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1 Introduction

It is well known nowadays that the problem of �nding the anomalies and the invariant
counterterms which arise in the renormalization of local �eld theories can be handled in
a purely algebraic way by means of the BRS technique1. This amounts to look at the
nontrivial solution of the integrated consistency condition

s
Z
!gD = 0 ; (1.1)

where s is the BRS operator and g and D denote respectively the ghost number and the
space-time dimension. Condition (1.1) when translated at the nonintegrated level yields
a system of equations usually called descent equations (see [1] and refs. therein)

s !
g
D + d !

g+1
D�1 = 0 ;

s !g+1
D�1 + d !g+2

D�2 = 0 ;
:::::

:::::

s !
g+D�1
1 + d !

g+D
0 = 0 ;

s !
g+D
0 = 0 ;

(1.2)

where d = dx� @� is the exterior space-time derivative and !
g+D�i
i (0 � i � D) are

local polynomials in the �elds of ghost number (g +D � i) and form degree i. The cases
g = 0; 1 correspond respectively to the invariant counterterms and to the anomalies. The
operators s, d obey the algebraic relations

s2 = d2 = s d+ d s = 0 : (1.3)

The problem of solving the descent equations (1.2) is a problem of cohomology of
s modulo d[2, 3], the corresponding cohomology classes being given by solutions of (1.2)
which are not of the type

!g+D�mm = s !̂g+D�m�1m + d !̂g+D�mm�1 ; 1 � m � D ;

!
g+D
0 = s !̂

g+D�1
0 ;

with !̂'s local polynomials. Notice also that at the nonintegrated level one loses the
property of making integration by parts. This implies that the �elds and their derivatives
have to be considered as independent variables.

Of course, the knowledge of the most general nontrivial solution of the descent equa-
tions (1.2) yields the integrated cohomology classes of the BRS operator. Indeed, once
the full system (1.2) has been solved, integration on space-time gives the general solution
of the consistency condition (1.1).

Recently, a new method of obtaining nontrivial solutions of the tower (1.2) has been
proposed[4] and successfully applied to a large number of �eld models such as Yang-Mills

1For a recent account on the so called Algebraic Renormalization see [1].
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theories[4, 5], gravity[6], topological �eld theories[7, 8, 9], string[10] and superstring[11]
theories as well as W3-algebras[12]. The method relies on the introduction of an operator
� which allows to decompose the exterior derivative as a BRS commutator,

d = � [s ; �] : (1.4)

It is easily proven in fact that repeated applications of the operator � on the cocycle !g+D0

which solves the last of the equations (1.2) will provide an explicit nontrivial solution for
the higher cocycles !g+D�ii .

One has to note that solving the last equation of the tower (1.2) is a problem of local
cohomology instead of a modulo-d one. The former can be systematically analysed by
using several methods as, for instance, the spectral sequences technique[13]. It is also
worth to mention that in the case of the Yang-Mills type gauge theories the solutions of
the descent equations (1.2) obtained via the decomposition (1.4) have been proven to be
equivalent to those provided by the so called Russian Formula[14, 15].

Another important geometrical aspect related to the existence of the operator � is the
possibility of encoding all the relevant informations concerning the BRS transformations
of the �elds and the solutions of the system (1.2) into a unique equation which takes the
form of a generalized zero curvature condition[16], i.e.

eF = ed eA � eA2 = 0 : (1.5)

The operator ~d and the generalized gauge connection eA in eq.(1.5) turn out to be respec-
tively the �-transform of the BRS operator s and of the ghost �eld c corresponding to the
Maurer-Cartan form of the underlying gauge algebra

ed = e�se�� ; ed2 = 0 ;eA = e�c :

As discussed in detail in refs.[16] the zero curvature formulation allows to obtain straight-
forwardly the cohomology classes of the operator ~d. The latters are deeply related to the
solutions of the descent equations (1.2).

The BRS algebraic procedure can be easily adapted to include the case of the renor-
malizable N=1 superspace supersymmetric gauge theories in four space-time dimensions,
for which a set of superspace descent equations have been established[17, 18, 19]. The
solution of these equations as much as in the nonsupersymmetric case yields directly
all the manifestly supersymmetric gauge anomalies and the BRS invariant counterterms.
One has to remark however that in the supersymmetric case both the derivation and the
construction of a solution of the superspace version of the descent equations are more
involved than the nonsupersymmetric case, due to the algebra of the spinorial covariant
derivatives D� and D _� and to the (anti)chirality constraints of some of the super�eds
characterizing the theory.

In order to have an idea of the di�erences between the superspace and the ordinary
case, let us briey consider the integrated superspace N=1 BRS consistency condition
corresponding to the supersymmetric chiral U(1) Yang-Mills axial anomaly[19]

s

Z
d4x d2� K0 = 0 ; (1.6)
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with K0 a local power series in the gauge vector super�eld with ghost number zero and
dimension two. It can be proven [18, 19] that condition (1.6) implies that the BRS
variation of the integrand, i.e sK0, is a total derivative in superspace

s K0 = D _�K
1 _�
; (1.7)

withK
1 _�
local power series with ghost number one2. Acting now on both sides of eq.(1.7)

with the nilpotent BRS operator s we get

D _� sK
1 _�

= 0 :

This equation admits a superspace solution (see Sect.5 and App.A for the details) which,
as in the standard nonsuperspace case (1.2), entails a set of new conditions which together
with the equation (1.7) gives the whole set of the superspace descent equations for the
U(1) axial anomaly[19], namely

s K0 = D _�K
1 _�

;

s K
1
_� =

�
2D�D _� + D _�D

�
�
K2

� ;

s K2 � = D� K3 ;

s K3 = 0 ;

(1.8)

with K2
� and K3 local power series of ghost number two and three.

