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Abstract

We present a new non local theory of gravity based on the extension of an ancient
work by Deser and Laurent. We show that our theory is compatible with all observations,
ie, the classical tests of gravity. We suggest a new program to deal with the in
uence of
matter on the gravitational �eld.
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1 INTRODUCTION

A. Introductory Remarks.
One of the cornerstones of the modern Field Theory relies in the acceptance of the

Locality Principle. It seems worth to note that such hypothesis contains some apriorisms
that are far beyond our observational means. Further than this, if we move into the
quantum description of the world, there are many arguments (theoretically and observa-
tionally) that point against such principle. Thus, one could wonder if it should not be
the case to contemplate the possibility of constructing theoretical models that go beyond
this hypothesis, even at the classical level. A review on this subject concerning non local
properties of Classical Eletrodynamics has been presented recently [4]. It should be nat-
ural, thus, to undertake a similar task to examine the interaction that is accepted to be
the responsible for the characterization of the spacetime geometry, that is, gravity.

Such an exam is not a new one. Indeed, in the past (and for reasons that we will see
later on) Deser and Laurent have undertaken the analysis of a speci�c non local theory
for the gravitational interaction. Unfortunately these authors have limited their subject
to a linear theory. In so doing they have faced di�culties that could not be surmounted
at this level of the theory. As we will point out later on, the criticisms that one could
make on the Deser and Laurent model are not speci�c of non local theories but mainly
related to the simple linearization scheme they used.

The gravitational �eld, by reasons pointed out by many authors [13, 2] must be a self
interaction process: the equations which describe this �eld are non linear. It is by now
well known that observations have con�rmed such characteristic non linearity[15].

Later and thanks to the e�ort of many people (Deser, Rosen, Grishchuk, etc.) General
Relativity Theory, that deals with modi�cations of the geometrical structure of the space
time could be formulated alternatively in the context of Classical Field Theory. The
standard procedure is to add to the energy momentum tensor of matter, the source of
the gravitacional �eld, aditional non linear terms of the �eld that whould represent the
gravitational contribution to total energy. The reason for this is that gravity is not a
ghost �eld and must also have a non vanishing energy-momentum distribution.

In a completely diferent context and using a new mathematical framework, a simple
linear model to describe the gravitational �eld was constructed by Deser and Laurent,
DL[2]. The scheme employed there conciliates the linearity of Fierz-Pauli equation with
a complete theory of gravity, as we shall see in Section 2.2. The main drawback of DL
formulation appears when gravitational waves are present. The reason for this is precisely
related to the linearity of DL model, that treats gravity as transparent to gravitons.

In the present paper we would like to reexamine the DL proposal which concerns a
non-local theory of gravity. The reason for this is related to a recent result [3] by which
it is possible, with a slight modi�cation of the scheme used by these authors, to obtain
a theory of gravity that is least equivalent to Einstein's General Relativity, as far as the
standard four classical tests are concerned and that could yield a new Physics in the highly
non-linear regime. This will be done through a non-linear modi�cation of DL proposal.

B. Synopsis.
In Section 2 we present a short review of some mathematical properties of the diver-
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genceless projection operator and summarize a non local theory formulated by Deser &
Laurent.

Section 3 presents a non-linear extended model to describe the gravitational �eld
in the context of the classical �eld theory. We describe the motion of particles and a
particular solution is derived, namely the static spherically symmetric solution. Finally
we show that the four standard classical tests of gravitation are satis�ed by our model.

In Section 4 we show a general procedure to construct non-local gravity theories
considering higher orders in the gravity energy-momentum tensor.

Section 5 gives a summary of this paper and some future lines of investigation.

