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Abstract

Two di�erent formalisms have been recently developed for nonextensive Physics,
namely the Generalized Statistical Mechanics and Thermodynamics (characterized
by q 6= 1) and the Quantum Groups (characterized by qG 6= 1). Through the
discussion of the mean values of observables, we propose a (temperature dependent)
connection between q and qG, and illustrate with bosonic oscillators.
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An extremely interesting tendency towards nonextensive Physics keeps growing along
recent years. This fact appears in two di�erent areas, namely in Statistical Mechanics
and Quantum Groups, through apparently independent paths.

In what Statistical Mechanics is concerned, a generalized entropy has been proposed
as follows [1]

Sq = k

1 �
X
i

pqi

q � 1
(q 2 <) (1)

where pi is the probability associated with the i-th microscopic state of the system and k
a conventionally chosen positive constant. The q ! 1 limit of Sq yields the well known
Shannon expression �kB�ipi ln pi (where we have used pq�1i � 1 + (q � 1) ln pi). Sq
satis�es, for all q > 0, the standard properties of positivity, equiprobability, expansibility,
concavity (which guarantees thermodynamic stability for the system), H-theorem [2{4],
among others. However, if we have two independent systems � and �0 (i.e., �̂�U�0 = �̂��̂�0 ,
where �̂ denotes the density operator), we immediately verify pseudo-additivity, more
precisely

S�U�0

q = S�
q + S�0

q + (1 � q)S�
q S

�0

q (2)

In other words, Sq is generically extensive if and only if q = 1; otherwise, it is nonextensive.
The connection to a consistently generalized equilibrium Thermodynamics is established
by extremizing Sq with the constraints Tr�̂ = 1 and (for the canonical ensemble) [5]

< Ĥ >q� Tr�̂qĤ = Uq (3)

where Ĥ is the Hamiltonian and Uq the generalized internal energy. This optimization
yields the distribution [1, 5]

�̂ =
[1� �(1� q)Ĥ]

1

1�q

Zq
(4)

where

Zq � Tr[1� �(1� q)Ĥ]
1

1�q (5)

with � � 1=kT being a Lagrange parameter. It can be shown [5] that 1=T = @Sq=@Uq,

Fq � Uq � TSq = � 1
�

Z
1�q
q �1

1�q and Uq = �
@

@�

Z
1�q
q �1

1�q . In the q ! 1 limit, Eq. (4) recovers

the well known Boltzmann-Gibbs distribution �̂ / exp(��Ĥ). Furthermore, this general-
ized statistics has been shown to satisfy appropriate forms of the Ehrenfest theorem [6],
von Neumann equation [7], Jaynes Information Theory duality relations [6], 
uctuation-
dissipation theorem [8, 9], Bogolyubov inequality [10], Langevin and Fokker-Planck equa-
tion [11], Callen's identity [12], quantum statistics [13], among others. Moreover, this
generalized scheme has enabled [14] the overcome of the Boltzmann-Gibbs inability to
provide �nite mass for astrophysical systems within the polytropic model as studied by
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Chandrasekhar and others (Balian and many others [15] had already pointed the need
for a nonextensive entropy in Astrophysics; this is a very natural thing to happen when-
ever the long-range gravitational forces are essentially involved in the problem). Finally,
this generalization has recently enabled [16] to derive d-dimensional L�evy 
ights from an
entropic optimization using physically acceptable a priori constraints, q being directly re-
lated to the fractal dimension of the random motion. Again, this overcomes a well known
inability of q = 1 statistics [17].

Let us now focus, on the other hand, QuantumGroups (qG-deformations, qG-oscillators,
qG-calculus, where we use qG, instead of the traditional notation q, in order to avoid con-
fusion with the present entropy parameter q). These are generalizations of Lie groups and
algebras, which are recovered for qG ! 1. They have provided applications in as varied
areas as (see [18{23] and references therein) inverse scattering method, vertex models,
anisotropic spin chains Hamiltonians, knot theory, conformal �eld theory, heuristic phe-
nomenology of deformed molecules and nuclei, non-commutative approach to quantum
gravity and anyon physics. They have enabled, in particular, a formulation of quantum
mechanics [19] in a discontinuous space time (where (qG � 1) plays the role of minimal
lattice step, and (qG � 1)2 that of minimal time step). To illustrate the nonextensivity

associated with quantum groups let us consider a bosonic qG�oscillator. Its Hamiltonian
is given (see [23] and references therein) by