In this work we shall extend the decomposition formula (1.4) to the case of the N=1
four dimensional supersymmetric Yang-Mills theory, yielding thus a simple way of solving
the superspace descent equations. This means that we will introduce two operators �� and
� _� which in analogy with the case of the operator � of eq.(1.4) allow to decompose the
supersymmetric covariant derivatives D� and D _� as BRS commutators, according to

[�� ; s] = D� ;
h
� _� ; s

i
= D _� ; (1.9)

with
D�D _� + D _�D� = 2i��� _� @� ; (1.10)

��� _� being the Pauli matrices.
Moreover as in the nonsupersymmetric case, the decomposition formulas (1.9) will

allow us to cast both the supersymmetricBRS transformations and the superspace descent
equations into a zero curvature formalism, providing thus a pure geometrical framework
in superspace.

The work is organized as follows. In Section 2 we introduce the general notations
and we discuss the supersymmetric decomposition (1.9). Section 3 is devoted to the
analysis of the algebraic relations entailed by the operators �� and � _�. In Section 4 we

2The absence of the term D
�
K

1

�
in eq.(1.7) is actually due to the chirality nature of the consistency

condition (1.6).
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present the zero cuvature formulation of the superspace BRS transformations and of the
descent equations corresponding to the invariant super Yang-Mills lagrangian. In Section
5 we discuss the descent equations for the superspace version of the U(1) axial anomaly.
Section 6 deals with the case of the supersymmetric chiral gauge anomaly appearing in
the quantum extension of the supersymmetric Slavnov-Taylor identity. In order to make
the paper self contained the �nal Appendices A, B and C collect a short summary of
the main results concerning the Yang-Mills superspace BRS cohomology as well as the
solution of certain equations relevant for the superspace version of the descent equations.

2 General Notations and Decomposition Formulas

In order to present the general algebraic set up let us begin by �xing the notations3. We
shall work in a four dimensional space-time with N=1 supersymmetry. The super�eld con-
tent which will be used throughout is the standard set of the super�elds of the pure N=1
super Yang-Mills theories, i.e. the vector super�eld � and the gauge superconnections '�
and ' _� . They are de�ned as

'� � e��D�e
� ; ' _� � e�D _�e

�� ; (2.11)

where D� and D _� are the usual supersymmetric derivatives:

fD�;D�g =
n
D _�;D _�

o
= 0 ;

D�D _� + D _�D� = 2i��� _� @� :
(2.12)

Introducing now the chiral and antichiral Faddeev-Popov ghosts c and c

D _� c = D� c = 0 ;

for the superspace nilpotent BRS transformations one has

se� = e�c � ce� ;

sc = �c2 ;
sc = �c2 ;
s'� = �D�c � fc; '�g ;
s' _� = �D _�c � fc; ' _�g :

(2.13)

and
fs;D�g =

n
s;D _�

o
= 0 :

Let us also give, for further use, the BRS transformations of the chiral and antichiral
super�eld strengths F� and F _�

F� � D
2
'� ; D _� F� = 0 ;

F _� � D2' _� ; D� F _� = 0 ;
sF� = �fc; F�g ; sF _� = �f�c; F _�g :

(2.14)

The quantum numbers, i.e. the dimensions, the ghost numbers and the R-weights of all
the �elds are assigned as follows

3The superspace conventions used here are those of ref. [20].
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R�weights;dim:andghostnumb:

s D� D _� � c c '� ' _� F� F _�

dim 0 1
2

1
2

0 0 0 1
2

1
2

3
2

3
2

Ng 1 0 0 0 1 1 0 0 0 0
R 0 1 �1 0 0 0 1 �1 �1 1

Table1

�

The �elds will be treated as commuting or anticommuting according to the fact that
their total degree, here chosen to be the sum of the ghost number and of the spinorial
indices, is even or odd. Otherwise stated all the �elds are Lie-algebra valued, the gauge
group G being assumed to be a semisimple Lie group with antihermitian generators T a.

The set of �elds (c; c; �; '�; ' _�) and their covariant derivatives will de�ne therefore
the basic local space for studying the superspace descent equations. Let us also observe
that due to the fact that D;D have dimension 1

2 , the number of covariant derivatives
turns out to be limited by power counting requirements. For instance, as we shall see
in the explicit examples considered in the next sections, the analysis of the superspace
consistency condition for both the U(1) axial anomaly and the gauge anomaly requires
the use of local formal power series in the variables (c; c; �; '�; ' _�) of dimension 2. We
recall here that the non polynomial character of certain N=1 superspace expressions is
due to the fact that the vector super�eld � is dimensionless. Finally, whenever the space
time derivatives @� appear they are meant to be replaced by the covariant derivatives
D;D, according to the supersymmetric algebra (2.12).

Let us introduce now the two operators �� and � _� of ghost number -1, de�ned by

��c = '� ; � _�c = ' _� ;

��c = � _�c = ��� = � _�� = 0 ;
�� '� = � _� '� = 0 :

(2.15)

It is almost immediate thus to check that they are of total degree zero and that they obey
the following algebraic relations

[��; s] = D� ;h
� _�; s

i
= D _� ;

[��; ��] =
h
��; � _�

i
=
h
� _�; � _�

i
= 0 ;

(2.16)

yielding then the supersymmetric decomposition (1.9) we are looking for. As we shall
see later on the operators �� and � _� will turn out to be very useful in order to solve
the superspace descent equations. Let us focus for the time being on the analysis of the
algebraic consequences stemming from the eqs.(2.16).

