Non Extensive Physics: a Possible Connection Between Generalized Statistical Mechanics and Quantum Groups

by
Constantino Tsallis
Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290-180 - Rio de Janeiro - RJ, Brasil

Abstract

Two different formalisms have been recently developed for nonextensive Physics, namely the Generalized Statistical Mechanics and Thermodynamics (characterized by $q \neq 1$) and the Quantum Groups (characterized by $q_{G} \neq 1$). Through the discussion of the mean values of observables, we propose a (temperature dependent) connection between q and q_{G}, and illustrate with bosonic oscillators.

Key-words: Generalized entropy; Generalized statistical mechanics; Quantum groups; q-deformations.

PACS Index: 05.20.-y; 05.30 Jp; 03.65.-w; 11.10 Lm

An extremely interesting tendency towards nonextensive Physics keeps growing along recent years. This fact appears in two different areas, namely in Statistical Mechanics and Quantum Groups, through apparently independent paths.

In what Statistical Mechanics is concerned, a generalized entropy has been proposed as follows [1]

$$
\begin{equation*}
S_{q}=k \frac{1-\sum_{i} p_{i}^{q}}{q-1} \quad(q \in \Re) \tag{1}
\end{equation*}
$$

where p_{i} is the probability associated with the i-th microscopic state of the system and k a conventionally chosen positive constant. The $q \rightarrow 1$ limit of S_{q} yields the well known Shannon expression $-k_{B} \Sigma_{i} p_{i} \ln p_{i}$ (where we have used $p_{i}^{q-1} \sim 1+(q-1) \ln p_{i}$). S_{q} satisfies, for all $q>0$, the standard properties of positivity, equiprobability, expansibility, concavity (which guarantees thermodynamic stability for the system), H -theorem [2-4], among others. However, if we have two independent systems Σ and Σ^{\prime} (i.e., $\hat{\rho}_{\Sigma U \Sigma^{\prime}}=\hat{\rho}_{\Sigma} \hat{\rho}_{\Sigma^{\prime}}$, where $\hat{\rho}$ denotes the density operator), we immediately verify pseudo-additivity, more precisely

$$
\begin{equation*}
S_{q}^{\Sigma U \Sigma^{\prime}}=S_{q}^{\Sigma}+S_{q}^{\Sigma^{\prime}}+(1-q) S_{q}^{\Sigma} S_{q}^{\Sigma^{\prime}} \tag{2}
\end{equation*}
$$

In other words, S_{q} is generically extensive if and only if $q=1$; otherwise, it is nonextensive. The connection to a consistently generalized equilibrium Thermodynamics is established by extremizing S_{q} with the constraints $\operatorname{Tr} \hat{\rho}=1$ and (for the canonical ensemble) [5]

$$
\begin{equation*}
<\hat{\mathcal{H}}>_{q} \equiv \operatorname{Tr} \hat{\rho}^{q} \hat{\mathcal{H}}=U_{q} \tag{3}
\end{equation*}
$$

where $\hat{\mathcal{H}}$ is the Hamiltonian and U_{q} the generalized internal energy. This optimization yields the distribution $[1,5]$

$$
\begin{equation*}
\hat{\rho}=\frac{[1-\beta(1-q) \hat{\mathcal{H}}]^{\frac{1}{1-q}}}{Z_{q}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{q} \equiv \operatorname{Tr}[1-\beta(1-q) \hat{\mathcal{H}}]^{\frac{1}{1-q}} \tag{5}
\end{equation*}
$$

with $\beta \equiv 1 / k T$ being a Lagrange parameter. It can be shown [5] that $1 / T=\partial S_{q} / \partial U_{q}$, $F_{q} \equiv U_{q}-T S_{q}=-\frac{1}{\beta} \frac{Z_{q}^{1-q}-1}{1-q}$ and $U_{q}=-\frac{\partial}{\partial \beta} \frac{Z_{q}^{1-q}-1}{1-q}$. In the $q \rightarrow 1$ limit, Eq. (4) recovers the well known Boltzmann-Gibbs distribution $\hat{\rho} \propto \exp (-\beta \hat{\mathcal{H}})$. Furthermore, this generalized statistics has been shown to satisfy appropriate forms of the Ehrenfest theorem [6], von Neumann equation [7], Jaynes Information Theory duality relations [6], fluctuationdissipation theorem [8, 9], Bogolyubov inequality [10], Langevin and Fokker-Planck equation [11], Callen's identity [12], quantum statistics [13], among others. Moreover, this generalized scheme has enabled [14] the overcome of the Boltzmann-Gibbs inability to provide finite mass for astrophysical systems within the polytropic model as studied by

