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Abstract

The instability of the phonon spectrum in liquid Helium for T < 1 K is a well estab-

lished experimental fact. We discuss the role of q-deformation as a possible mechanism to

supply the energy de�cit that forbiddens one-phonon decay into two phonons when the

constant 
 in the phonon anomalous dispersion relation (!ph = c0p(1 � 
p2)) is positive,

through the analysis of three-phonon processes in a q-phonons gas.
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The super
uid properties of 4He, �rst discussed by Kapitza [1], appear below the

lambda-point, T� = 2:18 K [2]. In Landau theory [3], those properties follow from phonon

and roton excitations [4]. Even for very low temperatures, T � 0:6 K, where phonons

dominate, they present an anomalous dispersion given

!ph = c0p(1 � 
p2) ; (1)

c0 is the sound velocity.

The non-linearity of (1) makes impossible the simultaneous conservation of energy and

momentum in three-phonon processes. The sign of the constant 
 is crucial: if 
 > 0,

then one phonon of energy !1 and momentum p1,

!1 = c0p1(1� 
p21) ; (2)

cannot decay into two phonons of energies !2, !3 and momenta p2; p3; where

~p1 = ~p2 + ~p3 (3)

because

!1(p1) < !2(p2) + !3(p3) ; (4)

with an energy de�cit

!2(p2) + !3(p3)� w1(p1) = 3
p22p3 + 3
p2p
2
3 : (5)

Therefore, the positivity of 
 implies that the phonon spectrum is stable [2]. Nevertheless,

the unstable character of the phonon spectrum in 4He is a well established experimental

fact for T < 1 K. The occurence of one-phonon decay two into phonons is supported by

experimental data of phonon lifetime in scattering of neutrons [5]; also, a negative 
 is

obtained (for most values of the pressure) in 4He speci�c heat measurements [6, 7]. In

spite of that, there are unsolved discrepancies concerning the unstable character of phonon

spectrum in 4He. From high-resolution neutron scattering experiments [8], 
 was deduced

to be positive for the observed excitation spectrum for liquid 4He below T�. This result

agrees with the indirect determination of 
 from X-ray scatering experiments [9]. As the

temperature at which the experiments were carried on are higher than 1 K, T = 1:1 K,

this discrepancy suggests that the sign of 
 may change according to the temperature [2].
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There is also disagreement between theory and experiment. The dispersion relation

(1) was theoretically derived from a hydrodynamic Hamiltonian and through a self-energy

calculation using the lowest order perturbation theory, the constant 
 was estimated to

be positive [10].

The facts above can be taken as an indication that for very low temperatures (T �

0:6 K), where phonon excitations are dominant, there must appear some mechanism that

makes the phonon spectrum unstable, even if 
 > 0, as theoretically predicted [10] and

experimentally determined for T > 1 K [8, 9].

In recent paper it was shown that these discrepancies concerning the stability of the

phonon spectrum can be solved when the phonon excitations are treated as an ideal

deformed bosonic gas [11]. In this note we discuss the mechanism behind the role of

q-deformation in solving the question of the sign of 
 and its relation to the existence of

three phonon processes in liquid Helium at very low temperatures.

q-Deformed Heisenberg algebras are non-trivial generalizations of the Heisenberg al-

gebra through the introduction of deformation parameters [12]. q-Oscillators [13, 14] are

objects that satisfy the deformed Heisenberg algebras; with them one constructs a de-

formed ideal bosonic q-gas that generalizes the usual ideal boson gas. Their statistical

properties have been studied both in the q ' 1 approximation [15] and in the highly

deformed region [16], in the so called \fundamental representation" [17]. More recently,

it was shown that there are more general representations where a second parameter, �0, is

introduced [18]. Some consequences of using these inequivalent representations and their

possible connection with super
uidity have been discussed [19].