2 NON-LOCAL THEORY

The starting point of linear spin-two �eld theory is the Fierz equation that reads:

G(L)
�� = �kT�� (1)

in which
G(L)
�� � 2��� � ���j�� � ���j�� + ���j�� � ���(2�

�
� � ���j��): (2)

The quantity G(L)
�� is divergence-free. This implies that, in order to achieve compatibility,

one must impose the condition that the energy-momentum tensor T�� of matter should
also be divergenceless. Now, since the gravitational �eld contributes to the balance of
the conservation law through its own energy, this imposition faces a di�culty, that is, the
matter energy-momentum tensor cannot be conserved separately. Traditionally, there are
two well-known solutions for this situation, that we will call generically the geometrical
and the non-local �eld theory way.

We will not discuss here the well-known Einstein (i. e., geometrical) approach, but
we synthesize it just for completeness as follows. If we add to the right-hand-side of the
equation (1) the energy momentum tensor of gravity, then an in�nite series appears [13].
This is a recurrence procedure and a direct consequence of the non-localizability of the
gravitational energy.

Nevertheless several proposals concerning the description of the form of the energy-
momentum tensor of the gravitational �eld have been examined through the years. Un-
fortunately they all su�er from a lethal disease: they are not true tensors. Recently
Grishchuk, Petrov and Popova [9] has made an apparent improvement in such situation1

by setting
G(L)
�� = TM

�� + tg�� (3)

in which, contrary to all previous proposals, the gravitational energy momentumtensor tg��
is a true tensor. However it contains an intrinsic gauge degree of freedom that singularizes
it from the standard energy momentum tensors of other �elds and inhibits its conventional
treatment.

1Note that the quoted paper of GPP seems apparently out of this di�culty. However, the energy-
momentum tensor proposed by these authors have an internal gauge freedom that seems to be a remi-
niscent of the same problem. In any way, they do not exhibit a tg

��
free of ambiguities.
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Besides such geometrical paradigma of General Relativity, there is an equivalent way
to deal with this problem in a very ingenious procedure. This was presented by Deser
et al. This method (contrary to the previous ideas on this subject) does not intend to
provide gravity with a local energy-momentum tensor but instead it operates on the right
hand side just by eliminating from it the undesirable non-conserving part.

The way to undertake such an enterprise is very simple. We will describe its main
properties in the next section. Before this, however, let us introduce some mathematical
machinery.

2.1 THE NONLOCAL OPERATOR

The nonlocal projector P�� is de�ned by:

P�
� � ��� �2

�1@�@
�;

in which the quantity 2�1 represents the inverse of the d'Alembertian operator, that is

22
�1 = 1:

Given an arbitrary vector V� we construct an associated quantity, represented by V̂�, thus
de�ned:

V̂� � P�
�V�; (4)

and such that V̂� is divergence-free. We are interested here not only on vectors that are
divergence-free but specially tensors.

We can use the above operator P�
� to construct the most general form of divergenceless

second order tensor. This is provided by the relation:

T̂ �� � Q��
�� T ��; (5)

in which the operator Q��
�� is de�ned as

Q��
�� � P�

� P�
� + pP �� ��� + q P ��P��:

The constants p and q are free parameters2. To support our claim that the above second
order projector Q���� is the most general form, it is enough to examine a product of these
objects. Indeed, we have

Q��
��Q��

�� = P�
�P�

� + �P���
�� + �P��P

��: (6)

The right hand side of this expression can be identi�ed with the same operator Q
0

��

��
,

that is
Q

0

��

��
� P�

�P�
� + �P���

�� + �P��P
��; (7)

with a simple rede�nition of the new free parameters � and � in terms of the primary
ones p and q given by

� � 3p2 + 3pq + p (8)

� � 3q2 + 3pq + 2q + p: (9)

We can thus see from this expression that by further multiplication of these operators
we do not obtain any new form of second order projector operator.

2We shall see later on that these parameters are to be �xed for each speci�c model to conform with
observational data.
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2.2 DESER-LAURENT THEORY

Deser and Laurent have explored the possibility of considering gravity as a spin two
�eld without self-interaction. The scheme that they employed conciliates the linearity of
Fierz-Pauli equation with a complete theory of gravity that circunvents the divergence-free
problem by making appeal to the non-local property contained in the projected operators
de�ned above.

