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Abstract

We treat the N�extended supergravity in 2 + 1 space-time dimensions as a Yang-Mills

gauge �eld with Chern-Simons action associated to the N -extended Poincar�e supergroup. We

�x the gauge of this theory within the Batalin-Vilkovisky scheme.
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1 Introduction

Since Einstein achieved his theory, gravity is treated as a particular geometry of space-time. The

metric is what determines this geometry which, in the �rst order formalism, is described by the

vierbein { or more precisely the dreibein in the context of the present paper { and a Lorentz

connection. The dreibein components form a basis of the tangent vector space, equiped with a

Lorentz structure. The metric is then derived from the dreibein. The Lorentz conection, considered

as an independent �eld, turns out to be functional of the dreibein by virtue of the �eld equations.

In this case the action is that of Einstein-Palatini. N -extended supergravity is a supersymmetric

generalization of gravity with N supersymmety generators.

Witten [1] described gravity in 2+1 dimensions as a gauge theory, writing the gravity �elds as

a Yang-Mills �eld with a Chern-Simons action and showing the equivalence of the Chern-Simons

and Einstein-Palatini actions. The gauge group of this theory is that of Poincar�e, which may

be extended to the de Sitter or anti-de Sitter groups corresponding to a positive or negative,

cosmological constant, respectively.

The equivalence of 3-dimensional gravity with a Chern-simons theory can be generalized to the

case of N -extended supergravity, taking the Poincar�e, de Sitter or anti-de Sitter supergroup as

gauge group [2]. All one needs is an invariant quadratic form for these supergroups from which

one can construct the Chern-Simons action, the latter being then interpreted as the N -extended

supergravity action. The authors of [3] did it for the anti-de Sitter supergroup considered as the

product of two ortho-simplectic supergroups: AdS(p; q) = OSP+(p; 2;R) � OSP�(q; 2;R) (where

p + q = N is the total number of supersymmetry generators). They considered various limiting

cases, in particular the super-Poincar�e limit of vanishing cosmological constant.

Our purpose is to implement a convenient gauge �xing of this N -extended super-Chern-Simons

theory, taking into account the existence of a local vector supersymmetry generally associated to

di�eomorphism invariance as usual in such topological theories [4]. Because of the latter invariance

the complete gauge algebra closes only on-shell. We shall use therefore the Batalin-Vilkovisy version

of the BRST gauge �xing scheme [11]. In order to obtain the gauge �xed action in a concise way we

shall use a formalism of extended �elds, i.e. superpositions of forms of all possible degrees [12, 14].

We choose to work in the present paper directly in the super-Poincar�e limit of null cosmo-

logical constant. The construction for super-de Sitter with nonvanishing cosmological constant is

similar [13] and will not be explicited out here.

The plan of the paper is the following. Section 2 reviews the construction of 3-dimensional

N -extended supergravity as a Chern-Simons theory fololowing [3] and then analyses all the gauge

invariances, putting them together in a BRST operator and writing the corresponding Slavnov-

Taylor identity. The gauge �xing is performed in Section 3. The paper ends with a conclusion

section.
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2 N�Extended Supergravity

In order to construct an N -extended supergravity theory a la Chern-Simons in 3 dimensioanl

space-time, with zero cosmological constant, we choose the N -extended Poincar�e supergroup as a

gauge group, whose Lie superalgebra isy:

[Ja; Jb] = �abcJc; [P a; P b] = 0; [Ja; P b] = �abcPc;

[Ja; QI
�] = �1

2
(a)��Q

I
�; [P a; QI

�] = 0;
h
QI
�; Q

J
�

i
= ÆIJ (a)�� P

a :
(2.1)

P a, Ja and QI
� are the generators of space-time translations, Lorentz transformations and super-

symmetry transformations, respectively, the QI 's being Majorana spinors. The indices take the

values a = 0; 1; 2 (Poincar�e index), � = 1; 2 (spin index) and I = 1; :::; N (rigid SO(N) index). The

tangent space metric is Minkowski of signature is (�++), the Levi-Civita tensor for the Poincar�e

indices �abc = �abc is de�ned by �123 = 1 and the spin Levi-Civita tensor ��� = ��� by �12 = 1.

