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Abstract

We compute the modi�cation in the spontaneous emission rate for a two-level atom when

it is located between two parallel plates of di�erent nature: a perfectly conducting plate

(� ! 1) and an in�nitely permeable one (� ! 1). We also discuss the case of two

in�nitely permeable plates. We compare our results with those found in the literature for

the case of two perfectly conducting plates.
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Using thermodynamic arguments and assuming that thermal equilibriumbetweenmat-

ter and radiation is allways achieved, Einstein [1] was able to demonstrate that, besides

stimulated emisson, excited atoms must also decay spontaneously. Even an \isolated"

excited atom in vacuum must inevitably decay to the ground state. In other words, an

excited stationary state of an atom is not actually a stationary state and we can say

that spontaneous emission is in fact not a property of an isolated atom, but of an atom-

vacuum system [2]. In the context of QED, we can say that the ultimate reason for

spontaneous emission of excited atoms is the interaction of the atom with the quantized

electromagnetic �eld of the vacuum state. As a consequence, any modi�cation in the

vacuum electromagnetic �eld, caused for instance by cavities, can modify in principle the

radiative properties of atomic systems. We can say that the presence of material walls

in the vicinity of atomic systems renormalizes their transition frequencies as well as the

widths of their spectral lines. The branch of physics that is concerned with the in
uence

of the environment of an atomic system in its radiative properties is called generically

Cavity QED and the above examples are only two among many others (for a review see

for instance ref(s) [3,4]). Here we shall be concerned with one of the above e�ects, namely,

the in
uence of boundary conditions (BC) imposed on the radiation �eld in the sponta-

neous emission rate of a two-level atom. It is worth mentioning that Cavity QED was born

precisely by the observation of Purcell [5] half a century ago that spontaneous emission

process associated with nuclear magnetic moment transitions at radio frequencies could

be enhanced if the system were coupled to a ressonant external electric circuit placed in

the vicinity of the system. However, we can say that the �rst detailed papers on this

subject were those written by Casimir and Polder [6] in which, among other things, forces

between polarizable atoms and metallic walls were treated, and by Casimir in his seminal

work that brought about the Casimir e�ect [7]. Since then, Cavity QED has attracted

the attention of many physicists, both theoretical and experimentalists. Particularly, the

e�ects of the proximity of plane walls to atomic systems have been investigated: for in-
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stance, Morawitz [8] discussed both classically and quantum-mechanically the in
uence

of a plane mirror in the spontaneous emission rate of a two-level atom. A few years

later, Drexhage [9] observed experimentally the oscillatory behaviour of the lifetime on

the distance to the mirror. The QED of charged particles between two parallel mirrors

was discussed extensively by Barton [10,11], who was the �rst to compute explicitly the

in
uence of two parallel perfect conducting plates in the spontaneous emission rate for a

spherically averaged atomic transition [10]. Barton's result was rederived by Philpott [12]

with a similar method and by Milonni and Knight [13] in the context of the image method.

An interesting feature of the modi�ed spontaneous emission rate between two conducting

mirrors is the fact that for the case of a transition dipole moment parallel to the plates

there must be a strong suppression for 2L=�0 < 1, where L is the distance between the

plates and �0, the transition wavelength (see for instance ref. [14]). This inhibited spon-

taneous emission has been observed experimentally by Hulet, Hilfer and Kleppner [16].

Many other interesting experiments have been done and we suggest for the interested

reader the reviews by Haroche and Kleppner [2] and Hinds [17] and references therein.

In this letter we compute the spontaneous emission rate for a two-level atom when it is

located between two parallel plates of di�erent nature (�!1 and �!1) and between

two in�nitely permeable plates (� ! 1), and then, we compare our results with those

found in the literature [10,12,13] for the case of two perfectly conducting plates. Though

analogous, the results are di�erent, since when we change the boundary conditions on the

photon �eld, the vacuum �eld modes also change. As expected, a strong suppression also

occurs for both cases treated here. However, curious as it may seem, this suppression

occurs when the transition dipole moment is perpendicular to the plates, in contrast to

the suppression when the dipole moment is parallel to the plates that occurs for the two

perfectly conducting plates.

Our starting point is the general expression for the spontaneous emission rate of a

transition 2! 1 of a two-level atom, which is given by:
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where !0 corresponds to the transition frequency, d12 is the transition dipole moment

and each mode A�(r) of the vacuum �eld is characterized by a wave vector k and a

polarization �0 (see for instance ref. [14]).

The �rst setup we will consider consists of two in�nite parallel surfaces (the plates) one

of which will be considered to be a perfect conductor (�!1) while the other is supposed

to be perfectly permeable (� ! 1). Also, we will choose Cartesian axes in such a way

that the axis OZ is perpendicular to both surafces. The perfectly conducting surface will

be placed at z = 0 and the permeable one, at z = L. The electromagnetic �elds must

satisfy the following boundary conditions: (a) the tangential components Ex and Ey of

the electric �eld as well as the normal component Bz of the magnetic �eld must vanish on

the metallic plate at z = 0. (b) The tangential components Bx and By of the magnetic

�eld must vanish on the permeable plate at z = L. It is convenient to work with the vector

potential A(r; t) in the Coulomb gauge in whichr � A(r; t) = 0, E(r; t) = �@A(r; t)=@t

and B(r; t) =r�A(r; t). With this choice of gauge, the above boundary conditions can

be written as conditions imposed on the vector potential components:
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@Az
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The mode functions for this case are [15]:
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where A0?
21 and A

0k
21are the corresponding contributions for the spontaneous emission rate

in unbounded (free) space, namely:

A
0k
21 =

4jd
k
12
j2!3

0

3�hc3
and A0?