3 Algebraic Relations

To study the algebra entailed by the two operators �� and � _� let us �rst observe that
they do not commute with the supersymmetric covariant derivatives D, D. Instead as
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one can easily check by using the equations (2.15) we have, in complete analogy with the
nonsupersymmetric case [4],h

� _�;D�

i
=

h
��;D _�

i
= � G� _� ; (3.17)h

� _�;D _�

i
= [��;D�] = 0 (3.18)

where the new operator G� _� has negative ghost number -1 and acts on the �elds as

G� _�c = D _�'� ; G� _�c = D�' _� ;

G� _� � = G� _� '� = G� _� ' _� = 0 ;
(3.19)

and
fG� _�; sg =

n
D�;D _�

o
;h

��; G� _�

i
=
h
� _�; G� _�

i
=
n
G� _�; G� _�

o
= 0 :

(3.20)

Again, the operator G� _� does not anticommute with the covariant derivatives D, D. It
yields in fact

fG� _�;D�g = �1
2
���R _� ;

n
G� _�;D _�

o
= 1

2
� _� _�R� ; (3.21)

with R� and R _� of ghost number -1 and de�ned as

R�c = F� ; R _�c = F _� ;

R�c = 2D _�D�'
_� +D�D _�'

_� + (D�' _�)'
_� + ' _�

�
D�'

_�
�
;

R _�c = 2D�D _�'� +D _�D
�'� +

�
D _�'

�
�
'� + '�

�
D _�'�

�
;

R� � = R� '� = R� ' _� = R� F� = R� F _� = 0 ;

R _� � = R _� '� = R _� ' _� = R _� F� = R _� F _� = 0:

(3.22)

In addition, we have

[R�; s] = [R�;D�] = [R�;D _�] = [R�; G� _�] = 0 ;

[R�; ��] = [R�; � _�] = [R�; R�] = [R�; R _�] = 0 :
(3.23)

Let us �nally display the quantum numbers of the operators entering the algebraic rela-
tions (2.16), (3.17), (3.21)

R�weights; dim:andghostnumb:

�� �
_�

G� _� R� R
_�

dim 1
2

1
2 1 3

2
3
2

Ng �1 �1 �1 �1 �1
R 1 �1 0 �1 1

Table2
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4 The Zero Curvature Condition

Having characterized all the relevant operators entailed by the consistency of the super-
symmetric decomposition (2.16), let us pay attention to the geometrical aspects of the
algebraic relations so far obtained. To this purpose it is useful to introduce a set of global
parameters e�, e _� and ee� _�, naturally associated to the operators ��, � _� and G� _�, of ghost
number one and obeying the relations

e� e� = e _� e
_� = ee� _� ee� _� = 0 ;h

e�; e
_�
i
=
h
e�; ee� _�

i
=
hee� _�; e

_�
i
= 0 ;

(4.24)

R�weights; dim:andghostnumb:

e� e _� ~e� _�

dim �1
2
�1

2
�1

Ng 1 1 1
R 0 0 0

Table3

In addition, the global parameters (e�, e _�; ee� _�) will be required to obey the following
conditions

e� ee� _� = �1
2
��� e ee _�

 ;ee� _� e
_� = 1

2
� _�

_� ee�_ e _ ;
e� ee� _� e

_� = �1
4
���� _�

_� e ee _ e _ ;
�xing the symmetry properties of the product of two parameters with respect to their
spinorial indices. De�ning now the nilpotent dimensionless operators �, � and G as

� = �� e� ; � = � _� e
_� ; G = G�

_� ee _�
� ;

it is straightforward to verify that they have zero ghost number and R weight respectively
1, -1, 0, and that the subalgebra generated by ��, � _� and G� _�, i.e.

[��; ��] =
h
��; � _�

i
=
h
� _�; � _�

i
= 0 ;h

��; G� _�

i
=
h
� _�; G� _�

i
=
n
G� _�; G� _�

o
= 0 ;

can be simply rewritten as h
�; �

i
= [�;G] =

h
�;G

i
= 0 :

Analogously, introducing the nilpotent operators eG, D, D, R, R, @, e@
eG = G�

_� e� e
_� ; G = G�

_� ee _�
� ;

D = D� e� ; D = D _� e
_� ;

R = R� ee� _� e
_� ; R = R _� e

� ee _�
� ;

e@ =
n
D�;D _�

o
e� e

_� ; @ =
n
D�;D _�

o ee _�
� ;

(4.25)
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it is immediate to check that all the algebraic relations and �eld transformations of
eqs.(2.15)-eqs.(3.23) may be cast into the following free index notation

[�; s] = D ;
h
�; s

i
= D ;

n eG; so = e@ ; [G; s] = @ ;

fs;Dg = 0 ;
n
s;D

o
= 0 ;

h
s; e@i = 0 ; fs; @g = 0 ;

h
D; e@i = 0 ;

h
D; e@i = 0 ; fD; @g = 0 ;

n
D; @

o
= 0 ;

[D; �] = 0 ;
h
D; �

i
= 0 ;

h
D; �

i
= eG ;

h
D; �

i
= eG ;

h
@; e@i = 0 ;

h
G; eGi = 0 ;

h
�; eGi = 0 ;

h
�; eGi = 0 ;

[G; @] = 0 ;
h eG; e@i = 0 ;

h
G; e@i = 0 ;

n eG; @o = 0 ;

(4.26)

n eG;Do = 0 ;
n eG;Do = 0 ; 2 [D;G] = R ; 2

h
G;D

i
= R ;

h
�; e@i = 0 ;

h
�; e@i = 0 ; 2 [�; @] = R ; 2

h
@; �

i
= R ;

[�;R] = 0 ;
h
�;R

i
= 0 ;

h
�;R

i
= 0 ;

h
�;R

i
= 0 ;

h
R; e@i = 0 ;

h
R; e@i = 0 ; fR; @g = 0 ;

n
R; @

o
= 0 ;

fD;Rg = 0 ;
n
D;R

o
= 0 ;

n
D;R

o
= 0 ;

n
D;R

o
= 0 ;

n eG;Ro = 0 ;
n eG;Ro = 0 ; [G;R] = 0 ;

h
G;R

i
= 0 ;

fs;Rg = 0 ;
n
s;R

o
= 0 ;

n
R;R

o
= 0 ;