The latter is used in order to lower and rise the spin indices as u� = �����, u
� = ���u� . We also

have ���� = �Æ�� . The Dirac matrices (a �� ) are chosen real: 0 = �i�y, 1 = �z, 
2 = �x, the

�'s being the Pauli matrices. In this representation the Majorana spinors have real components:

u�� = u� and �u� � (u+0)� = "��u� = u�.

Let us collect in one array XA the basis elements of the superalgebra:

fXAg = fPa; Jb; QI
� ; a; b = 0; 1; 2 ; � = 1; 2 ; I = 1; � � � ; Ng :

In order to construct a Chern-Simons action, we need a nondegenerate invariant quadratic form

h�1;�2i = gab�
A
1 �

B
2 ; with �1;2 = �A

1;2XA ; (2.2)

invariant under the adjoint action of the superalgebra

ÆA�1;2 = [�1;2; XA] :

such a quadratic form may be derived from the following quadratic Casimir operator of the algebra

(2.1):

C = CABXAXB = P aJa � 1

4
QI�QI

�: (2.3)

Namely:

(gAB) =
1

2
(�1)[XA] �C�1

AB

�
=

0
BB@

0 (Æab) 0

(Æab) 0 0

0 0 (2���)

1
CCA ; (2.4)

where [XA] = 0; 1 if XA is an even, odd generator, respectively.

Writing the Lie algebra valued Yang-Mills connection as

A = AAXA = eaPa + !aJa +  I�QI
� ; (2.5)

yThe \graded bracket" ( ; ) is an anticommutator if both entries are odd, and a commutator, otherwise.
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where ea, !a and  �I are the dreibein, spin connection and gravitino 1-forms, respectively, we can

now write the Chern-Simons as

SCS =
1

2

R hA; dA+A2i ;

= � R ea
�
d!a +

1

2
�abc!

b!c
�
+  I�d 

I� +
1

2
!a I� I�a�� :

(2.6)

the symbol h ; i denoting the invariant quadratic form (2.2). This action is obviously invariant

under rigid SO(N) transformations, under which  transforms as a vector and the remaining �elds

as scalars. We may turn this invariance into a local SO(N) invariance substituting the derivative

d I through the covariant derivative DO 
I = d I +AIJ

O  J where AIJ
O is a non dynamical SO(N)

connection.

The �eldsAIJ
O then play the role of sources of the conserved Noether currents jIJ� =�"��� I�� J��

of the SO(N) symmetry. We may observe that the connection AO cannot be made a dynamical

�eld for the reason that a quadratic Casimir operator such as (2.3) containing the SO(N) genera-

tors is not invertible, hence does not lead to the invariant quadratic form necessary for writing a

kinetic action. This is in contrast with what happens in the super-anti-de Sitter case, where the

relevant quadratic Casimir operator is indeed invertible [3, 13].

The �rst term in (2.6) is the Einstein-Palatini action and the others are the kinetic term of the

gravitino and its interaction with the spin conection.

The equations of motion derived from the action (2.6) readz

ÆS

Æea
= d!a +

1

2
�abc!

b!c
�
= 0 ; (Curvature);

ÆS

Æ!a
= dea + �abce

b!c +
1

2
 I� I�a��

�
= 0 ; (Torsion);

ÆS

Æ I�
= 2

�
d I� � 1

2
!a�a� 

I�

�
�
= 0 : (Rarita Schwinger):

(2.7)

We see that the curvature is zero. The torsion equation gives us the spin connection as a function

of the dreibein and the gravitino. The Rarita Schwinger equation expresses the vanishing of the

gravitino covariant derivative with respect to the gauge group SO(1; 2). The local symmetries of

the action are expressed as its invariance under the BRST transformations

sA = �dC � [A;C]; sC = �C2; s2 = 0 ; (2.8)

where the Faddeev-Popov ghost C is written in the adjoint representation of the Poincar�e super-

group as:

C = CAXA = caTPa + caLJa + cI�S QI
� ;

the �elds caT , c
a
L, c

I�
S are the ghosts associated to space-time translations, Lorentz and supersym-

metry transformations, respectively. They are 0-forms of ghost number 1 by de�nition. The ghosts

zThe symbol
�
= means equal up to an equation of motion ( "on shell").
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caT , c
a
L are odd and cI�S is even. In components, the BRST transformations read

sea = �dcaT + �abc!
ccbT + �abce

ccbL � a�� 
I�c

I�
S ; s!a = �dcaL + �abc!

ccbL ;

s I� = �dcI�S +
1

2
 �
a� !

ac
I�
S +

1

2
 �
a�  

I�caL ;

scaT = �abcc
c
T c

b
L �

1

2
a��c

I�
S c

I�
S ; scaL =

1

2
�abcc

c
Lc

b
L ; scI�S =

1

2
 �
a� c

a
Lc

I�
S :

(2.9)

The BRST invariance can be expressed through a Slavnov-Taylor identity. We introduce the

Batalin-Vilkovisky anti-�elds A� and C� associated to A and C:

A� = !�aPa + e�aJa +  ��IQI
� ; C� = c�aL Pa + c�aT Ja + c�I�S QI

� ; (2.10)

and an action coupling them to the BRST transformations of A and C:

Sext =

Z
( hA�; sAi+ hC�; sCi)

=

Z �
e�se+ !�s! +  �I� s 

��I + c�LscL + c�T scT + c�I�S scIS�
�
:

(2.11)

The exterior �eld A� is a 2-form of ghost number �1 and C� a 3-form of ghost number �2. The
Grassmann parities of the �elds A, C, A� and C� are determined through their total degree: ghost

number plus form degree. The �eld is even (commuting) or odd (anticommuting) if its total degree

is even or odd respectively. The total action

S = SCS + Sext (2.12)

obeys the Slavnov-Taylor identity

S (S) =

Z X
'=A;C

ÆS

Æ'�
ÆS

Æ'
= 0: (2.13)

We can work in a more compact way de�ning an extended �eld [12] ~A written as the sum of forms

of all possible degrees (in our case, degrees 0 to 3):

~A = C +A+A� + C� ; (2.14)

the total degree of ~A being equal 1. We also de�ne an extended exterior derivative ~d = b + d,

where b is a BRST type operator such that: b2 = [b; d] = 0 and therefore ~d2 = 0. The extended

zero curvature condition is

~F = ~d ~A+ ~A2 = 0: (2.15)

This condition gives us the b transformation of the extended �eld

b ~A = �d ~A� ~A2 ; (2.16)

and hence of its components C, A, C� and A�. The operator b can be interpreted as the linearized

Slavnov-Taylor operator associated with an action S('; '�):

b = SS =
X

'=A;C

Z
ÆS

Æ'�
Æ

Æ'
+
ÆS

Æ'

Æ

Æ'�
; (2.17)
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provided the action S is a solution of the equations

ÆS

Æ'�
= SS' = b' ;

ÆS

Æ'
= SS'� = b'� (' = C; A) : (2.18)

The general solution of the latter equations is the action (2.12). This argument shows that one

could have proceeded in a reversed way as well, namely beginning with the construction of a

nilpotemnt operator b acting on the �elds and anti�elds, and then deriving the action as a solution

of (2.18). This is the procedure we shall follow in the next sub section. Note that the ful�lment of

(2.18) automatically ensures [13] the validity of the Slavnov-Taylor identity (2.13).

2.1 Di�eomorphism and Vector SUSY

As a topological one, our theory must be invariant under the di�eormor�sms or general coordinates

transformations. As we want to include them in the BRST operator, we treat the in�nitesimal

di�eormor�sm parameter as a ghost vector � = ��@�, the components �� being odd. The di�eor-

mor�sm transformation

Ædi� ' = L�' ; Ædi� '
� = L�'� ; (2.19)

where L� is the Lie derivative associated with the vector �eld �, may thus be added to the BRST

operator. We do it in the extended �eld formalism, still including the local vector supersymmetry

transformation which uses to accompany di�eomorphism invariance [4]. The ghost of the latter

is an even vector �eld v = v�@� of ghost number 2 which happens to contribute to the BRST

transformation of the di�eomorphism ghost �. In order to get this more general BRST operator,

we de�ne, as explained in the end of last subsection, a nilpotent b-operator which reads, for the

extended �eld and the new ghosts:

b ~A = �d ~A� ~A2 + L� ~A� iv ~A ; b� = �2 + v ; bv = [�; v] : (2.20)