Ĥ = �h!Â+Â = �h![N̂ ]A (6)

where [N̂ ]A � (q2N̂G � 1)=(q2G � 1), N̂ being the qG-generalized number operator, ! > 0 is
a characteristic frequency, and Â+ and Â respectively are the creation and annihilation
operators satisfying

ÂÂ+ � q2GÂ
+Â = 1̂ (7)

as well as

[N̂; Â+] = Â+ (8)

and

[N̂; Â] = �Â (9)

The eigenvalues of [N̂]A are given by [23]

[n]A =
q2nG � 1

q2G � 1
(n = 0; 1; 2; � � �) (10)

In the qG ! 1 limit, Eq. (10) recovers the well known extensive expression [n]A = n.
Let us now address the main aim of the present paper, namely the basic question of

a possible connection between q and qG. We shall use as a guideline the following trivial
observation: within the generalized statistics, the mean value of any observable Ô is given
by [5-9,12]

< Ô >q� Tr�̂qÔ = Tr�̂(�̂q�1Ô) �< �̂q�1Ô > (11)
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i,e., it can be thought as nonextensive statistics (�̂q) on an extensive operator (Ô), or as

extensive statistics (�̂) on a nonextensive operator (�̂q�1Ô).
We consider now a qG-deformed arbitrary extensive observable Ô (e.g., number of

particles, energy, or any other observable which, were it not for the qG-deformation,
would be extensive) associated with two independent systems � and �0(�̂�U�0 = �̂��̂�0

with Tr�̂�U�0 = Tr�̂� = Tr�̂�0 = 1). We have

Ô(�U�0) = Ô(�) + Ô(�0) + (qG � 1)�̂��
0

qG
(12)

where �̂��
0

qG
is, by de�nition, the nonextensive correction associated with qG (although qG

is a complex number, we restrict our discussion to qG 2 <, as in [19]). Eq. (12) implies

< Ô(�U�0) >q = Tr�̂q��̂
q

�0 [Ô(�) + Ô(�0)

+ (qG � 1)�̂��
0

qG
]

= [Tr�̂q�Ô(�)][Tr�̂
q
�0]

+ [Tr�̂q�0Ô(�
0)][Tr�̂q�]

+ (qG � 1) < �̂��
0

qG
>q (13)

hence, by using (1) (i.e., Tr�̂q = 1 + (1 � q)Sq),

< Ô(�U�0) >q = < Ô(�) >q + < Ô(�0) >q

+ (1� q)
h
< Ô(�) >q S

�0

q + < Ô(�0) >q S
�
q

i
=k

+ (qG � 1) < �̂��
0

qG
>q (14)

If we impose now that the mean values of the observable must be extensive whenever these

are measurable quantities (i.e., that the q 6= 1 e�ect is exactly compensated by the qG 6= 1
e�ect) we obtain

q � 1 = k(qG � 1)
< �̂��

0

qG
>q

< Ô(�) >q S�0
q + < Ô(�0) >q S�

q

(15)

which yields the connection we were looking for. Generically, q = 1 if and only if qG = 1.
In the qG ! 1 limit, Eq. (15) becomes

q � 1 � kB(qG � 1)
<�̂��

0

1
>

<Ô(�)>S�
0

1
+<Ô(�0)>S�

1

(16)

/ qG � 1 (160)

The situation is schematically indicated in Fig. 1.
Before going on let us remark that the entropy operator Ŝq � k(1̂ � �̂1�q)=(1 � q) (so

denominated because it satis�es < Ŝq >q= Sq) is not included among the operators Ô

which Eq. (15) refers to. Indeed, it satis�es Ŝ�U�0
q = Ŝ�

q +Ŝ�0
q +(q�1)Ŝ�

q Ŝ
�0
q , consequently
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it is not extensive (unless q = 1). The application of Tr�̂q��̂
q
�0 on both sides of this equality

naturally recovers Eq. (2).
Let us now illustrate the present calculation with two bosonic oscillators of the type

described by Hamiltonian (6). Let the observable Ô be [N̂ ]A. According to Eq. (10) we
have

[n�]A =
q2n�G � 1

q2G � 1
(n� = 0; 1; 2; � � �) (17)

and

[n�0 ]A =
q
2n

�0

G � 1

q2G � 1
(n�0 = 0; 1; 2; � � �) (18)

hence

[n�U�0]A =
q2(n�+n�0 ) � 1

q2G � 1
(19)