Let us proceed now by showing that, as announced in the introduction, the supersym-
metric BRS transformations (2.13), (2.14) can be obtained by means of a generalized zero
curvature condition. To this aim let us introduce the operator �

� = � + � � G ; (4.27)

from which one easily obtains the following decomposition

[s; �] = �D � D � @ :

De�ning now the �-transform of the BRS operator s as

ed = e� s e�� ; (4.28)
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one gets

ed = s + D + D + @ � eG +
1

2
R �

1

2
R ; (4.29)

ed ed = 0 ;

so that, calling eA and e
A the �-transform of the chiral and antichiral ghosts (c; c)

eA = e� c = c + ' + D ' ; ' = '�e� ; (4.30)

e
A = e� c = c + ' + D ' ; ' = ' _�e

_� ; (4.31)

it follows that the BRS transformations of (c; c) imply the zero curvature equations

e� s e�� e� c = �e� c2 =) ed eA + eA2 = 0 ; (4.32)

and

e� s e�� e� c = �e� c2 =) ed eA + e
A

2
= 0 : (4.33)

Equations (4.32) and (4.33) are easily checked to reproduce all the BRS transformations
(2.13), (2.14) as well as the whole set of the equations (3.19)-(3.22). One sees thus that,
in complete analogy with the nonsupersymmetric case [16], the zero curvature equations
(4.32) and (4.33) deeply rely on the existence of the operators �� and � _�. Let us underline
here that the nilpotent operator ed in eq.(4.29) will play a rather important role in the
discussion of the superspace descent equations. For instance, as we shall see explicitly
in the example given in the next subsection, it turns out that the superspace descent
equations corresponding to the BRS invariant counterterms can be remarkably obtained
from the single equation ed e! = 0 ; (4.34)

where e! is an appropriate cocycle of dimension zero and ghost number three, whose
components are the superspace �eld polynomials of the Taylor expansion of e! in the
global parameters (e�, e _�, ee� _�). Equation (4.34) can also be applied to characterize the
descent equations of the U(1) anomaly. In Sect.6 we shall see that a slight modi�cation of
the eq.(4.34) will allow to treat the case of the Yang-Mills gauge anomaly as well. In all
these cases the components of e! will not exceed dimension two, this dimension being taken
as the upper limit of our superspace analysis of the descent equations. In other words
in what follows we shall limit ourselves to the study of the solutions of the superspace
descent equations in the space of local functionals with dimension less or equal to two. In
particular, according to the Table 1, this implies that the maximum number of covariant
derivatives D;D present in each component of e! is four.

Let us conclude this section with the following important remark. Being interested
in the descent equations involving superspace functionals of dimension less or equal to
two, we should have checked the closure of the algebra (4.26) built up by the opera-
tors (s; �; �;G; eG;D;D;R;R; @; e@) on all the �elds and their covariant derivatives up to
reaching dimension two. It is not di�cult to convince oneself that actually there is a
breakdown of the closure of this algebra in the highest level of dimension two. However,
as it usually happens in supersymmetry, the breaking terms turn out to be nothing but
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the equations of motion corresponding to the pure N=1 susy Yang-Mills action, implying
thus an on-shell closure of the algebra. Evaluating in fact the commutator between the
operators � and s on the super�eld strength F one gets

[� ; s] F = � [' ; F ] : (4.35)

The right hand side of the equation (4.35) can be rewritten as

[� ; s] F = D F � ( D F + [' ; F ] ) ;

so that, recalling that

D F + [' ; F ] = �
1

2
e ee _e _ (D� F� + f'� ; F�g) = 0 ; (4.36)

are precisely the equations of motion of the pure N=1 susy Yang-Mills action, one obtains

[� ; s] F = D F � eq: of motion :

It is worth to emphasize here that the on-shell closure of the algebra does not actually
represent a real obstruction in order to solve the superspace consistency conditions. In
fact one can observe from the eq.(4.36) and from the Table 1 that the Yang-Mills equations
of motion are of dimension two. Therefore they could eventually contribute only to the
highest level of the descent equations. Rather, the aforementioned on-shell closure of
the algebra (4.26) relies on the fact that our analysis has been carried out without the
introduction of the BRS external �elds (the so-called Batalin-Vilkoviski anti�elds) which,
as it is well known, allow to properly take care of the equations of motion, reestablishing
thus the desired o�-shellnes closure. However, as shown by [17, 18, 20], these external
�elds do not contribute to the superspace BRS cohomology in the cases considered here of
the U(1) chiral anomaly, of the gauge anomaly as well as of the invariant action. This is
the reason why we have discarded them. In the App.C we will show how the introduction
of an appropriate external �eld takes care in a simple way of the Yang-Mills equations of
motion, closing thus the algebra o�-shell.

4.1 Nonchiral Descent Equations for the Invariant Action

In order to apply the supersymmetric decomposition (2.16) to the analysis of the su-
perspace descent equations, let us begin by considering the BRS consistency condition
corresponding to the nonchiral Yang-Mills invariant action, i.e.

s
Z
d4x d2� d2� L0 = 0 =) s L0 = D� L1

� + D _� L
1 _� ; (4.37)

where L0 is a local power series of dimension two and ghost number zero. According to
what mentioned in the previous section, the full set of the superspace descent equations
characterizing L0 can be obtained directly from the generalized equation

ed e! = 0 ; (4.38)
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with e! a generalized cocycle of ghost number three and dimension zero, whose Taylor
expansion in the global parameters (e�; ee� _�; e _�) reads

e! = !3 + !2 � e� + !2
_� e

_� + e!2 �
_� ee _�

� + e!1 �
_� e� e

_�

+ !1 � ee� _� e
_� + !1

_� e
� ee _�

� + !0 e� ee� _� e
_� :

(4.39)

The coe�cients (!3; !2 �; !2
_�; e!2 �

_� ; e!1 �
_� ; !

