"q-Deformation and Energy Deficit in Liquid Helium Phonon Spectrum"

Ligia M.C.S. Rodrigues^{*a} and Stenio Wulck^{**b}

*Centro Brasileiro de Pesquisas Físicas - CBPF Rua Dr. Xavier Sigaud, 150 22290-180 – Rio de Janeiro, RJ – Brazil

and

Dipartimento di Fisica Teorica dell'Universitá di Torino Via P. Giuria, 1 I-10125 – Torino – Italy

**Instituto de Física
Universidade Federal do Rio de Janeiro
Cidade Universitária - Ilha do Fundão
21945-970 - Rio de Janeiro, RJ - Brazil

Abstract

The instability of the phonon spectrum in liquid Helium for T < 1 K is a well established experimental fact. We discuss the role of q-deformation as a possible mechanism to supply the energy deficit that forbiddens one-phonon decay into two phonons when the constant γ in the phonon anomalous dispersion relation ($\omega^{ph} = c_0 p(1 - \gamma p^2)$) is positive, through the analysis of three-phonon processes in a q-phonons gas.

Key-words: Liquid Helium; q-Oscillators; Superfluidity.

PACS: 67.40.Kh, 67.90.+z, 05.30.Jp

⁽a)ligia@cbpfsu1.cat.cbpf.br

^(b)steniow@if.ufrj.br

The superfluid properties of ${}^{4}He$, first discussed by Kapitza [1], appear below the lambda-point, $T_{\lambda} = 2.18 \ K$ [2]. In Landau theory [3], those properties follow from phonon and roton excitations [4]. Even for very low temperatures, $T \leq 0.6 \ K$, where phonons dominate, they present an anomalous dispersion given

$$\omega^{ph} = c_0 p (1 - \gamma p^2) ; \qquad (1)$$

 c_0 is the sound velocity.

The non-linearity of (1) makes impossible the simultaneous conservation of energy and momentum in three-phonon processes. The sign of the constant γ is crucial: if $\gamma > 0$, then one phonon of energy ω_1 and momentum p_1 ,

$$\omega_1 = c_0 p_1 (1 - \gamma p_1^2) , \qquad (2)$$

cannot decay into two phonons of energies ω_2 , ω_3 and momenta p_2 , p_3 , where

$$\vec{p}_1 = \vec{p}_2 + \vec{p}_3 \tag{3}$$

because

$$\omega_1(p_1) < \omega_2(p_2) + \omega_3(p_3) , \qquad (4)$$

with an energy deficit

$$\omega_2(p_2) + \omega_3(p_3) - w_1(p_1) = 3\gamma p_2^2 p_3 + 3\gamma p_2 p_3^2 .$$
(5)

Therefore, the positivity of γ implies that the phonon spectrum is stable [2]. Nevertheless, the unstable character of the phonon spectrum in ${}^{4}He$ is a well established experimental fact for $T < 1 \ K$. The occurence of one-phonon decay two into phonons is supported by experimental data of phonon lifetime in scattering of neutrons [5]; also, a negative γ is obtained (for most values of the pressure) in ${}^{4}He$ specific heat measurements [6, 7]. In spite of that, there are unsolved discrepancies concerning the unstable character of phonon spectrum in ${}^{4}He$. From high-resolution neutron scattering experiments [8], γ was deduced to be positive for the observed excitation spectrum for liquid ${}^{4}He$ below T_{λ} . This result agrees with the indirect determination of γ from X-ray scattering experiments [9]. As the temperature at which the experiments were carried on are higher than 1 K, $T = 1.1 \ K$, this discrepancy suggests that the sign of γ may change according to the temperature [2]. There is also disagreement between theory and experiment. The dispersion relation (1) was theoretically derived from a hydrodynamic Hamiltonian and through a self-energy calculation using the lowest order perturbation theory, the constant γ was estimated to be positive [10].

The facts above can be taken as an indication that for very low temperatures ($T \leq 0.6 K$), where phonon excitations are dominant, there must appear some mechanism that makes the phonon spectrum unstable, even if $\gamma > 0$, as theoretically predicted [10] and experimentally determined for T > 1 K [8, 9].