Consequently, using Eq. (12), we have

(qG � 1)�̂��
0

qG
= [N̂�U�0]A � [N̂�]A � [N̂�0 ]A

=
q
2(N̂�+N̂�0)
G � q2N̂�G � q

2N̂
�0

G + 1

q2G � 1

=
(q2N̂�G � 1)(q

2N̂
�0

G � 1)

q2G � 1
(20)

This is a good point for commenting the generic form we expect for �̂��
0

qG
. As illustrated

in Eq. (20) (and in what follows from it), we expect to be �̂��
0

qG
= f(Ô(�); qG)f(Ô(�0); qG),

where f(x; qG) is analytic in qG at qG = 1, being generically f(x; 1) 6= 0.
By denoting now ���

0

qG
the eigenvalues of �̂��

0

qG
we have that ���

0

qG
vanishes if n� = 0 or

n�0 = 0; otherwise (i.e., if n� � 1 and n�0 � 1), Eq. (20) implies

(qG � 1)���
0

qG

=

"
2n�X
i=1

(
2n�
i

)(qG � 1)i
# 2
42n�0X
i0=1

(
2n�0

i0
)(qG � 1)i

0

3
5

q2G � 1

=
qG � 1

qG + 1

2
42n��1X

j=0

(
2n�
j + 1

)(qG � 1)j

3
5
2
42n��1X

j0=0

(
2n�
j0 + 1

)(qG � 1)j

3
5 (21)

Consequently, in the qG ! 1 limit, we have

���
0

1 � 2n�n�0 (n�; n�0 = 0; 1; 2; � � �) (22)
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hence, using Eq. (16),

q � 1 � (qG � 1) < N̂ > kB=S1 (23)

where we have used < N̂�N̂�0 >=< N̂� >< N̂�0 > and < N̂� >=< N̂�0 >�< N̂ > :
By using the well known quantum harmonic oscillator results < N̂ >= (e��h! � 1)�1

and S1=kB = ��h!e��h!=(e��h! � 1) � ln(e��h! � 1), we �nally obtain

q � 1 �
qG � 1

��h!e��h! � (e��h! � 1) ln(e��h! � 1)
(24)

which is represented in Fig. 2 (where the kBT=�h! ! 0 and kBT=�h! ! 1 asymptotic
behaviors are indicated). We remark: (i) A temperature exists (kBT �=�h! ' 2:31) for
which q � 1 � qG � 1, hence q can (asymptotically) equal qG !; (ii) At very low temper-
atures (where the system is practically not excited) qG can vary a lot without making
the thermodynamics appreciably nonextensive; (iii) At very high temperatures (where
the system is highly excited), the slightest departure of qG from unity yields a highly
nonextensive thermodynamics; (iv) It seems plausible that, for any �nite temperature, q
monotonically increases from zero to in�nity when qG increases from zero to in�nity. The
Plastino and Plastino's discussion [14] of the q = 1 paradox of the polytropic model for
stellar systems was done in the classical limit (�h! 0), where it seems now reasonable to
expect that a value of qG slightly di�erent from unity would imply in a value of q quite

di�erent from unity, as they indeed found. Since it seems possible to interpret qG > 1 as
a discontinuous space-time [19], we should certainly not exclude the possibility for astro-
physical systems being the right candidates for exploring the deepest e�ects of gravitation
in Nature, including nonextensivity of the entropy.

Let us now synthetize the present work. Although the connection between General-
ized Statistical Mechanics and Quantum Groups was done on e�ective grounds (i.e., the
relation between q and qG depends on temperature for a system in thermal equilibrium),
it was established through a remarkably simple and generic assumption, namely that
nonextensive statistics can exactly compensate nonextensive mechanics in such a way as
to provide extensive mean values of the observables. This fact might help for the under-
standing of one among the most puzzling problems of contemporary science, namely the
deep nature of space-time.
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Caption for �gures

Fig. 1 - Typical (�nite temperature) relation between q and qG. By \Extensive Physics"
we mean Shannon entropy, Boltzmann-Gibbs statistics, continuous space-time, di�erential-
equations physics, etc.

Fig. 2 - Temperature dependent relation between q and qG in the region q ' qG ' 1 for
bosonic oscillators (kBT �=�h! ' 2:31). The asymptotic behaviors for T << T � and
T >> T � are respectively given by kBT=�h! and (kBT=�h!)= ln(kBT=�h!).
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