For each form degree this gives

bC = �C2 + L�C � ivA ; bA = �dC � [A;C] + L�A� ivA
� ;

bA� = �dA�A2 � [A�; C] + L�A� � ivC
� ; bC� = �dA� � [A�; A]� [C�; C] + L�C� ;

b� = �2 + v ; bv = [�; v]

(2.21)

or, in components:

bcaT = �abcc
c
T c

b
L �

1

2
a��c

I�
S c

I�
S + L�caT � ive

a;

bcaL =
1

2
�abcc

c
Lc

b
L + L�caL � iv!

a;

bcI�S =
1

2
�a�c

a
Lc

I�
S + L�cI�S � iv 

I�;

bea = �dcaT + �abce
ccbL + �abc!

ccbT � a�� 
I�cI�S + L�ea � iv!

�a;

b!a = �dcaL + �abc!
ccbL + L�!a � ive

�a;

b I� = �dcI�S +
1

2
�a�!

acI�S +
1

2
�a� 

I�caL + L� I� � iv 
�I�;

(2.22)
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and, for the anti-�elds:

be�a = �dea + �abce
c!b � 1

2
a�� 

I� I�

+�abce
�ccbL + �abc!

�ccbT � a�� 
�I�c

I�
S + L�e�a � ivc

�a
T ;

b!�a = �d!a + 1

2
�abc!

c!b + �abc!
�ccbL + L�!�a � ivc

�a
L ;

b �I� = �d I� + 1

2
�a�!

a I� +
1

2
�a�!

�ac
I�
S

+
1

2
 �
a�  

�I�caL + L� �I� � ivc
�I�
S ;

bc�aT = �de�a + �abce
�c!b + �abc!

�ceb � a�� 
�I� I�

+�abcc
�c
T c

b
L + �abcc

�c
L c

b
T � a��c

�I�
S c

I�
S + L�c�aT ;

bc�aL = �d!�a + �abc!
�c!b + �abcc

�c
L c

b
L + L�c�aL ;

bc�I�S = �d �I� + 1

2
 �
a� !

�a I� +
1

2
 �
a�  

�I�!a +
1

2
 �
a� c

�a
L c

I�
S

+
1

2
 �
a�  

�I�caL + L�c�I�S :

(2.23)

Now the operator b can be interpreted as the following linearized Slavnov-Taylor operator associ-

ated with an action S('; '�; v; �):

SS =

Z X
'=A;C

ÆS

Æ'�
Æ

Æ'
+
ÆS

Æ'

Æ

Æ'�
+
X
u=v;�

bu
Æ

Æu
; (2.24)

with the transformations bu explicitlyx given in (2.21). Indeed, the equations (2.18) are solved by

the action

S('; '�; �; v) = �1

2

Z
h ~A; d ~A+

2

3
~A2 �L� ~A+ iv ~Ai: (2.25)

The integral of an extended form is de�ned as the integral of its 3-form terms. This action yields

S('; '�; �; v) =

Z �
�1

2
hA; dA+

2

3
A2i+ hA�; �dC � [A;C] + L�Ai

+hC�;�C2 + L�C � ivAi � 1

2
hA�; ivA

�i
� (2.26)

3 Gauge Fixing

The gauge invariant action obtained in the preceding subsection has still to be gauge �xed. We

shall use the Batalin-Vilkovisky scheme [11, 14]. The total action will then have the form:

S = SCS + Sext + Sgf : (3.1)