A bosonic q-oscillator [13, 14] is the associated algebra generated by elements a; a+

and N satisfying the relations

[N; a+] = a+ ; [N; a] = �a

aa+ � qa+a = q�N ; (6)

where the deformation parameter, q 2 IR+. For q > 1, denoting the normalized basis

vector by jn >, the inequivalent �0 representations [17] are given by:

a+jni = q�0=2[n+ 1]1=2jn+ 1i

ajni = q�0=2[n]jn� 1i (7)

N jni = (�0 + n)jni ;
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where [n] =
qn � q�n

q � q�1
. �0 is a real free parameter that goes to zero when q ! 1 and is

interpreted as a \background e�ect" [17].

We consider an ideal q-gas in the representation (7), described by the Hamiltonian

H =
X

i

!ia
+
i ai =

X

i

!i([Ni]� qNiCi) ; (8)

where ai and a
+
i are interpreted as annihilation and creation operators of particles in levels

i with energy !i and Ni is an operator that can be interpreted as the number operator

of particles in levels i when �0 = 0. ai; a
+
i and Ni satisfy algebra (6) and commute for

di�erent levels. Ci is a Casimir operator,

Ci = qNi([Ni]� a+i ai) (9)

and in representation (7) one has

Cijnii = q�
i

0[�i0]jni : (10)

Let us now suppose that the phonons in 4He are described by relations (8-10). Using

(7), we have

Hjni =
X

i

!iq
�i

0 [n]jni (11)

and the q-phonon energy in level i is

!
ph
i = !iq

�i
0 [ni] : (12)

We take �i0 di�erent for each level and in the continuum limit �i0 ! �0(p). !i is the

usual phonon energy such that in the continuum limit we have the anomalous dispersion

relation (1). Then, the energy-momentum relation

!ph(p) = q�0(p)c0p(1� 
p2) (13)

can be interpreted as the e�ective energy of one q-phonon in 4He. Therefore deformed

phonon presents a modi�ed anomalous dispersion relation and it is important to remark

that the background parameter �0 is the origin of this modi�cation [11].

Let us now discuss a three-phonon process. We take two phonons with energies !1(p1)

and !2(p2), respectively. In order to have simultaneous conservation of energy and mo-

mentum, we must have

!1(p1) + !2(p2) = !3(p1 + p2) ; (14)
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that is,

q�0(p1)c0p1(1� 
p21) + q�0(p2)c0p2(1� 
p22) =

q�0(p1+p2)c0p1p2(1 � 
(p1 + p2)
2) : (15)

First, relation (15) can only be satis�ed if f(p) = q�0(p)c0p(1�
p2) is a linear function

of the momentum. This only happens in two cases: a) q�0(p) is a constant and 
 = 0; b)

�(p) / ln(1�
p2)�1. In the �rst case, we have the usual linear phonon dispersion relation,

which is ruled out by experiment [6{9]. The second possibility means that q-deformation

can lead to simultaneous energy and momentum conservation by rendering the q-phonon

spectrum non-anomalous, even if 
 6= 0.

On the other side, an appropriate choice of the factor q�0(p) in (13) can make the

coe�cient of the p3 term negative even if 
 is kept positive. For example, if

�0(p) =
ln(1 + �p2)

ln q
; (16)

the dispersion relation (13) will become:

!ph(p) =
c0p

ln q
(1� (
 � �)p2 � 
�p4) : (17)

Inspection of relation (17) shows that if 
 � � < 0, q-deformation has the consequence of

giving the phonon the necessary energy for its spectrum to be unstable, independently of

the sign of 
.

Of course, relation (16) is not the only possible choice. Indeed, it has recently been

shown that choosing q�0(p) = e�
2p2 with �2 =

ln q

2m4HekBT�
, it is possible to reproduce,

within less than 5% of discrepancy, the experimental values of 4He molar speci�c heat [7]

in the temperature range 0:14 � T � 0:86, obtaining positive values for 
 and negative

coe�cients of p3 in the q-deformed dispersion relation in all cases [11].

Summing up, the modi�ed dispersion relation that appears when we treat the phonon

as an ideal bosonic q-gas in a �0 representation can solve the energy de�cit that forbiddens

one-phonon decay into two phonons.
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