21 =
4jd?

12
j2!3

0

3�hc3
(8)

and N is the greatest integer part of k0L=� � 1=2. The total emission coe�cient is given

by A21 = A?
21 +A

k
21 Recall that Einstein's coe�cient for spontaneous emission is simply

given by

A0
21 = A

0k
21 +A0?

21 =
4jd12 j

2!3

0

3�hc3
(9)

The graph displayed in �gure (1) shows the ratio between A21 and A0
21 as a function

of the dimensionless variable s := z=�0 for the case of two conducting plates (dashed

line) and the case of a conducting plate and a permeable plate (solid line). Although

the two curves are analogous, in the sense that both present oscillations with s, they are

di�erent curves since the mode functions of the vacuum �eld in each case are not the

same. It is worth emphasizing the lack of symmetry of the latter curve around the point

that is equidistant from the plates. This was expected because in this case the two plates

correspond to distinct electromagnetic media, with di�erent properties.

The second example we shall be concerned with consists of two perfectly permeable

plates. The boundary conditions for this case can be cast into the form:

@Ax

@z
(x; y; 0) =

@Ay

@z
(x; y; 0) = Az(x; y; 0) = 0 (10)
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where N is the greatest integer part of k0L=�.

Figure (2) shows the ratio between A21 and A0
21 as a function of s = z=�0 for the case

of two conducting plates (dashed line) and the case of two permeable plates (solid line).

The curve for this latter case also presents oscillations in the spontaneous emission rate

as the distance from the atom to each plate varies and is also symmetric with respect to

the equidistant point to the plates. However, there is a remarkable di�erence between

these two curves: whenever there is an enhancement in the spontaneous emission rate

of the former, there will be a depletion for the latter and vice versa. Particularly, their

behaviour near the plates are quite di�erent.

The strong suppression that occurs in the case of two conducting plates for Ak
21 has

its counterpart in the two cases discussed previously, as we shall see. However, we should

emphasize that in the case of two permeable plates as well as in the case of a conductting
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plate and a permeable one, the suppression occurs for A?
21, in contrast with the case of two

conducting plates. For simplicity, let us just �x the atom at a point equidistant from the

parallel in�nite plates in both setups and vary the distance L between the plates. Also,

for convenience, in the remaining �gures of this letter we shall plot the graphs of the ratios

A
k
21=A

0k
21 and A?

21=A
0?
21 as functions of the dimensionless parameter l := L=�0. Figure (3)

shows jointly the suppression of A?
21 for the case of two permeable plates (solid line) and

the suppression of Ak
21 for the case of two conducting plates (dashed line). Observe that

both occur for the same value of the distance between the plates. Though not obvious, this

result is quite reasonable, since for the case of two permeable plates the mode functions of

the vacuum �eld are also symmetric with respect to s = l=2. In this sense, for the case of

a conducting plate and a permeable one, for which mixed boundary conditions are used,

it is natural to expect that the suppression will occur for a di�erent value of l. This is

indeed what happens and as it is shown separatly in �gure (4), the suppression occurs

for a value of l which is smaller than the value found for the other cases (shown in �gure

(3)). Concerning �gures (3) and (4), a last comment is in order: observe that in �gure (3)

the distances between two successive peaks for A
k
21=A

0k
21 (dashed curve) or discontinuities

in the derivative of A?
21=A

0?
21 (continuous curve) are �l = �0, in contrast with the value

�l = �0=2 observed for the discontinuities in the derivative of A?
21=A

0?
21 in �gure (4), since

for the situation described by �gure (4) there are no nodes for the vacuum modes at the

midpoint between the two plates.

To conclude two �nal remarks. Firstly, it is very interesting to notice that though the

Casimir energy density for the case of two perfectly parallel conducting plates is exactly

the same as that for two in�nitely permeable parallel plates, the in
uence of these two

di�erent surroundings in radiative properties of an atomic system (like the spontaneous

emission rate of an atom) can be quite di�erent. In other words, though the Casimir e�ect

is \blind" to the change of the two conducting plates by the two in�nitely permeable ones,

the atom is not. The reason for that is simply because only the possible �eld frequencies
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enter in the calculation of the Casimir energy density, while the atom interacts directly

with each vaccum �eld mode, it probes locally the vacuum �eld. Finally, we think it could

be interesting to do experiments about the in
uence of the proximity of material walls

in the spontaneous emission rate of atomic systems analogous to those mentioned before

where conducting plates could be interchanged at will with permeable ones. Comparing

the results thus obtained may add some new information to such an interesting problem

as the atom-cavity interaction.
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FIG. 1. The ratio A21=A
0
21 as a function of the dimensionless variable s = z=�0 for the case

of two perfectly conducting plates (dashed curve) and the case of a perfectly conducting plate

and an in�nitely permeable plate (solid curve). The range of the variable s is a typical one.
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FIG. 2. The ratio A21=A
0
21 as a function of the dimensionless variable s = z=�0 for the case of

two perfectly conducting plates (dashed curve) and the case of two in�nitely permeable plates

(solid curve). The range of the variable s is a typical one.
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FIG. 3. The ratio A
k
21=A

0k
21 for the case of two perfectly conducting plates (dashed curve) and

the ratio A?
21=A

0?
21 for the case of two in�nitely permeable plates (solid curve) as functions of

the dimensionless variable l = L=�0.

0 0.5 1 1.5 2

l

0.9

0.95

1

1.05

1.1

1.15

No
rm

al
iz

ed
em

is
si

on
ra

te

FIG. 4. The ratio A?
21=A

0?
21 for the case of one perfectly conducting and one in�nitely perme-

able plate. Suppression occurs at l = L=�0 = 1=4.