In recent paper it was shown that these discrepancies concerning the stability of the phonon spectrum can be solved when the phonon excitations are treated as an ideal deformed bosonic gas [11]. In this note we discuss the mechanism behind the role of q-deformation in solving the question of the sign of γ and its relation to the existence of three phonon processes in liquid Helium at very low temperatures.

q-Deformed Heisenberg algebras are non-trivial generalizations of the Heisenberg algebra through the introduction of deformation parameters [12]. q-Oscillators [13, 14] are objects that satisfy the deformed Heisenberg algebras; with them one constructs a deformed ideal bosonic q-gas that generalizes the usual ideal boson gas. Their statistical properties have been studied both in the $q \simeq 1$ approximation [15] and in the highly deformed region [16], in the so called "fundamental representation" [17]. More recently, it was shown that there are more general representations where a second parameter, ν_0 , is introduced [18]. Some consequences of using these inequivalent representations and their possible connection with superfluidity have been discussed [19].

A bosonic q-oscillator [13, 14] is the associated algebra generated by elements a, a^+ and N satisfying the relations

$$[N, a^{+}] = a^{+} , [N, a] = -a$$
$$aa^{+} - qa^{+}a = q^{-N} , \qquad (6)$$

where the deformation parameter, $q \in \mathbb{R}^+$. For q > 1, denoting the normalized basis vector by $|n\rangle$, the inequivalent ν_0 representations [17] are given by:

$$a^{+}|n\rangle = q^{\nu_{0}/2}[n+1]^{1/2}|n+1\rangle$$

$$a|n\rangle = q^{\nu_{0}/2}[n]|n-1\rangle$$

$$N|n\rangle = (\nu_{0}+n)|n\rangle ,$$
(7)

CBPF-NF-048/96

where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$. ν_0 is a real free parameter that goes to zero when $q \to 1$ and is interpreted as a "background effect" [17].

We consider an ideal q-gas in the representation (7), described by the Hamiltonian

$$H = \sum_{i} \omega_i a_i^{\dagger} a_i = \sum_{i} \omega_i ([N_i] - q^{N_i} C_i) , \qquad (8)$$

where a_i and a_i^+ are interpreted as annihilation and creation operators of particles in levels i with energy ω_i and N_i is an operator that can be interpreted as the number operator of particles in levels i when $\nu_0 = 0$. a_i , a_i^+ and N_i satisfy algebra (6) and commute for different levels. C_i is a Casimir operator,

$$C_{i} = q^{N_{i}}([N_{i}] - a_{i}^{\dagger}a_{i})$$
(9)

and in representation (7) one has

$$C_i|n_i\rangle = q^{\nu_0^i}[\nu_0^i]|n\rangle . \tag{10}$$

Let us now suppose that the phonons in ${}^{4}He$ are described by relations (8-10). Using (7), we have

$$H|n\rangle = \sum_{i} \omega_{i} q^{\nu_{0}^{i}}[n]|n\rangle \tag{11}$$

and the q-phonon energy in level i is

$$\omega_i^{ph} = \omega_i q^{\nu_0^i}[n_i] . \tag{12}$$

We take ν_0^i different for each level and in the continuum limit $\nu_0^i \to \nu_0(p)$. ω_i is the usual phonon energy such that in the continuum limit we have the anomalous dispersion relation (1). Then, the energy-momentum relation

$$\omega^{ph}(p) = q^{\nu_0(p)} c_0 p (1 - \gamma p^2) \tag{13}$$

can be interpreted as the effective energy of one q-phonon in ${}^{4}He$. Therefore deformed phonon presents a modified anomalous dispersion relation and it is important to remark that the background parameter ν_{0} is the origin of this modification [11].

Let us now discuss a three-phonon process. We take two phonons with energies $\omega_1(p_1)$ and $\omega_2(p_2)$, respectively. In order to have simultaneous conservation of energy and momentum, we must have

$$\omega_1(p_1) + \omega_2(p_2) = \omega_3(p_1 + p_2) , \qquad (14)$$

that is,

$$q^{\nu_0(p_1)}c_0p_1(1-\gamma p_1^2) + q^{\nu_0(p_2)}c_0p_2(1-\gamma p_2^2) = q^{\nu_0(p_1+p_2)}c_0p_1p_2(1-\gamma (p_1+p_2)^2) .$$
(15)

First, relation (15) can only be satisfied if $f(p) = q^{\nu_0(p)}c_0p(1-\gamma p^2)$ is a linear function of the momentum. This only happens in two cases: a) $q^{\nu_0(p)}$ is a constant and $\gamma = 0$; b) $\nu(p) \propto \ln(1-\gamma p^2)^{-1}$. In the first case, we have the usual linear phonon dispersion relation, which is ruled out by experiment [6–9]. The second possibility means that q-deformation can lead to simultaneous energy and momentum conservation by rendering the q-phonon spectrum non-anomalous, even if $\gamma \neq 0$.