Indeed, they take as the true source of the spin-2 �eld the quantity T̂ (M)
�� , which is the

projection of the matter-energy momentum tensor in the divergence-free domain, as we
have already described in the previous section. The resulting equation of motion becomes

G(L)
�� = �kT̂ (M)

�� : (10)

Let us make here a comment on this formulation. As we know, from Feynman and
others, the coherence of the �eld theory with the law of conservation of energy is obtained,
in Einstein's terms, by an in�nite series. Here, such an iterative procedure is substituted
by non-locality. One can say, in a few words, that non-linearity is replaced by non-locality.
Nevertheless, one should emphasize that these theories are not equivalent. They have an
overlapping of certain properties but certainly not all, as we shall see in the next section.

Astonishingly enough, such a simple construction is able to describe the four classical
standard tests of gravity. The main drawback of DL formulation appears when gravita-
tional waves are present. The reason for this is precisely related to the linearity of DL
model, that treats gravity as transparent to gravitons.

It is a pity that one should abandon such a simple and worth scheme to deal with
gravitational phenomena. This led us to circunvent the wave problem by looking for a
non-linear extension of this theory. Before going into the details of such extension let us
point out that we will not analyse the general case but a speci�c model that indeed does
circunvent such di�culty.

We shall comment in the �nal session of this paper how a series of alternative theories
can be generated by the application of the same technique of projection introduced by
DL.

Thus let us limit ourselves in our analysis to a speci�c simple extended theory fron
now on.

3 NON-LINEAR EXTENDED MODEL

Using the above considerations we write the �eld equation representing a spin two �eld
with self interaction in DL scheme by

G(L)
�� = �kT̂�� (11)

where
G(L)
�� = 2h�� � h��j�� � h��j�� + ���h

��

j�� (12)

and
T̂�� � Q��

��T��; (13)
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in which we have rede�ned the �eld variable by

h�� � ��� �
1

2
����

�
�: (14)

The total energy momentum tensor that appears in the �eld equations is de�ned as
the sum of the matter and the gravitational energy momentum tensor

T�� � T�� + t�� : (15)

The natural choice for the object that represents the gravitational contribution to the
energy is the Gupta tensor:

t�� =
1

2k

�
h��j�h

��

j� �
1

2
h��j�h

�

�j�+

�
1

2
���

�
h��j�h

��j� �
1

2
h��j�h

� j�
�

��
: (16)

Note that contrary to the old (Feynman) procedure we are not led into any sort of
trouble with the divergenceless identity, since we are not dealing here with the full Gupta
tensor, but only to its restriction in the divergenceless space.

It seems worth at this point to stop for a while and make some comments on the formal
aspect of the present model. The recursive approach that yields from the Fierz linear
theory to the in�nite series allows the summation that provides us with the geometrization
of gravity. Here such a procedure is not followed, but instead we look for compatibility of
the theory by allowing nonlocality of gravitational interaction. Putting aside the matter
of taste, one should count only on observation to decide which one of these ways should
indeed be retained.

Thus, let us now turn to the considerations of some properties of our model that could
be checked observationally. In the next section we will analyse the behaviour of material
particles acted upon by gravitational forces generated through the proposed non-local
scheme. We will follow the same lines as in the original by quoted paper, ref.[2].

3.1 PARTICLE MOTION

Let us consider an incoherent dust cloud of non-interacting matter. The 
uid is charac-
terized by a 4-vector velocity U� and proper density �0. We de�ne the 4-velocity as

U� =

 
@x�

@�

!
: (17)

The scalar density �0 is measured by an observer comoving with the 
uid. The matter
and interaction lagrangians are constructed in the standard way, that is

LM =
1

2
�0U�U

� (18)

and
LI = ���T̂�� ; (19)
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The interaction lagrangian (19) can be equivalently rewritten, up to surface terms, in
the following way

LI =  ��T��; (20)

with
 �� = (P��P�� + p���P�� + qP��P��)�

��: (21)