Chandrasekhar and others (Balian and many others [15] had already pointed the need for a nonextensive entropy in Astrophysics; this is a very natural thing to happen whenever the long-range gravitational forces are essentially involved in the problem). Finally, this generalization has recently enabled [16] to derive d-dimensional Lévy flights from an entropic optimization using physically acceptable a priori constraints, q being directly related to the fractal dimension of the random motion. Again, this overcomes a well known inability of $q=1$ statistics [17].

Let us now focus, on the other hand, Quantum Groups (q_{G}-deformations, q_{G}-oscillators, q_{G}-calculus, where we use q_{G}, instead of the traditional notation q, in order to avoid confusion with the present entropy parameter q). These are generalizations of Lie groups and algebras, which are recovered for $q_{G} \rightarrow 1$. They have provided applications in as varied areas as (see [18-23] and references therein) inverse scattering method, vertex models, anisotropic spin chains Hamiltonians, knot theory, conformal field theory, heuristic phenomenology of deformed molecules and nuclei, non-commutative approach to quantum gravity and anyon physics. They have enabled, in particular, a formulation of quantum mechanics [19] in a discontinuous space time (where $\left(q_{G}-1\right)$ plays the role of minimal lattice step, and $\left(q_{G}-1\right)^{2}$ that of minimal time step). To illustrate the nonextensivity associated with quantum groups let us consider a bosonic $q_{G}-$ oscillator. Its Hamiltonian is given (see [23] and references therein) by

$$
\begin{equation*}
\hat{\mathcal{H}}=\hbar \omega \hat{A}^{+} \hat{A}=\hbar \omega[\hat{N}]_{A} \tag{6}
\end{equation*}
$$

where $[\hat{N}]_{A} \equiv\left(q_{G}^{2 \hat{N}}-1\right) /\left(q_{G}^{2}-1\right), \hat{N}$ being the q_{G}-generalized number operator, $\omega>0$ is a characteristic frequency, and \hat{A}^{+}and \hat{A} respectively are the creation and annihilation operators satisfying

$$
\begin{equation*}
\hat{A} \hat{A}^{+}-q_{G}^{2} \hat{A}^{+} \hat{A}=\hat{1} \tag{7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\left[\hat{N}, \hat{A}^{+}\right]=\hat{A}^{+} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
[\hat{N}, \hat{A}]=-\hat{A} \tag{9}
\end{equation*}
$$

The eigenvalues of $[\hat{N}]_{A}$ are given by [23]

$$
\begin{equation*}
[n]_{A}=\frac{q_{G}^{2 n}-1}{q_{G}^{2}-1} \quad(n=0,1,2, \cdots) \tag{10}
\end{equation*}
$$

In the $q_{G} \rightarrow 1$ limit, Eq. (10) recovers the well known extensive expression $[n]_{A}=n$.
Let us now address the main aim of the present paper, namely the basic question of a possible connection between q and q_{G}. We shall use as a guideline the following trivial observation: within the generalized statistics, the mean value of any observable \hat{O} is given by [5-9,12]

$$
\begin{equation*}
<\hat{O}>_{q} \equiv \operatorname{Tr} \hat{\rho}^{q} \hat{O}=\operatorname{Tr} \hat{\rho}\left(\hat{\rho}^{q-1} \hat{O}\right) \equiv<\hat{\rho}^{q-1} \hat{O}> \tag{11}
\end{equation*}
$$

i,e., it can be thought as nonextensive statistics ($\hat{\rho}^{q}$) on an extensive operator (\hat{O}), or as extensive statistics ($\hat{\rho}$) on a nonextensive operator $\left(\hat{\rho}^{q-1} \hat{O}\right)$.