On the other side, an appropriate choice of the factor $q^{\nu_0(p)}$ in (13) can make the coefficient of the p^3 term negative even if γ is kept positive. For example, if

$$\nu_0(p) = \frac{\ln(1 + \lambda p^2)}{\ln q} , \qquad (16)$$

the dispersion relation (13) will become:

$$\omega^{ph}(p) = \frac{c_0 p}{\ln q} \left(1 - (\gamma - \lambda)p^2 - \gamma\lambda p^4\right) \,. \tag{17}$$

Inspection of relation (17) shows that if $\gamma - \lambda < 0$, *q*-deformation has the consequence of giving the phonon the necessary energy for its spectrum to be unstable, independently of the sign of γ .

Of course, relation (16) is not the only possible choice. Indeed, it has recently been shown that choosing $q^{\nu_0(p)} = e^{\delta^2 p^2}$ with $\delta^2 = \frac{\ln q}{2m_{^4He}k_BT_{\lambda}}$, it is possible to reproduce, within less than 5% of discrepancy, the experimental values of 4He molar specific heat [7] in the temperature range $0.14 \leq T \leq 0.86$, obtaining positive values for γ and negative coefficients of p^3 in the q-deformed dispersion relation in all cases [11].

Summing up, the modified dispersion relation that appears when we treat the phonon as an ideal bosonic q-gas in a ν_0 representation can solve the energy deficit that forbiddens one-phonon decay into two phonons.

Acknowledgements

The authors thank M.R-Monteiro for helpful suggestions. L.M.C.S.R. thanks C. Tsallis for discussions, the Dipartimento di Fisica Teorica dell'Universitá di Torino for its kind hospitality and Fundação de Amparo à Pesquisas do Rio de Janeiro for having partially supported this work.

References

- [1] P.L. Kapitza, Nature **141**, 74 (1938).
- [2] J. Wilks, The Properties of Liquid and Solid Helium (Oxford Univ. London, England, 1965).
- [3] L. Landau, J. Phys. USSR 5, 71 (1941); J. Phys. USSR 11, 91 (1947).
- [4] I.M.Khalatnikov in The physics of Liquid and Solid Helium, Part. I, Vol. XXIX (John Wiley & Sons, Inc., New York, 1976).
- [5] B.M. Abraham, Y. Eckstein, J.B.Ketterson, M. Kuchnir and P.R. Roach, Phys. Rev. A1, 250 (1970); G.W. Waters, D.J. Watnough and J. Wilks, Phys. Lett. 26A, 12 (1967).
- [6] N.E. Phillips, C.G. Waterfield and J.K. Hoffer, Phys. Rev. Lett. 25, 1260 (1970).
- [7] D.S. Greywall, Phys. Rev. **B18**, 2127 (1978); Phys. Rev. **B21**, 1319 (1979).
- [8] A.D.B. Woods and R.A. Cowley, Phys. Rev. Lett. 24, 646 (1970); Can. J. Phys. 49, 177 (1971).
- [9] D. Pines and C.W. Woo, Phys. Rev. lett. 24, 1044 1970.
- [10] S. Eckstein and B.B. Varga, Phys. Rev. Lett. **21**, 1311 (1968).
- [11] M.R-Monteiro, L.M.C.S. Rodrigues and S. Wulck, Phys. Rev. Lett. 76, 1098 (1996).
- [12] S. Jing, Mod. Phys. Lett. A8, 453 (1993).
- [13] A.J. Macfarlane, J. Phys. A22, 4581 (1989); L.C. Biedenharn, J. Phys. A22, L873 (1989).
- [14] M. Chaichian and P. Kulish, Phys. Lett. **B234**, 72 (1990).
- [15] M. Chaichian, R. Gonzalez Felipe and C. Montonen, J. Phys. A 26, 4020 (1993).
- [16] M.R-Monteiro, I. Roditi and L.M.C.S. Rodrigues, Int. J. Mod. Phys. **B8**, 3281 (1994).
- [17] M.R-Monteiro and L.M.C.S. Rodrigues, Mod. Phys. Lett. **B9**, 883 (1995).

- [18] G. Rideau, Lett. Math. Phys. 24, 147 (1992).
- [19] M.R-Monteiro and L.M.C.S. Rodrigues, Mod. Phys. Lett. B 10, 41 (1996).