1 �; !1
_�; !

0) are local power series in the super-
�elds with the following quantum numbers

R�weights; dim:andghostnumb:

!3 !2 � !2
_� e!2 �

_� e!1 �
_� !1 � !1

_� !0

dim 0 1
2

1
2 1 1 3

2
3
2 2

Ng 3 2 2 2 1 1 1 0
Table4

In particular one observes that the coe�cient !0 in the expression (4.39) has the
same dimension of the invariant action we are looking for, justifying thus the choice of
the quantum numbers of e! in eq.(4.38).

The generalized condition (4.38) is easily worked out and yields the following set of
equations

s !0 = �1
2D

�!1
� + 1

2D _�!
1 _� + 1

4R _�!
2 _� + 1

4R
�!2

�

�1
4

n
D�;D _�

o e!1 _�
� � 1

4G
�
_� e!2 _�

� ;

s !1
_� = �1

2

n
D�;D _�

o
!2

� � 1
2
D� e!2

� _� + 1
2R _� !

3 ;

s e!1 �
_� = �D� !2

_� �D _� !
2 � + G�

_� !
3 ;

s !1 � = 1
2

n
D�;D _�

o
!2 _� + 1

2 D _� e!2 � _� � 1
2R

� !3 ;

s !2
_� = �D _� !

3 ;

s e!2 �
_� =

n
D�;D _�

o
!3 ;

s !2 � = �D� !3 ;

s !3 = 0 :

(4.40)

These equations do not yet represent the �nal version of the superspace descent equations,
due to the presence of the operators (G� _�; R�; R _�) in their right hand sides. However we
shall prove that these undesired terms can be rewritten as pure BRS cocycles or as total
superspace derivatives, meaning that they can be eliminated by means of a rede�nition
of the ! 's cocycles entering the equations (4.40). Let us �rst observe that a particular
solution of the tower (4.40) can be fully expressed in terms of the BRS invariant cocycle
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!3. In fact owing to the zero curvature equations (4.28), (4.32) and (4.33) it is apparent
that the system (4.40) is solved by

e! = e� !3 ; (4.41)

which when written in components yields the following expressions

!2 � = �� !3 ;

e!2 �
_� = G�

_� !
3 ;

!2
_� = � _� !

3 ;

!1 � = 1
2 G

�
_� �

_�
!3 ;

e!1 �
_� = �� � _� !

3 ;

!1
_� = �1

2
G�

_� �� !
3 ;

!0 = 1
4
�� G� _� �

_�
!3 :

(4.42)

In particular, from the results on the superspace BRS cohomology [18, 19, 21](see the
App.B), it turns out that the most general form for !3 can be identi�ed with the invariant
ghost monomial

Tr

 
c3

3

!
; (4.43)

which, of course, is determined modulo a trivial exact BRS cocycle. Recalling then
(App.B) that the di�erence (Tr c3 � Tr c3 ) is cohomologically trivial, i.e.

Tr c3 � Tr c3 = s (:::) ;

we can choose for !3 the following symmetric expression4

!3 = Tr

 
c3

3

!
+ Tr

 
c3

3

!
: (4.44)

On the other hand it is easily established that all the termsR� !3, R _� !
3, R� !2

�, R _� !
2 _�

in the right hand side of eqs.(4.40) are trivial BRS cocycles. Considering for instance the
�rst term, we have from the eqs.(3.23)

s R� !3 = R� s !3 = 0 ; (4.45)

which implies that R� !3 belongs to the cohomology of s in the sector of ghost number
two and dimension one half. Therefore, being the BRS cohomology empty in this sector,
it follows that

R� !3 = s �1 � ; (4.46)

4One should observe that due to the anti-hermiticity property of the group generators T a the cocycle
(Tr c3 + Tr c

3) is real.
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as well as
R

_�
!3 = s �

1 _�
: (4.47)

In fact, from

R� Tr

 
c3

3

!
= s Tr (cR�c) = s Tr (cF �) ;

R
_�
Tr

 
c3

3

!
= s Tr

�
cR

_�
c
�
;

and

R� Tr

 
c3

3

!
= s Tr (cR�c) ;

R
_�
Tr

 
c3

3

!
= s Tr

�
cR

_�
c
�
= s Tr

�
cF

_�
�
;

we have that �1 � and �
1 _�

can be identi�ed, modulo trivial terms, with

�1 � = Tr (cF �) + Tr (cR�c) ; �
1 _�

= Tr
�
cF

_�
�
+ Tr

�
cR

_�
c
�
; (4.48)

where R
_�
c, R�c are given in eqs.(3.22).

In the same way we have

R� !2
� = R� �� !

3 = �� R
� !3 = �� s �

1 �

= s
�
�� �1 �

�
+ D� �1 � ; (4.49)

showing that R� !2
� is a trivial BRS cocycle plus a total superspace derivative. The same

conclusions hold for R _� !3 and R _� !2 _� and can be extended by similar arguments to
include the G-terms G�

_� !
3 and G�

_� e!2 _�
� .

The �nal result is that the equations (4.40) can be rewritten without the explicit
presence of the operators R and G, yielding thus the �nal version of the superspace
descent equations for the invariant action, i.e.

s
�
!0 + 1

4� _� �
1 _�

+ 1
4�

� �1
�

�
= �1

2 D
�
�
!1

� + 1
2�

1
�

�
+1

2 D _�

�
!1 _� � 1

2�
1 _�
�
;

s
�
!1

_� � 1
2�

1
_�

�
= �1

2 D _�D
� !2

� � D�D _� !
2
� �

1
2 D

2 !2
_� ;

s
�
!1 � + 1

2
�1 �

�
= 1

2
D�D _� !

2 _� + D _�D
� !2 _� + 1

2
D

2
!2 � ;

s !2
_� = �D _� !