We consider now a q_{G}-deformed arbitrary extensive observable \hat{O} (e.g., number of particles, energy, or any other observable which, were it not for the q_{G}-deformation, would be extensive) associated with two independent systems Σ and $\Sigma^{\prime}\left(\hat{\rho}_{\Sigma U \Sigma^{\prime}}=\hat{\rho}_{\Sigma} \hat{\rho}_{\Sigma^{\prime}}\right.$ with $\operatorname{Tr} \hat{\rho}_{\Sigma U \Sigma^{\prime}}=\operatorname{Tr} \hat{\rho}_{\Sigma}=\operatorname{Tr} \hat{\rho}_{\Sigma^{\prime}}=1$). We have

$$
\begin{equation*}
\hat{O}\left(\Sigma U \Sigma^{\prime}\right)=\hat{O}(\Sigma)+\hat{O}\left(\Sigma^{\prime}\right)+\left(q_{G}-1\right) \hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}} \tag{12}
\end{equation*}
$$

where $\hat{\eta}_{q G}^{\Sigma \Sigma^{\prime}}$ is, by definition, the nonextensive correction associated with q_{G} (although q_{G} is a complex number, we restrict our discussion to $q_{G} \in \Re$, as in [19]). Eq. (12) implies

$$
\begin{align*}
<\hat{O}\left(\Sigma U \Sigma^{\prime}\right)>_{q} & =\operatorname{Tr} \hat{\rho}_{\Sigma}^{q} \hat{\rho}_{\Sigma^{\prime}}^{q}\left[\hat{O}(\Sigma)+\hat{O}\left(\Sigma^{\prime}\right)\right. \\
& \left.+\left(q_{G}-1\right) \hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}\right] \\
& =\left[\operatorname{Tr} \hat{\rho}_{\Sigma}^{q} \hat{O}(\Sigma)\right]\left[\operatorname{Tr} \hat{\rho}_{\Sigma^{\prime}}^{q}\right] \\
& +\left[\operatorname{Tr} \hat{\rho}_{\Sigma^{\prime}}^{q} \hat{O}\left(\Sigma^{\prime}\right)\right]\left[\operatorname{Tr} \hat{\rho}_{\Sigma}^{q}\right] \\
& +\left(q_{G}-1\right)<\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}>_{q} \tag{13}
\end{align*}
$$

hence, by using (1) (i.e., $\operatorname{Tr} \hat{\rho}^{q}=1+(1-q) S_{q}$),

$$
\begin{align*}
<\hat{O}\left(\Sigma U \Sigma^{\prime}\right)>_{q} & =<\hat{O}(\Sigma)>_{q}+<\hat{O}\left(\Sigma^{\prime}\right)>_{q} \\
& +(1-q)\left[<\hat{O}(\Sigma)>_{q} S_{q}^{\Sigma^{\prime}}+<\hat{O}\left(\Sigma^{\prime}\right)>_{q} S_{q}^{\Sigma}\right] / k \\
& +\left(q_{G}-1\right)<\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}>_{q} \tag{14}
\end{align*}
$$

If we impose now that the mean values of the observable must be extensive whenever these are measurable quantities (i.e., that the $q \neq 1$ effect is exactly compensated by the $q_{G} \neq 1$ effect) we obtain

$$
\begin{equation*}
q-1=k\left(q_{G}-1\right) \frac{<\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}>_{q}}{<\hat{O}(\Sigma)>_{q} S_{q}^{\Sigma^{\prime}}+<\hat{O}\left(\Sigma^{\prime}\right)>_{q} S_{q}^{\Sigma}} \tag{15}
\end{equation*}
$$

which yields the connection we were looking for. Generically, $q=1$ if and only if $q_{G}=1$. In the $q_{G} \rightarrow 1$ limit, Eq. (15) becomes

$$
\begin{align*}
& q-1 \sim k_{B}\left(q_{G}-1\right) \frac{\left\langle\hat{\eta}_{1}^{\sum \Sigma^{\prime}>}\right\rangle}{\left\langle\hat{O}(\Sigma)>S_{1}^{\Sigma^{\prime}}+\left\langle\hat{O}\left(\Sigma^{\prime}\right)>S_{1}^{\Sigma}\right.\right.} \tag{16}\\
& \propto q_{G}-1
\end{align*}
$$