Finally, the resulting total Lagrangian L

L = LM + LI ;

is given by

L =
1

2
�0U�U

� +  ��T�� : (22)

The resulting equations of motion are obtained by variation of L with respect to proper
time � . Using the Hamilton Principle we have"

���U
� @U

�

@�
+

1

�0

@

@�
( ��T��)

#
�� = 0:

Or, equivalently,

1

2

@

@�

 
���U

�U� +
2

�0
 ��T��

!
= 0:

From the above equation we conclude that

���U
�U� +

2

�0
 ��T�� = constant (23)

From now on we will normalize this constant.
The matter energy momentum tensor takes the usual form:

T�� � �0U�U�: (24)

Then introducing (15), (17) and (24) in (23), and performing some algebraic manipulations
we get "

1�
2

�0
 ��t��

#
(d� )2 = (��� + 2 ��) dx

�dx� : (25)

Let us de�ne the quantity

S(�) �

"
1�

2

�0
 ��t��

#
: (26)

We can then write:
(d� )2 = S(�)�1 (��� + 2 ��) dx

�dx�; (27)

with

S(�)�1 =

(
1 +

2

�0
 ��t�� +

4

�20
 �� ��t��t�� + :::

)
: (28)

In this formulation one obtains a perfect equivalence with a geometric theory by iden-
tifying an e�ective metric g�� , given by

g�� = S(�)�1 (��� + 2 ��) :

Although the g�� are local functions, we can express them in terms of non local �elds as
one can see directly through the de�nition of  �� .
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3.2 THE STATIC SPHERICALLY SYMMETRICAL SOLU-

TION

Let us consider a static spherically symmetric con�guration having a point-like source. In
this case the d'Alembertian operator 2 reduces to Laplacian �

� � ���@�@� � �r
2;

and the corresponding inverse obeys the same rule.
The equations of motion reduce then to

�h�� = �kT̂�� : (29)

in which we are using the particular gauge 3

h
��

j� = 0: (30)

Since the projection operation is associative, it follows that

T̂�� = T̂�� + t̂��: (31)

In our case, these quantities are given by

T̂�� � (P��P�� + pP����� + qP��P��)T
��; (32)

and
t̂�� � (P��P�� + pP����� + qP��P��) t

��: (33)

Then, using the above considerations, equation (29) becomes:

�h�� = �k
�
T̂�� + t̂��

�
: (34)

In such a static spherically symmetric distribution the only non null component of T��
is T00 and the components of T̂�� are consequently:

T̂00 = (1 + p + q)T00; (35)

and
T̂ij = (p + q)

�
�ij ���1@i@j

�
T00: (36)

Using equations (33) and (16) we obtain the components of t̂��:

t̂00 = �
1

2k

�
1

2
(1 + 2p + 2q)

�
h��j�h

��j� �
1

2
h��j�h

� j�
�

�
+

+q��1
�
�h���h

�� +�h��j�h
��j�+

�
1

2
�h���h

�
� �

1

2
�h��j�h

� j�
�

��
; (37)

3This choice is equivalent to using harmonic coordenates in the linear approximation of General
Relativity.
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t̂ij =
1

2k

�
�
1

2
(1 + 2p + 2q)

�
h��j�h

��j� �
1

2
h��j�h

� j�
�

�
�ij+

���1
h
h��ji�h

��

jj + h��jj�h
��

ji + 2h��jij�h
��+

�
1

2
h��ji�h

�

�jj �
1

2
h��jj�h

�

�ji � h
�
�jij�h

�
�

�
+

+2 (p+ q)��1
h
h��j�ijh

��j� + h��j�ih
��j�

j+

�
1

2
h��j
ijh

� j

� �

1

2
h��j
ih

� j

� j

�
+ h��jih

��

jj �
1

2
h��jih

�

�jj +

�q�ij�
�1
�
�h���h

�� +�h��j�h
��j� �

1

2
�h���h

�
�+

�
1

2
�h��j
h

� j

�

�
+ (1 + q)��2

h
2�h��jij�h

��+

+2�h��ji�h
��

jj +�h��j�ijh
��j� +�h��j�h

��j�
ij +

+�h��j�ih
��j�

j +�h��j�jh
��j�

i ��h��jij�h
�
� +

��h��ji�h
�

�jj �
1

2
�h��j
ijh

� j

� �

1

2
�h��j
h

� j

� ij +

�
1

2
�h��j
ih

� j

� j �

1

2
�h��j
jh

� j

� i

��
: (38)

