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We discuss here the possibility to write the Liouville-Vlasov equation for the Wigner-function of a
spinor �eld coupled to a gauge �eld with �eld strength tensor F�� in a curved space-time versus a
local Lorentz manifold (introduction of local Lorentz coordinates) with an appropriate de�nition of
a covariant derivative carried out using a spin connection Bab

� (x).
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I Introduction

The general relativity is invariant under general co-
ordinate transformations like x ! x0 = x + �(x). One
can still de�ne a convenient covariant derivative un-
der a general transformation of coordinate as D��� =
�@��� + ������ where ��(x) is the in�nitesimal param-

eter and ���� is the Christo�el symbol or \connection".
The in�nitesimal variation of metric under the co-

ordinate transformation can be written as �g��(x) =
�D���(x)� D���(x).

It's easy to verify that for weak �eld approximation,
g��(x) = ���+kh�� with a rede�nition of the ��(x) pa-
rameter. We obtain the gauge transformation imposed
on the �eld h��(x) such as in�nitesimal version in the
Minkowsky space under GCT's (general transformation
of coordinates).

How do we consider the interaction between gravi-
tation and other �elds? The general recipe is to intro-
duce new �elds and to de�ne an appropriate covariant
derivative that includes such an interaction.

In general there are two ways to follow: Firstly,
we can use the coupling between gravitation and other
�elds. In this case the gravitational �eld is only a back-
ground for other �elds. The scenario is geometrical as
for gravity which acts as a background �eld. There is
no \interaction" as is the case for the electromagnetic

theory, quantum chromodynamics or even in the per-
turbative quantum gravity. On the other hand we can
introduce a at space time and attack the problem us-
ing the perturbative approach. If we wish to interpret
the �elds as particles associated with that �eld we need
to introduce a local Lorentz manifold to bring in a spe-
ci�c interactions. It is true, in particular if we wish to
analyse the interaction between gravitation and spinor
�elds. The interaction cannot be introduced directly in
curved space time for the spinor �eld. It's necessary to
look for a local Lorentz manifold rather than the global
manifold as in space time.

This point is emphasized, in particular, for the spe-
cial case of Liouville-Vlasov equation. We believe that
the correct way to introduce the e�ect of gravitational
�eld in that equation is by de�ning an appropriate co-
variant derivative in a local Lorentz manifold against
the point of view that one can de�ne the gravitational
e�ect on Vlasov equation directly in curved space time.
The latter is written as follows.

We analyse the interaction between gravitation and
spinor �elds using the vierbein �eld and the local
Lorentz group as our support. As a second example we
present the coupling between matter-Maxwell and grav-
itation �elds. The following example is the U (1) gauge
group generalized to the case of, SO(N ) model coupled
to gravity and spinor-vector �eld (Rarita-Schwinger).
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In all cases the interaction is seen on a local Lorentz
manifold where it is possible to �nd a spin connection,
and in some cases, to �nd the \torsion" associated with
such a model.

Finally, the Liouville-Vlasov equation is discussed
and the e�ect of gravitational �eld on that equation is
analysed. We argue here that it is impossible to de�ne
a covariant derivative for the Vlasov equation if  (q; p)
means the Wigner function associated with the spinor
�eld. The fundamental reason for it is that the sym-
metry group of general relativity is incompatible with
the presence of spinors [2]; but we can do that only in
a local Lorentz manifold where both the Vierbein and
spin connection are de�ned. We start by remembering
that the concept of spin 1=2 �eld makes sense only in
a tangent at space [4,5]. One can write the action for
interaction between Dirac's �eld and gravitation as

S =

Z
d4x e

�
e�a � ia D� �m �  

�
(1)

where

� = e�a (x)
a (2)

and

D� � = @� � +
i

8
Bab
� [ab]�� � (3)

with e�a are the Vierbein �eld with two indices; one
space time index a, �, varying from zero to three and a
local Lorentz group index, a, of a local manifold. The
� are the Dirac's matrices, a meaning the local Dirac
matrices and Bab

� being the spin connection.
The interaction between gravitation and fermionic

�eld can be seen immediately from eq. (3) because of
the appropriate de�nition of a covariant derivative D�

for a local Lorentz group.
The metric can be written as

g�� = ea�e
b
��ab : (4)