The situation is schematically indicated in Fig. 1.
Before going on let us remark that the entropy operator $\hat{S}_{q} \equiv k\left(\hat{1}-\hat{\rho}^{1-q}\right) /(1-q)$ (so denominated because it satisfies $<\hat{S}_{q}>_{q}=S_{q}$) is not included among the operators \hat{O} which Eq. (15) refers to. Indeed, it satisfies $\hat{S}_{q}^{\Sigma U \Sigma^{\prime}}=\hat{S}_{q}^{\Sigma}+\hat{S}_{q}^{\Sigma^{\prime}}+(q-1) \hat{S}_{q}^{\Sigma} \hat{S}_{q}^{\Sigma^{\prime}}$, consequently
it is not extensive (unless $q=1$). The application of $\operatorname{Tr} \hat{\rho}_{\Sigma}^{q} \hat{\rho}_{\Sigma^{\prime}}^{q}$ on both sides of this equality naturally recovers Eq. (2).

Let us now illustrate the present calculation with two bosonic oscillators of the type described by Hamiltonian (6). Let the observable \hat{O} be $[\hat{N}]_{A}$. According to Eq. (10) we have

$$
\begin{equation*}
\left[n_{\Sigma}\right]_{A}=\frac{q_{G}^{2 n_{\Sigma}}-1}{q_{G}^{2}-1} \quad\left(n_{\Sigma}=0,1,2, \cdots\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[n_{\Sigma^{\prime}}\right]_{A}=\frac{q_{G}^{2 n_{\Sigma^{\prime}}}-1}{q_{G}^{2}-1} \quad\left(n_{\Sigma^{\prime}}=0,1,2, \cdots\right) \tag{18}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left[n_{\Sigma U \Sigma^{\prime}}\right]_{A}=\frac{q^{2\left(n_{\Sigma}+n_{\Sigma^{\prime}}\right)}-1}{q_{G}^{2}-1} \tag{19}
\end{equation*}
$$

Consequently, using Eq. (12), we have

$$
\begin{align*}
\left(q_{G}-1\right) \hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}} & =\left[\hat{N}_{\Sigma U \Sigma^{\prime}}\right]_{A}-\left[\hat{N}_{\Sigma}\right]_{A}-\left[\hat{N}_{\Sigma^{\prime}}\right]_{A} \\
& =\frac{q_{G}^{2\left(\hat{N}_{\Sigma}+\hat{N}_{\Sigma^{\prime}}\right)}-q_{G}^{2 \hat{N}_{\Sigma}}-q_{G}^{2 \hat{N}_{\Sigma^{\prime}}}+1}{q_{G}^{2}-1} \\
& =\frac{\left(q_{G}^{2 \hat{N}_{\Sigma}}-1\right)\left(q_{G}^{2 \hat{N}_{\Sigma^{\prime}}}-1\right)}{q_{G}^{2}-1} \tag{20}
\end{align*}
$$

This is a good point for commenting the generic form we expect for $\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}$. As illustrated in Eq. (20) (and in what follows from it), we expect to be $\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}=f\left(\hat{O}(\Sigma) ; q_{G}\right) f\left(\hat{O}\left(\Sigma^{\prime}\right) ; q_{G}\right)$, where $f\left(x ; q_{G}\right)$ is analytic in q_{G} at $q_{G}=1$, being generically $f(x ; 1) \neq 0$.

By denoting now $\eta_{q_{G}}^{\Sigma \Sigma^{\prime}}$ the eigenvalues of $\hat{\eta}_{q_{G}}^{\Sigma \Sigma^{\prime}}$ we have that $\eta_{q_{G}}^{\Sigma \Sigma^{\prime}}$ vanishes if $n_{\Sigma}=0$ or $n_{\Sigma^{\prime}}=0$; otherwise (i.e., if $n_{\Sigma} \geq 1$ and $n_{\Sigma^{\prime}} \geq 1$), Eq. (20) implies

