gF2gF1 = 1 (that is Cr+1 = C1) and so the sum of the dihedral angles
around the Ci's taken from F 0

i�1 to Fi is 2�.

The triplets (F; gF ; F 0) are called the glueing data, and the quocient manifold M3

is described as the polyhedron Dp with the faces F and F 0 identified (glued) under the
action of gF , i.e., a point q 2 F is identified with a point q0 2 F 0 iff gF q = q0. We call Dp

a fundamental polyhedron for M3.
There exists a reciprocal, known as the Poincar�e's Polyhedron Theorem [13], which

ensures that if a polyhedron P on fM3 has the above two properties then the group �
generated by the gF 's is discrete, acts freely on fM3, and so M3 = fM3=� is a complete
riemannian manifold with constant curvature. Relaxing a little the second property by
demanding the sum of the dihedral angles of any cycle of edges to be 2�=m for some
positive integer m, it turns out that the group � is discrete but does not act freely on
fM3 if m > 1, the quocient fM3=� is thus not a manifold but what Thurston has called an
orbifold [5, 6, 11, 12, 14].

3 A manifold of class G6

In this section we will present a fundamental polyhedron and glueing data that correctly
describe a manifold of class G6. We begin by showing that what in [3, 4] is claimed to
be a manifold of class G6 is not actually a manifold, but an euclidean orbifold. Referring
to Fig.1, which shows a unit cube centered at the origin and with identifications of faces
given as in [3, 4], it is easy to see that any cycle of edges one can construct is of order
two. Since each dihedral angle is �=2, the sum of the dihedral angles in each cycle is �,
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and so, according to Poincar�e's Polyhedron Theorem, these glueing data do not give rise
to a manifold, but to an orbifold.

We shall now discuss the problem of constructing a correct descriptions for manifolds
of class G6. According to Wolf [2] let X, Y and Z be three mutually orthogonal vectors in
euclidean space E3 with possibly different units of length, then any manifold of class G6
is obtained by performing the quocient of E3 by the group � generated by the following
three elements:

� � being translation X followed by rotation of � around the X axis,

� � being translation Y + Z followed by rotation of � around the Y axis,

�  being translation X + Y + Z followed by rotation of � around the Z axis.

A particularly simple fundamental polyhedron results when we take the origin of E3

as the center of our Dirichlet polyhedron, and the vectorX has a unit length, while Y and
Z have length 1=

p
2; the Dirichlet domain for this particular manifold of class G6 then

becomes a cube of volume 1, and should be known as the standard G6 in analogy with
what is known as the standard 3-torus (or G1 in Wolf's notation [2]). It should be noticed
that with a different choice of a center we generally obtain a different polyhedron for the
same manifold, while with a different choice for the length of the vectors we generally
obtain a different manifold of class G6 (and therefore a different polyhedron).

To write down simple explicit formulas for the generators we introduce an orthonormal
basis �rst suggested by Fagundes [15] (see Fig.2)

x = X ;

y = Y � Z ;

z = Y + Z :

In terms of these vectors we �nd

�(a) = RX(a+ x) ;

�(a) = RY (a+ z) ;

(a) = RZ(a+ x+ z) ;

where RX, RY and RZ are �-rotations around the X, Y and Z axes respectively, and
a 2 E3. It turns out convenient to replace the generator  by the new one � = ��1,
explicitly

�(a) = RY (a+ y) :

The actions of �, � and � on a point a = (x; y; z) are then

�(a) = (x+ 1;�y;�z) ;
�(a) = (�x; z + 1; y) ;

�(a) = (�x; z; y + 1) ;



CBPF-NF-049/97 5

so the generators �, � and � and their inverses bring the center (0; 0; 0) to new positions
that lie uniformly distributed on the unit sphere centered at the origin. Moreover, the
next neighbors lie uniformly distributed on a sphere of radius

p
2 centered at the origin,

so a Dirichlet domain of this group is the cube shown in Fig.2. The identifications of
faces are shown in a self consistent way in Fig.3.

Fig.4 shows how the edges are identified by the glueing data. It turns out that each
cycle of edges is of order 4, so the sum of dihedral angles for each cycle of edges is 2�,
thus we have ended up with a manifold.

Finally we shall compute the first homology group of the manifold so constructed in
order to check that it is indeed of class G6. First we compute its fundamental group using
the Seifert-van Kampen theorem (see Fig.4) to be

�1(M
3) = < a; b; c ; ac�1bc�1; a2b�2; acbc >;

and next the first homology group is computed abelianizing �1(M3) (see [16]). A simple
calculation shows that b�1 = ac2 and from this we immediately obtain

H1(M
3) = < a; c ; a4; c4; aca�1c�1 > �= Z4 � Z4:

This concludes our veri�cation (see Corollary 3.5.10 in [2]).

4 Discussion

In this paper we have clari�ed and recti�ed a widespread misunderstanding concerning
a speci�c class of euclidean compact orientable 3-manifolds. We have constructed a fun-
damental polyhedron and correct glueing data for one manifold of this class and we have
checked our construction by using Poincar�e's Polyhedron Theorem and computing its �rst
homology group.

The method of construction used here, that of Dirichlet domains, can also be used
to construct fundamental polyhedra and glueing data for any other euclidean compact
orientable 3-manifold. Indeed, it can be used to construct fundamental polyhedra and
glueing data for every locally homogeneous 3-manifold M3, all we need to know is the
universal covering manifold fM3 and the group of isometries � of fM3 used to obtain M3.
There exist exactly eight simply connected 3-manifolds that can be universal coverings
for compact locally homogeneous 3-manifolds, this is the content of a celebrated theorem
due to Thurston (see [5, 17]), and, with the exception of the hyperbolic case, for all these
cases we know all subgroups of isometries that yield compact manifolds. So this method
is of extreme generality.

Two other remarks are in order here. First, the Dirichlet polyhedron for a manifold
is in general not unique and depends on the center we have chosen. There is only one
situation in which the Dirichlet polyhedron is independent of the center, it is when the
manifold is globally homogeneous. As is known the vast majority of 3-manifolds that admit
a geometric structure (in the sense of Thurston, see [5, 17]) are not globally homogeneous,
so the form of the Dirichlet polyhedron for most compact locally homogeneous 3-manifolds
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is center dependent, and thus a judicious choice of it would be of central importance when
studying their geometrical and topological properties.

As our second and �nal remark, recall that compact euclidean 3-manifolds are clas-
sified by diffeomorphism classes and so in the G6 class, for instance, all 3-manifolds are
diffeomorphic but not necessarily isometric. This degeneracy is due to the existence of
different realizations of its fundamental group as discrete subgroups of Isom(E3), or said
in other words, to the possibility of choosing different lengths for the orthogonal vectors
X , Y and Z. This freedom of choice forms what is known as the parameter space of G6,
and it is clear that for each set of parameters we have a different manifold of class G6.
We have constructed one fundamental polyhedron with glueing data for one manifold of
class G6, but the path is given for the construction of many other examples.
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Figures

Fig.1 Fundamental polyhedron and glueing data for Ellis' orbifold. It is shown one cycle
of edges of order two. It is easy to see from the glueing data that every other cycle
of edges is of order two also.

Fig.2 Basis vectors and fundamental polyhedron for a manifold of class G6.
Fig.3 Glueing data for the fundamental polyhedron of Fig.2. The L-faces are identi�ed

by the generator �, the F -faces by the generator �, and the K-faces by �.

Fig.4 Identi�cation of edges by the glueing data of Fig.3.
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