3 ;

s !2 � = �D� !3 ;

s !3 = 0 :

(4.50)
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In particular the �rst equation of the above system explicitly shows that the invariant
action L0 can be identi�ed with

L0 = !0 +
1

4
� _� �

1 _�
+
1

4
�� �1

� : (4.51)

The above expression has to be understood modulo an exact BRS cocycle or a total
superspace derivative. Its nontriviality relies on the nontriviality of the ghost cocycle
(4.44), as one can show by using a well known standard cohomological argument[14, 15].
Recalling then the expressions (4.42), (4.48), for L0 we get

L0 =
1

4
Tr ('� F�) +

1

4
Tr

�
' _� F

_�
�
;

which when integrated on the full superspace d4x d2� d2� yields the familiar N=1 super-
symmetric invariant Yang-Mills lagrangian5:

SYM =
Z
d4x d2� d2� L0 =

1

4

Z
d4x d2� Tr F �F� +

1

4

Z
d4x d2� Tr F _�F

_�
:

5 Descent Equations for the U(1) Anomaly

As already remarked in the Introduction the BRS consistency condition for the chiral
U(1) axial anomaly reads[19, 20]

s
Z
d4x d2� K0 = 0 =) s K0 = D _� K

1 _�
; (5.52)

where K0 and K
1 _�

have dimensions two and three half and ghost numbers zero and one
respectively. K0 has thus the same quantum numbers of the invariant action considered
in the previous section, the only di�erence lying in the fact that the superspace measure,
i.e. d4x d2�, is now chiral instead of the vector one d4x d2� d2�. Therefore the descent
equations forK0 are obtained by performing the chiral limit of the vector equations (4.40).
Acting indeed with the BRS operator on the second equation of the condition (5.52), we
obtain

D _� s K
1 _�

= 0 : (5.53)

Using then the results given in the App.A, it follows that the general solution of the
equation (5.53) is given by

s K
1 _�

=
�
D

_�
D� + 2 D� D

_�
�
K2

� ; (5.54)

D
2
K2

� = 0 ;

where K2
� is of dimension one half and ghost number two. Again, acting with the BRS

operator on the eq.(5.54) one gets�
D

_�
D� + 2 D� D

_�
�
s K2

� = 0 ; (5.55)

5We recall here the useful superspace identity
R
d
4
x d

2
� d

2
� =

R
d
4
x d

2
� D

2

.
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which according to the App.A implies

s K2
� = D� K3 ;

D
2
D� K3 = 0 ; D2 D

_�
K3 = 0 ;

with K3 of dimension zero and ghost number three. Finally, from

D� s K3 = 0 ;

it follows that
s K3 = 0 :

Summarizing, the superspace descent equations for the U(1) chiral axial anomaly are

s K0 = D _�K
1 _�

;

s K
1
_� =

�
2D�D _� + D _�D

�
�
K2

� ;

s K2 � = D� K3 ;

s K3 = 0 ;

(5.56)

with the constraints
D

2
K2

� = 0 ;

D
2
D� K3 = D2 D

_�
K3 = 0 :

(5.57)

Recalling then the result of the previous section, for K3 we have

K3 =

 
Tr

c3

3
+ Tr

c3

3

!
+ s �2 ; (5.58)

for some local power series �2. It is interesting to observe that in this case the constraints
(5.57) �x completely the trivial part of K3, giving for instance

s �2 = 0 :

Acting with the operator �� on both sides of the last of the eqs.(5.56) and making use of
the decomposition (2.16), for K2

� one gets

K2
� = ��� K

3 + s �1
� :

Once more, it is not di�cult to prove that the imposition of the constraints (5.57)
yields a unique expression for �1

�, i.e.

�1
� = Tr (c '�) ;

so that for K2
� we get

K2
� = Tr (c D� c) :
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One sees thus that in the chiral case, due to the constraints (5.57), the trivial BRS
contributions are uniquely �xed at the lowest levels of the descent equations. Repeating

now the same procedure and making use of the relations (3.17) for K
1 _�

one obtains

K
1 _�

= G� _� K2
� � �

1 _�
+ D�D

_�
Tr (c '�) + Tr

�
c F

_�
�

+ s �0 _� ; (5.59)

where the cocycle �
1 _�

is the same as in eq.(4.45), i.e.

�
1 _�

= Tr
�
c R

_�
c
�
+ Tr

�
c F

_�
�
:

It follows thus that
K

1 _�
= � 2 Tr

�
D� c D

_�
'�
�
+ s �0 _� : (5.60)

Finally, acting with the operator � _� on both sides of the equation

s K
1
_� =

�
2D�D _� + D _�D

�
�
K2

� ;

for the last level K0 we �nd

K0 = � � _� K
1 _�

+ Tr
�
2'� F� + D _� '

� D
_�
'�
�
;

reproducing the well known expression for the U(1) supersymmetric chiral anomaly

K0 = Tr
�
2'� F� � D _� '

� D
_�
'�
�
� D _� �0 _� :

Let us conclude by remarking that the expressions of the cocycles K3, K2
�, K

1 _�
and K0

found here are completely equivalent to those of [19], i.e. the di�erence is an exact BRS
cocycle or a total superspace derivative.