$$
\begin{align*}
&\left(q_{G}-1\right) \eta_{q_{G}}^{\Sigma \Sigma^{\prime}} \\
&\left.\left.=\frac{\left[\sum_{i=1}^{2 n_{\Sigma}}\binom{2 n_{\Sigma}}{i}\left(q_{G}-1\right)^{i}\right]\left[\begin{array} { c }
{ 2 n _ { \Sigma ^ { \prime } } } \\
{ i ^ { \prime } = 1 }
\end{array} \left(^{2 n_{\Sigma^{\prime}}} i^{\prime}\right.\right.}{}\right)\left(q_{G}-1\right)^{i^{\prime}}\right] \\
& q_{G}^{2}-1 \tag{21}\\
&=\frac{q_{G}-1}{q_{G}+1}\left[\sum_{j=0}^{2 n_{\Sigma}-1}\binom{2 n_{\Sigma}}{j+1}\left(q_{G}-1\right)^{j}\right]\left[\sum_{j^{\prime}=0}^{2 n_{\Sigma}-1}\binom{2 n_{\Sigma}}{j^{\prime}+1}\left(q_{G}-1\right)^{j}\right]
\end{align*}
$$

Consequently, in the $q_{G} \rightarrow 1$ limit, we have

$$
\begin{equation*}
\eta_{1}^{\Sigma \Sigma^{\prime}} \sim 2 n_{\Sigma^{\prime}} n_{\Sigma^{\prime}} \quad\left(n_{\Sigma}, n_{\Sigma^{\prime}}=0,1,2, \cdots\right) \tag{22}
\end{equation*}
$$

hence, using Eq. (16),

$$
\begin{equation*}
q-1 \sim\left(q_{G}-1\right)<\hat{N}>k_{B} / S_{1} \tag{23}
\end{equation*}
$$

where we have used $<\hat{N}_{\Sigma} \hat{N}_{\Sigma^{\prime}}>=<\hat{N}_{\Sigma}><\hat{N}_{\Sigma^{\prime}}>$ and $<\hat{N}_{\Sigma}>=<\hat{N}_{\Sigma^{\prime}}>\equiv<\hat{N}>$.
By using the well known quantum harmonic oscillator results $<\hat{N}>=\left(e^{\beta \hbar \omega}-1\right)^{-1}$ and $S_{1} / k_{B}=\beta \hbar \omega e^{\beta \hbar \omega} /\left(e^{\beta \hbar \omega}-1\right)-\ln \left(e^{\beta \hbar \omega}-1\right)$, we finally obtain

$$
\begin{equation*}
q-1 \sim \frac{q_{G}-1}{\beta \hbar \omega e^{\beta \hbar \omega}-\left(e^{\beta \hbar \omega}-1\right) \ln \left(e^{\beta \hbar \omega}-1\right)} \tag{24}
\end{equation*}
$$

which is represented in Fig. 2 (where the $k_{B} T / \hbar \omega \rightarrow 0$ and $k_{B} T / \hbar \omega \rightarrow \infty$ asymptotic behaviors are indicated). We remark: (i) A temperature exists ($k_{B} T^{*} / \hbar \omega \simeq 2.31$) for which $q-1 \sim q_{G}-1$, hence q can (asymptotically) equal $q_{G}!$; (ii) At very low temperatures (where the system is practically not excited) q_{G} can vary a lot without making the thermodynamics appreciably nonextensive; (iii) At very high temperatures (where the system is highly excited), the slightest departure of q_{G} from unity yields a highly nonextensive thermodynamics; (iv) It seems plausible that, for any finite temperature, q monotonically increases from zero to infinity when q_{G} increases from zero to infinity. The Plastino and Plastino's discussion [14] of the $q=1$ paradox of the polytropic model for stellar systems was done in the classical limit $(\hbar \rightarrow 0)$, where it seems now reasonable to expect that a value of q_{G} slightly different from unity would imply in a value of q quite different from unity, as they indeed found. Since it seems possible to interpret $q_{G}>1$ as a discontinuous space-time [19], we should certainly not exclude the possibility for astrophysical systems being the right candidates for exploring the deepest effects of gravitation in Nature, including nonextensivity of the entropy.

Let us now synthetize the present work. Although the connection between Generalized Statistical Mechanics and Quantum Groups was done on effective grounds (i.e., the relation between q and q_{G} depends on temperature for a system in thermal equilibrium), it was established through a remarkably simple and generic assumption, namely that nonextensive statistics can exactly compensate nonextensive mechanics in such a way as to provide extensive mean values of the observables. This fact might help for the understanding of one among the most puzzling problems of contemporary science, namely the deep nature of space-time.