The �eld equations take then the form:

�h00 = �
1 + p+ 3q

1 + 3q
kT00 +

q

1 + 3q
�h�� +

+
1 + 2p + 3q

4(1 + 3q)

�
h��j�h

��j� �
1

2
h��j
h

� j

�

�
; (39)

�hij =
�
�ij +��1@i@j

�
kT00 +

�
�ij + 2��1@i@j

�
�h00 +

���1@i@j�h
�
� +��1

�
h��jij�h

�� � h��j�ih
��j�

j+

�
1

2
h��jij�h

�
� +

1

2
h��j
ih

� j

� j

�
: (40)

The above set of equations, for the case of the static gravitational �eld con�guration,
is too intrincate. To simplify its manipulation and to allow for a future interpretation of
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the solutions it seems worth to examine a particular class these equation, by looking for
the case in which the solution takes the form:

h�� = !��� + !2���; (41)

where ! is an arbitrary function (that could be constant) and that will be �xed later
on. To solve this intrincate system of di�erential equation we will employ the following
method. We start by assuming a hypothesis (to be checked for consistency later on) that
the linear and the nonlinear parts are decoupled.

A remarkable property of this set of equations then appears. The functions ��� and
��� are determined from the orders ! and !2 up to an equal number of free functions ���
and ��� that can in turn be used to satisfy the coherence, from the obtained solution,
of the remaining orders !3 and !4. Then the equations that should be explicitly solved
reduce to the following set:

��00 = �
1 + p+ 3q

1 + 3q
kT00 +

q

1 + 3q
����; (42)

��00 =
1 + 2p + 3q

4 (1 + 3q)

�
���j
�

��j
 �
1

2
���j
�

� j

�

�
+

+
q

1 + 3q
����; (43)

��ij =
�
�ij +��1@i@j

�
kT00 ���1@i@j��

�
� +

+
�
�ij + 2��1@i@j

�
��00; (44)

��ij =
�
�ij + 2��1@i@j

�
��00 ���1@i@j��

�
� +

+��1
�
���jij��

�� � ���j�i�
��j�

j+

�
1

2
���jij��

�
� +

1

2
���j
i�

� j

� j

�
: (45)

As we said, from a direct analysis of the equations (42), (44), (43) and (45) there still
remains a number of free functions. This can be seen by taking the transformations

�00 ! �
0

00 = �00 + �00;

�ij ! �
0

ij = �ij + �ij;

with

��00 = 0;

��ij = 0;
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and

�00 ! �
0

00 = �00 + �00;

�ij ! �
0

ij = �ij + �ij;

with

��00 = 0;

��ij = 0:

The complete solution of the previous set of equations is then

�00 = �2
1 + p+ 4q + 3pq + 3q2

1 + 3q

m

r
; (46)

�ij = �
p+ q + 3pq + 3q2

1 + 3q

m

r

�
�ij �

xixj

r2

�
: (47)

�00 = c
0

2

m2

r2
(48)

and

�ij = c
0

3

m2

r2
xixj

r2
; (49)

with

c
0

2 = �
5

4
q3 � p3 �

7

2
pq2 �

13

4
p2q �

3

2
q2 �

3

2
p2 � 3pq +

1

4
(50)

and

c
0

3 =
5

3
q3 + 2p3 + 7pq2 +

13

2
p2q +

11

4
q2 +

11

4
p2 +

11

2
pq �

1

2
q �

1

2
p�

1

4
: (51)

In terms of the �eld variables ��� we have

�00 =
1

2

�
a

0

� 4b
0
� km
r

+
1

2

�
d

0

+ f
0
� km

r

!2

; (52)