5.1 The Supersymmetric Gauge Anomaly

As the last example of our superspace analysis let us consider the case of the supersym-
metric gauge anomaly. As usual let us �rst focus on the derivation of the corresponding
descent equations. The latters, as mentioned in Sect.4 , can be obtained by adding to
the right hand side of the generalized equation (4.38) an appropriate extra term. The
presence of this term actually stems from the BRS triviality[18] of the pure ghost cocycles
(Tr c2n+1 � Tr c2n+1), n � 1,

s 
2n = Tr
c2n+1

2n + 1
� Tr

c2n+1

2n+ 1
; (5.61)


 2n being a local dimensionless functional of (�; c; c) with ghost number 2n. Acting in
fact with the operator e� on both sides of eq.(5.61) and recalling the de�nitions (4.30) and
(4.31) we get the desired modi�ed version of the generalized superspace equation (4.38)
we are looking for,

ed e
 = Tr
eA2n+1

2n+ 1
� Tr

e
A

2n+1

2n + 1
; (5.62)

e
 = e� 
2n :
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The descent equations for the gauge anomaly follows then from eq.(5.62) when n = 2,
i.e. ed e
 =

1

5
Tr

� eA5 � e
A

5
�
;

e
 = e� 
4 : (5.63)

To see that the above equation characterizes indeed the gauge anomaly let us write it in
components. Expanding e
 in the global parameters (e�; e _�; ee _�

�)

e
 = 
4 + 
3 � e� + 

3
_� e

_� + e
3 �
_� ee _�

� + e
2 �
_� e� e

_�

+ 
2 � ee� _� e
_� + 


2
_� e

� ee _�
� + 
1 e� ee� _� e

_� ;

(5.64)

and eliminating the G and R terms as done in Subsect. 4.1 we get the known descent
equations for the superspace gauge anomaly[18, 21]

s 
1 = D� 
2
� + D _� 


2 _� ;

s 
2
� = �D

2

3
� +

�
2D _�D� + D�D _�

�



3 _�

+ 2 Tr
��
D�D _�c

� �
cD

_�
c + D

_�
c c
��

;

s 

2 _�

= D2

3 _�
�
�
2D�D _� + D _�D

�
�

3
�

� 2 Tr
��
D

_�
D�c

�
(cD�c + D�c c)

�
;

s 
3
� = D� 
4 + Tr (c3D�c) ;

s 

3 _�

= �D
_�

4 + Tr

�
c3D

_�
c
�
;

s 
4 = 1
5Tr (c

5 � c5) :

(5.65)

One sees in particular that integrating the �rst equation of (5.65) on superspace, the
cocycle 
1 obeys exactly the BRS consistency condition corresponding to the possible
gauge breakings

s
Z
d4x d2� d2� 
1 = 0 ;

identifying therefore 
1 with the supersymmetric Yang-Mills anomaly.
In order to �nd a solution of the descent equations (5.65) we use the same climbing
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procedure of the previous examples obtaining the following nontrivial expressions


3
� = � �� 
4 � Tr ('� c3) ;



3 _�

= � _� 
4 � Tr (' _� c
3) ;


2
� = G� _� �

_�

4 + D _� �

_�
�� 
4

� Tr
�
' _�

�
D�'

_�
�
c2 � ' _� c

�
D�'

_�
�
c + ' _� c

2 D�'
_�
�

+2 Tr
�
(D�' _�)

�
cD

_�
c + D

_�
c c
��

;



2 _�

= G� _� �� 
4 + D� �
_�
�� 
4

+ Tr
�
'�

�
D

_�
'�
�
c2 � '� c

�
D

_�
'�
�
c + '� c2 D

_�
'�
�

�2 Tr
��
D

_�
'�
�
(cD�c + D�c c)

�
;

(5.66)

and for the gauge anomaly


1 = 2 �� G� _� �
_�

4

+2 Tr
�
F � c '� � F � '� c +

�
D _� '

�
� �

D
_�
'�
�
c
�

�2 Tr
�
F _� c '

_� � F _� '
_� c + (Da ' _�)

�
D� '

_�
�
c
�
:

(5.67)

One should observe that the explicit �nal expression for the gauge anomaly depends
on the knwoledge of the cocycle 
4 solution of the last of the descent equations (5.65).
This point is particularly important and deserves some further clarifying remarks.

5.2 Nonpolynomial Character of The Gauge Anomaly

It is known that due to a theorem by Ferrara, Girardello, Piguet and Stora [22], the su-
perspace gauge anomaly cannot be expressed as a polynomial in the variables ('�; �� �
e'D� e�') and their covariant derivatives. In fact all the known superspace closed ex-
pressions of the gauge anomaly so far obtained by means of homotopic transgression
procedures[24, 25, 26] show up an highly nonpolynomial character in the gauge super-
connetion. On the other hand in our approach the simple knowledge of the cocycle 
4

would produce a closed expression for the supersymmetric gauge anomaly without any
homotopic integral. Of course this would imply a deeper understanding of this anomaly.
It is not di�cult however to convince oneself that solving the equation

s 
4 = 1
5Tr (c

5 � c5) (5.68)
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is not an easy task. This is actually due to the BRS transformation of the vector super�eld
�

s e� = e� c � c e� :

which when written in terms of � takes the highly complex form[20]

s � =
1

2
L� (c+ c) +

1

2
L�

�
coth

�
L�
2

��
(c� c) ; (5.69)

where
L� � = [�; � ] ;

and

coth
�
L�
2

�
=

e
L�

2 + e�
L�

2

e
L�

2 � e�
L�

2

:

The formula (5.69) can be expanded in powers of �, allowing to solve the equation (5.68)
order by order in the vector super�eld �. For instance, in the �rst approximation which
corresponds to the abelian limit of retaining only the linear terms of the BRS transfor-
mations, i.e.

s ! sab

with

sab � = c � c ;

sab c = sab c = 0 ;

one easily checks that

Tr
�
c5 � c5

�
= sab Tr

�
�
�
c4 + c3 c + c2 c2 + c c3 + c4

��
; (5.70)

which shows indeed the BRS triviality[1] of Tr (c5 � c5).
Up to our knowledge a closed exact form for 
4 has not yet been established. In other

words, due to the theorem of Ferrara, Girardello, Piguet and Stora[22], the nonpolynomi-
ality of the supersymmetric gauge anomaly directly relies on the nonpolynomial nature
of the cocycle 
4. Any progress in this direction will be reported as soon as possible.