ACKNOWLEDGEMENTS: The author is very indebted to E.M.F. Curado, M.R-Monteiro and I. Roditi for stressing his attention onto quantum groups as well as for very valuable discussions. He also aknowledges useful remarks from A.C.N. Magalhães.

Caption for figures

Fig. 1 - Typical (finite temperature) relation between q and q_{G}. By "Extensive Physics" we mean Shannon entropy, Boltzmann-Gibbs statistics, continuous space-time, differentialequations physics, etc.

Fig. 2-Temperature dependent relation between q and q_{G} in the region $q \simeq q_{G} \simeq 1$ for bosonic oscillators ($k_{B} T^{*} / \hbar \omega \simeq 2.31$). The asymptotic behaviors for $T \ll T^{*}$ and $T \gg T^{*}$ are respectively given by $k_{B} T / \hbar \omega$ and $\left(k_{B} T / \hbar \omega\right) / \ln \left(k_{B} T / \hbar \omega\right)$.

Fig. 1

Fig. 2

References

[1] C. Tsallis, J. Stat. Phys. A 52, 479 (1988).
[2] A.M. Mariz, Phys. Lett. A 165, 409 (1992).
[3] J.D. Ramshaw, Phys. Lett. A 175, 169 (1993).
[4] J.D. Ramshaw, Phys. Lett. A 175, 171 (1993).
[5] E.M.F. Curado and C. Tsallis, J. Phys. A 24, L 69 (1991); Corrigenda: 24, 3187 (1991) and 25, 1019 (1992).
[6] A.R. Plastino and A. Plastino, Phys. Lett. A 177, 177 (1993).
[7] A.R. Plastino and A. Plastino, "Dynamical Aspects of Tsallis Entropy", Physica A (1993), in press.
[8] E.P. da Silva, C. Tsallis and E.M.F. Curado, Physica A 199, 137 (1993).
[9] A. Chame and E.V.L. de Mello, "The fluctuation-dissipation theorem in the framework of the Tsallis statistics", preprint (1993).
[10] A. Plastino and C. Tsallis, J. Phys. A 26, L893 (1993).
[11] D.A. Stariolo, "The Langevin and Fokker-Planck Equations in the Framework of a Generalized Statistical Mechanics", preprint (1993).
[12] E.F. Sarmento, "Generalization of Single-site Callen's Identity Within Tsallis Statistics", preprint (1993).
[13] F. Buyukkiliç and D. Demirhan, Phys. Lett. A 181, 24 (1993).
[14] A.R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).
[15] R. Balian, "From Microphysics to Macrophysics", Vol. 1, page 134 (Springer-Verlag, Berlin, 1991); A.M. Salzberg, J. Math. Phys. 6, 158 (1965); H.E. Kandrup, Phys. Rev. A 40, 7265 (1989); L. G. Taff, "Celestial Mechanics" (J. Wiley, New York, 1985) p. 437; W.C. Saslaw, "Gravitational Physics of Stellar and Galactic Systems" (Cambridge University Press, Cambridge, 1985) p. 217; J. Binney and S. Tremaine, "Galactic dynamics" (Princeton University Press, Princeton, 1987) p. 268; P.T. Landsberg, J. Stat. Phys. 35, 159 (1984).
[16] P. Alemany and D.H. Zanette, "Fractal random walks from a variational formalism for Tsallis entropies", Phys. Rev. E/Rapid Comm. (1993), in press.
[17] E.W. Montroll and M.F. Shlesinger, J. Stat. Phys. 32, 209 (1983); E.W. Montroll and B.J. West, "Fluctuation Phenomena" (Elsevier, Amsterdam, 1987), p. 186.
[18] E. Witten, Nucl. Phys. B 330, 285 (1990).
[19] A. Dimakis and F. Müller-Hoissen, Phys. Lett. B 295, 242 (1992).
[20] P. Aschieri and L. Castellani, Int. J. Mod. Phys. A 8, 1667 1993).
[21] R. Caracciolo and M.R-Monteiro, Phys. Lett. B 308, 58 (1993).
[22] A Lerda and S. Sciuto, Nucl. Phys. B (1993), in press.
[23] M.R-Monteiro and I. Roditi, "Thermo Field Dynamics of Deformed Systems", (1993) Mod. Phys. Lett. B, in press.