Thus, the \e" in eq. (1) means the determinant of the
metric. The Dirac equation coupled to gravitation is
given by

(e�aiaD� �m) (x) = 0 (5)

The spin connection in (3) can be completly �xed by
the coe�cient of non holomicity as

Bab
� = �

1

2
ec�(
cda + 
acd � 
dac) (6)

where


cda = e�ce
�
j (@�e�a � @�e�a) (7)

The equation for ea� �eld, R�a �
1
2e�aR = 0 �xes ea�(x)

exactly; then we have that Bab
� shall be �xed too.

The gravitational degree of freedom is carried by
Vierbein. All information about spins from gravita-
tional �eld will be given by ea�(x).

One may see clearly that the kinetic term of the
fermionic lagrangean contributes to the equation of mo-
tion for the spin connection and we can show that the
presence of the fermionic �eld generates torsion [4,5]
given as

T a�� � D�(ee
�

[ae
�
b]) �

� [; ] : (8)

where [a; b] here means symmetrization and the right
hand side represents the fermionic density.

The interaction between matter-

Maxwell and gravitational �elds

The action for interaction between matter-Maxwell
and gravitational �elds is given as

SMaxwell
Mat�Grav =

Z
d4x e[e�a � iar� �m �  ] (9)

where r� is a covariant derivative of gravitation and
the gauge is given by

r� = D� + igqA� (10)

with D� being the covariant derivative as in eq. (3),
A�(x) is the vector potential, q is a coupling constant
associated with the U (1) symmetry and g is another
coupling constant linking the local Lorentz group. The
action is invariant under local Lorentz group, GCT's
(transformation coordinates group) and U (1) symme-
try simultaneously.

A term is needed that gives the dynamics for the
gauge degree of freedom (Maxwell term); so the com-
plete action which couples Maxwell-Dirac-gravitation is
written as

c

SMaxwell
Dirac�Grav =

Z
d4x e[�

1

4
F��F

�� + e�a � iar� �m �  ] (11)

d
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The U(1) case generalized

Consider the scalar and spinor �eld matter �elds cou-
pled to gravitation and Maxwell �eld. The lagrangean

is given as

c

L = (@�'
�@�' �m2'�') + � (i�@� �M ) +

�

4
('�')2 : (12)

d

To obtain a covariant lagrangean the convenient co-
variant derivative is introduced as @� !r�, where

r� =

�
@� +

i

8
Bab
� [a; b] + igQA�(x)

�
 (13)

Thus, the complete action for Maxwell, matter and
gravitational �eld is

c

SMaxwell
mat�grav =

Z
d4x e [(r�'

�)(r�') � V ('�; ')] + e e�a � (iar� �M ) (14)

d

where V ('�') = m2'�' is the potential term and Q
means the generalized charge.

The equation of motion is immediately obtained as

r�r�' �m2' + � � � = 0 (15)

and the dynamics is veri�ed on local Lorentz manifold
again.

Model SO(N) coupled to gravity

The interest in this model is formal. There appear
magnetic monopoles of t'Hooft-Polyakov coupling to
gravitational �eld.

Suppose that 'a are scalars �elds in the representa-
tion of SO(N ) and a = 1; 2; 3 � � �N .

Thus,

'a
0 = Rab'b (16)

where Rab is the transformation matrix and it satis�es
the condition R+R = 1.

The lagrangean satisfying the invariance under
global SO(N ) is given by

L =
1

2
@�'a@

�'a �
1

2
m2'a'a : (17)

the SO(N ) will be calibrated by equation (16) and we
need to change again the derivative @� to a new covari-
ant derivative r� written as

r�'a = (@��ab + igAI
�(GI)ab)'b (18)

where GI are generators of SO(N ) group and AI
�(x)

are the non abellian vector potentials. The number of

generators being written as I = 1 � � �
N (N � 1)

2
.