Let us conclude this section by giving the explicit expression of the gauge anomaly
(5.67) up to the second order in the vector �eld �, i.e.


1 = �2 Tr
�
D�� D

2
D�� c + D

2
D�� D�� c �

�
D _�D

��
� �

D
_�
D��

�
c
�

+ 2 Tr
�
D _�� D2D

_�
� c + D2D _�� D

_�
� c �

�
DaD _��

� �
D�D

_�
�
�
c
�
;

(5.71)

which is easily recognized to be equivalent to that of ref.[18]. One should also observe
that the above expression do not receive contributions from the term 
4 since they are at

least of the order three in �, as it can be checked by applying the combination �� G� _� �
_�

on the cocycle of the eq.(5.70).
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6 Conclusion

The supersymmetric version of the descent equations for the four dimensional N=1 Super-
Yang-Mills gauge theories can be analysed by means of the introduction of two operators

�� and �
_�
which decompose the supersymmetric derivatives D� and D

_�
as BRS commu-

tators. These operators provide an algebraic setup for a systematic derivation of the
superspace descent equations. In addition they allow to cast both the supersymmetric
BRS transformations and the descent equations into a very suggestive zero curvature
formalism in superspace.
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A Appendix

We list here the superspace algebraic solutions [18, 19, 20, 27] of some equations needed
for the analysis of the supersymmetric descent equations. All these solutions are built up
by super�elds. They have always to be understood modulo terms which automatically
solve the corresponding equations but cannot be written in the same algebraic form as
the solutions.The existence of such particular terms strongly depends on the super�eld
content of the particular model under consideration.

The �rst result states that the solution of the superspace equation

D
2
Q = 0 ;

can be generically written as
Q = D _� M

_� ;

for some super�eldM _� .
The second important result concerns the solution of the following equation�

2D _�D� + D�D _�

�
Q

_�
= D

2
Q� :

For the super�elds Q
_�
and Q� we have now

Q
_�

= D
_�
M ;

Q� = �D� M ;

with M an arbitrary super�eld. Let us observe that in this case the term Tr (cD�c),
due to the fact that the ghost c is a chiral super�eld, is automatically annihilated by the

operator D
2
. Therefore it must be included in the expression given for Q� although it

cannot be written as a total superspace derivative.
Considering now the equation

D� Q� = D _� Q
_�
;

we have
Q� = �D

2
P� +

�
2D _�D� + D�D _�

�
P

_�
+ D� N(��) ;

Q
_�

= �D2 P
_�
+
�
2D�D

_�
+ D

_�
D�
�
P� + D _�N

( _� _�)
;

(A.72)

with P� and N(��) appropriate super�elds. Of course the existence of the symmetric
super�eld N(��) depends on the dimension and on the ghost number of Q�. For instance
in the case of the vector descent equations (4.50) in which Q� corresponds to s(!1

�+
1
2
�1
�),

it is not di�cult to check that N(��) is automatically absent due to the quantum numbers
of the problem.
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In particular, in the case of the chiral descent equations considered in Sect.5, eq.(A.72)
imply that the most general solution of the eq.(5.53) is given indeed by

s K
1 _�

=
�
D

_�
D� + 2 D� D

_�
�
K2

� ;

with the constraint
D

2
K2

� = 0 :

B Appendix

In this appendix we summarize some useful results concerning the BRS superspace co-
homology for the N=1 supersymmetric Yang-Mills gauge theories. The various BRS
cohomolgy classes are labelled by the ghost number g and by the spinor indices.

The following results hold[18, 19, 21]:

1. The BRS cohomology is empty in the space of the invariant local power series Ag

with dimension 2 and positive ghost number g.

2. The cohomology classes corresponding to local BRS invariant cocycles Ag
� or A

g

_�

with dimension 3
2
and ghost number g = 1, 2 or 3 are empty.

3. The cohomology classes in the space of the BRS invariant local power series Ag
� or

A
g

_� with dimension 1
2 and ghost number g greater than zero are empty.

4. The BRS cohomology classes in the space of the local power seriesAg with dimension
0, ghost number g and at least of order g + 1 in the �elds are empty.

5. Any invariant object Ag with dimension 0 and even ghost number g greater than
zero and of order g in the �elds is BRS trivial.

In particular it turns out that in the pure ghost sector the BRS cohomology classes
are given by polynomials built up with monomials of the type

Tr
c2n+1

2n+ 1
; n � 1 ; (B.73)

or

Tr
c2n+1

2n+ 1
; n � 1 : (B.74)

We remark also that the two expressions above (B.73) and (B.74) do not actually de�ne
di�erent cohomology classes. Instead they are equivalent, due to the triviality[18, 20] of
the combination

Tr
c2n+1

2n + 1
� Tr

c2n+1

2n + 1
= s 
2n ;

for some local power series 
2n. This result implies that the expression (B.73) and (B.74)
are related each other by means of an exact BRS cocycle.
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C Appendix

In this last appendix we show that the o�-shell closure of the algebra (4.26) can be
recovered in a simple way by introducing an appropriate external �eld �. Let indeed be
� a super�eld with dimension 2 and ghost number -1, whose BRS transformation reads

s � = [� ; c] + 2 (D F + [' ; F ]) ;

s2 � = 0 :

Modifying now the operator � in such a way that

� F = �
1

2
� ;

it is easily veri�ed that the commutator (4.35)

[� ; s] F = �� [c ; F ] +
1

2
s � = D F ;

gives now the covariant derivative of F without making use of the equations of motion,
closing therefore the algebra (4.26) o�-shell. Let us conclude by also remarking that the
external �eld � cannot contribute to the BRS cohomology classes relevant for the examples
considered in the previous Sections due to its ghost number and to its dimension.
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