�ij =

2
4 �b0

�
a

0

2

!
km

r
+

 
�
d

0

2
+
f

0

2

! 
km

r

!2
3
5 �ij +

+

2
4�b0 km

r
+ f

0

 
km

r

!2
3
5 xixj
r2

; (53)

where the coe�cients a
0

; b
0

; d
0

and f
0

are parameter combinations and will be stated later.
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3.3 STANDARD CLASSICAL TESTS

We are now prepared to come back to the modi�ed expression of the proper time. Using
the solutions (46), (47), (48) and (49) and assuming the arbitary parameter ! to be
identi�ed to the coupling constant k, we obtain the corresponding prescription for the
non-local variable  �� 4,

 00 =
A

0

r
+
B

0

r2
; (54)

and

 ij =

 
C

0

r
+
D

0

r2

!
�ij +

 
F

0

r
+
G

0

r2

!
xixj

r2
: (55)

Then, the expression of (d� )2, Eq. (27), reduces to:

(d� )2 =
�
1�

a

r
�
A

r2

�
dt2 �

 
1 +

b

r
+
B

r2

!
dr2 �

 
1 +

d

r
+
D

r2

!
r2d
; (56)

in which5

d
 � d�2 + sin2�d�2:

The coe�cients that appear in this expression are combinations of the constants p and
q given by:

a = �3(p+ q)2 � 2(p + q) + 1; (57)

b = 3(p + q)2 + 2(p + q) + 1; (58)

d =
3

2
(p+ q)2 +

5

2
(p+ q) + 1; (59)

A = �
15

16
q4 �

3

4
p4 �

57

16
pq3 �

51

16
p3q �

81

16
p2q2 �

11

8
q3 �

21

16
p3 +

�
65

16
pq2 � 4p2q �

3

16
(p + q)2 +

1

4
(p + q); (60)

B =
15

8
q4 +

3

2
p4 +

57

8
pq3 +

51

8
p3q +

81

8
p2q2 +

29

16
q3 +

15

8
p3 +

+
11

2
pq2 +

89

16
p2q �

9

16
(p + q)2 �

1

8
(p+ q); (61)

D =
15

16
q3 +

3

4
p3 +

21

8
pq2 +

39

16
p2q +

17

16
(p+ q)2 �

1

8
: (62)

By the same procedure as in the case of General Relativity, we obtain the following
constants of motion E and L:

E �
�
1 �

a

r
�
A

r2

�
dt

d�
(63)

4From now on and until convenient we will use 2km units. The above equations will be accordingly
rewritten.

5Note that Eq. (56) reduces to DL form in the case A = B = D = 0.
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and

L �

 
1 +

d

r
+
D

r2

!
r2
d'

d�
: (64)

De�ning the a new variable u � 1
r
, and using the above relations, the equation gov-

erning the shape of the orbit is given by

d2u

d'2
+ u =

a

2

E2

L2
+
1

2
(2d � b)

E2 � 1

L2
+

+

"�
A+ a2 � ab+ 2ad

� E2

L2
+ (�B + 2D+

+b2 � 2bd+ d2
� E2 � 1

L2

#
u+

3

2
(b� d) u2: (65)

Using Eq. (65) we �nd the corresponding equation for a planetary orbit. Taking into
account the approximation E2 � 1, it follows that

d2u

d'2
+ u =

a

2

E2

L2
+
�
A+ a2 � ab+ 2ad

� E2

L2
u+

3

2
(b� d) u2: (66)

Using the approximation, valid for the solar system,6

u �
a

2

E2

L2
; (67)

it follows7

d2u

d'2
+ u =

GM

L2
a+ 2

 
2A

a
+ 2a�

b

2
+
5

2
d

!
GMu2: (68)

The last term gives the perihelion precession of our present theory. This should be
compared with the analogous result in General Relativity. Before this, however, it is more
convenient to analyse the consequences of the remaining equations.