In order to determine the gauge �xing part Sgf , we choose the Landau gauge condition, which

necessitates the introduction of a nondynamical background metric g��
{. In di�erential form

notation, the gauge condition reads

d �A =
p
gr�A

�d3x ;

xThis means that we consider the ghost � and v as external �elds.
{The dynamical metric is represented by the dreibein ea
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where r� is the covariant derivative with respect to the background metric. It will be implemented

through a Lautrup-Nakanishia Lagrange multiplier B and its associated Faddeev-Popov antighost

�C, both being 0-forms and Lie algebra valued:

�C = �CAXA = �caTPa + �caLJa + �c�IS QI
� ; B = BAXA = Ba

TPa +Ba
LJa +B�I

S QI
� ; (3.2)

their BRST transformations being de�ned by

s �C = B ; sB = 0 : (3.3)

The total gauge �xed action S('; '�; �; v; B; �C) obeying the Slavnov-Taylor identity

S(S) =
X
'

Z �
ÆS

Æ'�
ÆS

Æ'
+ (�2 + v)

ÆS

Æ�
+ [�; v]

ÆS

Æv
+B

ÆS

Æ �C

�
= 0 ;

is given, according to Batalin and Vilkovisky, by

S('; '�; B; �C) = S('; '̂�) +

Z
Bd �A ; (3.4)

where the anti�elds '� in (2.26) have been replaced by

'̂� = '� +
Æ	

Æ'
;

the "Batalin-Vilkovisky fermion" 	 being a local functional of ghost number �1, chosen here as

	 = 	('; �C) =

Z
d �C �A =

Z
A � d �C: (3.5)

We thus have

Â� = A� + �d �C ; Ĉ� = C� ; (3.6)

and the total gauge �xed action reads

S('; '�; �; v) =

Z �
�1

2
hA; dA+

2

3
A2i+ hÂ�; �dC � [A;C] + L�Ai

+hC�;�C2 + L�C � ivAi � 1

2
hÂ�; ivÂ

�i
�
:

(3.7)

In terms of the components �elds ea, etc., we have

S = �
Z �

ead!a +
1

2
�abce

a!b!c +  I�d 
I� � 1

2
 I�!

a I� �
a�

+
R
ê�a

�
�dcTa + �abce

ccbL + �abc!
ccbT � a�� 

I�c
I�
S + L�ea

�

+!̂�a
��dcLa + �abc!

ccbL + L�!a
�
+  ̂�I�

�
�dcI�S + 1

2c
I�
S !a �

a� + 1
2

a�
� cLa 

I� + L� I�
�

+ĉ�aT

�
�abcc

c
T c

b
L � 1

2a��c
I�
S c

I�
S + L�cTa � ivea

�
+ ĉ�aL

�
1
2�abcc

c
Lc

b
L + L�cLa � iv!a

�

+ĉ�IS�

�
1
2

�
a�c

a
Lc

I�
S + L�cI�S � iv 

I�
�

� 1
2 !̂

�aiv ê
�
a � 1

2 ê
�aiv!̂

�
a � 1

2  ̂
�I
� iv ̂

��I +Ba
T d � !a +Ba

Ld � ea +BI
S�d �  �I

�
;

(3.8)
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where

�dB�� =
1

2
p
g
� �
�� @�B ; (3.9)

and
ê�a = e�a � �d�caT ; !̂�a = !�a � �d�caL ;  ̂�I� =  �I� � �d�cI�S

ĉ�aT = c�aT ; ĉ�aL = c�aL ; ĉ�I�S = c�I�S :

(3.10)

This is a gauge �xed action for the 2 + 1 dimension N�extended supergravity.

3.1 Conclusion

In this work we have achieved the gauge �xing in the Batalin-Vilkovisky scheme, of the 2 + 1

dimensional N -extended supergravity considered as a topological �eld theory of the Chern-Simons

type, the gauge group being the N -extended Poincar�e supergroup. We have used the formalism of

extended �elds in order to express the BRST algebra, the Slavnov-Taylor identity and the action

in a compact and manageable way.

It would be interesting to consider the construction in terms of a super-BF topological theory,

with the Lorentz group as a gauge group. This approach would have the advantage of making

possible a generalization to higher dimensions, the super B-�eld being then however subjected to

appropriate constraints [7], as in the non-supersymmetric case(see e.g. [16]).
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