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ABSTRACT

We establish a connection between a two-dimensional field theo-
ry possessing a classical solution denending on only one of the coor-
dinates, and the gquantum mechanical harmonic oscillator whose fre

quency‘is one coordinate-dependent.
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The problem of a harmonic oscillator with a time-dependent fre
quency has been treated in a number of worksi, Exact solutions and
the exact propagator have been found?. |

On the other side the calculation of the contribution to the
generating functional from a classical solution and its neighbour
hood in a two-dimensional field theory is a subject largely in-
vestigated, existing nowadays an extensive literature about?.

In this note we establish a connection between the two problems
mentioned above. We show that in the case the classical solution
considered is a étatic one, Or mere generally-depends on only'Qne
of the two independenf variables involved, the .two-dimensional field
theory‘is formally equivalent to a one-dimensional time-dependent
frequency harmonic oscillator.  Moreover if_the.classical configu
ration chosen is-an'approximate solution of the equétion of mo-
tion, we will have an equivalent fozced time-dependent frequency
harmonic oscillator, with the external force being proportional to
a quantity that measures the "degree of exactness” of the  solu-
tion.

Let us consider a two~dimensional scalar field theory in Eucli

dean spvace, with an action of the form,
S[e] = dedt[%(8®)2+‘v(@[x,t))—JG'{x,t)] r (1)

where V{4) is the classical potential and J igs a constant exter-
nal current. For definiteness suppose there exists a classical
static configuration 3 (x) which is an almost exact solution of
the field equation of motion, that is, 32%5 v'(3) -3, where the
prime indicates derivation respective to the field ¢, am13258;+3§.

In this case the contribution to the generating functional com
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2=
ing from that quasi-classical solution and its neighbourhcod, may

be obtained expanding ¢ around ¥, ¢ =3 + 1, and introducing this expan

sion in eq. (l1l). We obtain

213] = SRLSELL I-Qﬂ [-fdldt[%(an)‘ + V@24 (v (3) - 373 - J)E} } '

12)

where N is the normalization constant,
N = Jé)_s_b exp[—% [ dxdt(aqs-.)’] (2a)

We would like to point out that the linear dependence on n in the
exponent of eq.(2) appears only if ¥(x) .is not an exact extremm of
the action. We remark also that the functional .integration in.
eq.{2) has the same form as the propagator of a theory where the
mass depends on only one of the coordinates, subject to an exter-
nal current.

We are thus led to the calculation of the quantity

Jf.z)n exp {_%Jm [n{x,£) (<37 = £ G n G, 8]+ Jd:dt £0n (x,t) } 3)

J@wta@E% I(a«p)? d:ﬂt]

r

where for convenience we have introduced a function &:(x), which
measures in some sense the "degree of exactness” of the quasi-clas
sical static solution % (x), that is,

3o =-L 2 vy -5, (4)

and defined the function of x,
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flx) = =2V"(3(x)) . (5)

.To calculate the numerator of eq. (3) we consider the Schriddinger
equation associated to the operator -3? + £(x). For doing thi's,. we

enclose the system in a box A of sides L and T, the x and 't varia-

bles varying respectively in the domains --12’- Sxs 4% and . -% sts+ %‘"
We take the eigenfunctions n to be separable in the variables X

and t, n=¢{x)x(t), which leds to the equations, (*)
/
o x| E, X () (a)
dt?
{ {6)
, _
e rex) = 20 (x) (b)
dxz

\

. . _ l . .
The elgenfgnctlons of eg.(6a) are xm(t) =i exp(ikmt) , with conti
nuous eigenvalues of the energy E£m==k;, me Z; the eigenvalues of
eq. (6b), E, belong partly to a discrete set, E
partly to a continuous one, E2m= w MG Z. The eigenfunctions nm(x,t)=

2n= An, DGN, and

¢ (x)x (t) are chosen to satisfy periodic boundary conditions in
the box A; |

Expanding the configuration n{x,t) in the functional integrand
(3) in terms of the eigenfunbtions of the associated Schrddinger op

erator -3% - £(x), we get,

nix,t) = J anmdbn(x) xm(t) ‘ {7

m,n

with

*

(*) The only restriction to the function f(x) is that E,>0, such that the Gaus
sian functional integration in eq.(3) be well defined. "The treatment of the
zero-mode is well known?®.
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+L/2  +T/2
m = | X | atntx,t) ¢ (x)x (€) . (7a)

-L/2 -T/2

The functional integration in the numerator of eq. (3) can be re—

f +T/2 .
written in terms of the coefficients a o Using that xm(t)dt =

-T/2
VT Spot 2nd-also that f(x) and €(x) are functions of x only, the

integrations over a o for m# 0 are Gaussians, therefore being easi

ly performed. This gives for the numerator of eq. (3) the result,

_ +L/2

Y
X exp -%’ ) [2n ano+ }dxv‘f a  elx) ¢ n(x)] . (8 |
n -L/Z . .

After some manipulations the exnonent in eq. (8) may be recast in

the form,
+L/2 g
-%( f (Ea'o v (x) (——q——-n-f(x)) ():a ¢(x)) +
dx?
RS V5 R -
+L/2
+ VT [dx g(x) } a ¢ {x) . _ (9)
-L/2 0

At this point we are in the position to show that the two-dimension
al problem that we are dealing with, reduces to a broblem in one

dimension.

This is done by defining a function gq(x),



CBPF-NF-048/88
-5-

+T/2 |
q(x) = =5 f‘n (x,t)at -, (10)
~-T/2

which allows us to rewritte eq. (10) as

+L/2

. . +L/2
-3 lax qx) |- ;xz - flxlq(x) + /T [six)q(x)ax .
-L/2 -L/2

Therefore, the generating functional eq, (2) is given by,

1 27 z -
Z[JI = _ﬁ n];[m W exp[—S[@]] X
#0 '

n

i1
r +L/2 +L/2
, 1 L2 ' '
X j q exPi-‘i Idx[(g—g)" ~£({x)q(x)] + /T dxe(x)g(x) L ,
-L/2 -L/2

(11)

where the normalization constant is now given by

) +L/2
. . 5 ga L d:(_)z
N = il ( —_} J ex - I gaaxl
n,m6Z €1m+€2m 4 ® 2 f dx
m#0 L/2

where €, = (2mn/T) % and €2n=(217m/L)2, m,nc€Z. We should emphasize
that €, =E,;_ but €, # E,

Eq. (11) is, apart from an overall factor, formally -equivalent to
the generating functional for a one-dimensional harmonic oscillator
q(x) with a "time-dependent" frequency f(x), submitted to an exter-
nal driving force vT e(x). This problem is the same as the one
considered in the papers of ref. 2 where the formal problem has
been exactly solved.

From expression (10) we see also that in the particular situa-

tion when 7 (x) is an exact classical static solution (&(x)=0) of
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the field equation, the two-dimensional problem reduces "to .solve
the quantum mechanical problem of a harmonic oscillator with a
”ﬁﬁe—dependent frequéncy given by -2v" (3{x)).

In both cases, (3(x) an approximate or exact solution) a memory
of the other dimension is kept, in the overall factor in front of
the functional integration of the quantum harmonic oscillator and
in the driv}ng.external force. In the overall factor we have the
eigenvalues Ein associated to the time dimension t.

The result we found is a general one, valid for any case where
we are calculating the-cbntribution coming from the neighbourhood
of a classical configuration which depends only on one of the two
indenendent coordinates. This includes the_calcul&tion of the prop-
agator of a two-dimensicnal theory with a positingOr-time-depend-

ing mass.
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