The complete action for this case can be written as

c

SY:Mmat�grav =

Z
d4x e

�
�
1

4
F��IF

��I +
1

2
r�'ar

�'a �
1

2
m2'a'a+

�
�

4!
('a'b)

2 + fR'a'a

�
(19)

d

where f means the dimensionless coupling constant, R
in the last term is the scalar curvature and F��I repre-

sents the �eld strength given by

F��I = @�A�I � @�A�I + gfIJKA�JA�K (20)
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Spinor-vector �elds

We de�ne now  a� as a spinor-vector �eld with
� = 1; 2; 3; 4 and a = 0; 1; 2; 3. The transformation
law for Rarita-Schwinger �eld can be written as

� a� = wb
a b� +

1

2
wmn[m; n]�� �� (21)

where wb
a are continuously varying parameters. The

�rst part on right hand side being responsible for spin-
1 and the second part being associated with spin �eld
1=2 and 3=2.

The spin 1=2 can be eliminated consistently by a
symmetry of the free lagrangean [5]. Thus,  a� shall
describe a pure spin 3=2.

It appears in supergravity [5] as a fermionic media-
tor of the gravitational interaction.

The lagrangean which describes a free spinor-vector
�eld can be given as

LR:S: =
1

2
"���� � �5�@� � (22)

with "���� being the Levi-Civita tensor and 5 =
0123 is a Dirac's matrix. We can write eq. (22)
in the component form as

LR:S: =
1

2
"���� � ��(5�)��@� �� (23)

The local invariance U (1) that permits the elimination
of spin 1=2 components is given as

� �� = @�� (24)

where � is a spinor �eld. As in the case of the fermionic
�eld the Rarita-Schwinger �eld generates torsion [5].

The interaction between gravitation and the spinor-
vector �eld is shown following the same recipe as in
earlier cases so that

LgravityR:S: =
e

2
"���� � ��(

5�)��D� �� (25)

where

D� �� = @� �� +
i

8
Bab
� [a; b]� � (26)

It is clear that the only di�erence between eq. (25) and
the other cases is that here  has two indices. One
can show again that the spinor-vector �eld generates
torsion again as T a�� � � 5[; ] forming a spinor
condensity exactly the same way as given in (8).

The Liouville-Vlasov equation

with the gravitational interaction

Finally, we obtain the Liouville-Vlasov equation [3]
for the Wigner function of a \spinor �eld" coupled to a
gauge �eld with the �eld strength tensor F�� as

(�p�F
��D� + P�D�) (q; p) = 0 (27)

where  (q; p) is the Wigner function. Here D� cannot
be a covariant derivative including the curved space-
time spin connection unlike the case discussed in [1,3].

The reason for this is that the coordinate tranfor-
mation group of general relativity is incompatible with
the presence of spinor �eld and so, incompatible with
the appearance of spin connection Bab

� in curved space-
time [2,4].

We can introduce an appropriate covariant deriva-
tive in eq. (27) the same way as in preceding cases. So,
considering the tangent space or local Lorentz group we
do the same use of eq. (3) and in all analyzed cases,
obtained for D� in eq. (27) a covariant derivative like

D� = @� +
i

8
Bab
� [a; b] (28)

where  is the Wigner function associated with a spinor
�eld coupled to a gauge �eld in a local Lorentz manifold
(tangent space). It is well-known that [3] �(q; p) (q; p)
can be interpreted as the classical distribution function
in the relativistic phase space.

We observe that if we wish to include the real ef-
fects from gravitational �eld in an approach of general
relativity together with the kinetic theory some trou-
bles will appear. For example: it is clear [3] \that the
treatment of transport theory in a curved space-time
background is hidered by the fact that a de�nition of
the Wigner function  (q; p) depends on the use of the
Fourier transform of a space-time correlation function
with a translated argument".

Fourier transformation (nor translation) are glob-
ally available in general curved spacetime. On the other
hand the symmetry group of general relativity is not
compatible with the presence of spinors or spin connec-
tion �eld [2] if the Wigner function of a spinor �eld in
a curved space time has to be found.

However, as discussed in [3], the construction of
Wigner function  (q; p) is still meaningful if carried
out in the tangent space as in local Lorentz manifold
as applied in our case. The problem is that the cor-
relation between two points on that manifold is by an
exponential map [3]. Only this way, we can introduce
the fermionic �eld interacting with the gravitation and
to de�ne an appropriate covariant derivative containing
the spin connection.
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