Limiting our analysis here to the path of light rays we have

d2u

d'2
+ u =

3

2
GM (a+ b)u2: (69)

Using the values for a and b taken from Eqs.(57) and (58), it follows identically that
a + b � 2. Substituting this value into the above Eq. (69) we obtain the same value
predicted by GR for the bending of light. Indeed,

d2u

d'2
+ u = 3GMu2:

The fourth test (radar delay time) is automatically satis�ed. To proceed we need to
specify the values of a and b. Let us examine a simple possible case by choosing

a = 1; (70)

b = 1: (71)

6The reader may consult the quoted article of Deser et al for more details.
7From here on we will write explicitly the constants GM of our problem instead of working in a system

of units in which they are made equal to 1. This is done here just for comparison with observations.
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Coming back to the original equation for the perihelion precession results, in this case,
in

d2u

d'2
+ u =

GM

L2
+ 3GMu2 + (4A+ 5d)GMu2:

By comparison with the analogous result in GR we are led to impose

4A+ 5d = 0; (72)

which provides the second8 equation for the unknown parameters p and q. Solving the
algebraic equation we obtain

p = �1; (73)

q =
1

3
: (74)

Coming back to Eq. (63) and using these values of p and q we obtain

E =
�
1 �

2GM

r

�
dt

d�
; (75)

which is precisely the formula of GR for the redshift.
From these results we conclude that the choice p = �1 and q = 1

3
makes the present

theory, as far as the four tests are concerned, indistinguishable from General Relativity.
Thus the next step should be the examination of the strong �eld structure, i.e. pulsar
binary system. This issue is presently under investigation.

4 GENERAL FORMULATION OF NON-LINEAR

NON-LOCAL GRAVITY THEORY

The scheme that we presented in this paper can be generalized to incorporate higher
orders of the basic contribution of the gravitational �eld. In each order a self consistent
theory is obtained. Thus a whole class of consistent gravity theories that circunvent the
tradicional problems of combining the conservation of the energy momentum tensor of
matter and gravity is obtained.

Although we have limited our analysis here to describe the gravitational �eld by just
a quadratic non linear non local theory, this kind of natural extension can be immediately
formulated.

The formal aspect of the equations of motion remains the same, that is,

G(L)
�� = �k T̂�� :

In the general case the right hand side contains the non linear gravity contribution to
the energy momentum tensor, whose terms are written as

T�� = T (M)
�� +

nX
i=1

cit
(i)
��:

8The other equation is provided by Eq.(70) or Eq.(71). Note that any one of these yields the same
restriction on the parameters p and q.
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The constant ci can assume the values 0 or 1 and establishes the diferent theories to be
constructed in this formulation. Deser and Laurent theory is the case when all constants
ci are equal to zero. The choice c1 = 1 and all other constants ci; i 6= 1 vanishing
constitutes the non linear non local theory presented in this paper. The summation of
the complete series became identical to Einstein's. In this case the application of the non
local projection operator is not justi�ed anymore.

5 CONCLUSION

In this paper we have shown that it is possible to obtain a coherent scheme of massless spin
two �eld theory that describes gravitational interaction beyond the standard geometrical
way (Einstein, Feynman, Deser, etc.). We do this by appealing to a generalization of a
previous method set out by Deser and Laurent. This scheme uses the mathematical prop-
erties of projection operators in the divergenceless space of arbitrary tensors. Although
Deser and Laurent approach deals with a linear theory (which is precisely the main draw-
back of their model), we use here the same technique but in a non linear framework. We
can thus combine the non local and the non linear properties in a uni�ed scheme that
provides a self-consistent model for gravitational interactions. We have shown that our
model satis�es all the observational tests. We have exibit this by showing a static spher-
ically symmetrical solution for the gravitational �eld. The next step should then be to
undertake the task of solving our equations for strong gravitational �elds mainly to the
respect of the consequences of the behaviou in the neighbourhood of neutrons stars; and,
beyond the static case, to generate a cosmological framework within our theory. We are
now presently examining these cases.
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