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Abstract

We study the coupling of N=1 supergravity to a class of supersymmetric nonlinear
�-models in an N=1 superspace which is based on the Atiyah-Ward space-time of (2+2)-
signature metric. We also discuss the conditions for the implementation of the gauging
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1 Introduction

In the recent past, a good deal of attention has been directed towards the construction of
�eld theoretical models in the Atiyah-Ward space-time of (2+2)-signature metric [1]. One
of the reasons for such an interest stems from the striking result obtained in refs.[2, 3],
where a consistent N=2 superstring theory was shown to require a complex (Kahl�erian)
two-dimensional manifold as its relevant space-time background.

From a pure mathematical standpoint, the Atiyah-Ward space-time turns out to be
one of the most suitable environments for the introduction of self-dual Yang-Mills con-
nections [4, 5]. As it is well-known by now, these �eld con�gurations are of remarkable
usefulness in the Donaldson's programme on algebraic geometry [6], as well as in the
Ward's classi�cation scheme of lower-dimensional integrable models [7].

As shown by Gates et al. in refs.[8], it may be also very interesting to construct
and investigate both self-dual super-Yang-Mills and self-dual supergravity theories in the
Atiyah-Ward space-time. To achieve this goal in an elegant manner, the authors of [8]
found it desirable to develop a superspace formalism adapted to the (2+2)-signature: the
so-called Atiyah-Ward superspace. Additional aspects concerning this new class of models
were further discussed in an uni�ed approach in ref.[9]. Furthermore, in refs.[10, 11] one
addressed the issue of the construction of gauged supersymmetric non-linear �-models
in the 
at Atiyah-Ward superspace. More speci�cally, the coupling of these theories to
the super-Yang-Mills gauge sector was performed through the gauging of the isometries
of their target manifolds [12, 13, 14, 15, 16, 17, 18, 19]. Now, concerning the curved
superspace situation, it seems indeed quite appealing to analyze the possible couplings
of matter and gauge �elds in the presence of Atiyah-Ward supergravity. Let us observe,
however, that the class of models focused here must be necessarily understood in the sense
of the dimensional reduction framework employed by Ward in [7] (see also ref.[20]).

This is the purpose of the present work: to undertake the curved N=1 superspace
extension of the supersymmetric non-linear �-models of refs.[10, 11] which were built up
in the context of the (2+2)-signature for the Atiyah-Ward space-time and, subsequently,
to derive their gauged versions by means of the procedure carried out in [15].

The paper is organized as follows: in Section 2 we describe in detail the necessary
steps in the formulation of N=1 supergravity in the Atiyah-Ward superspace by using
the prepotential method of ref.[21], i.e. by determining the appropriate covariant deriva-
tives from the transformations of the matter super�elds; in Section 3 we recall the basic
notions on K�ahler's geometry needed for the gauging of isometries and use the elements
introduced in the previous section to obtain the curved superspace version of the fully
covariant supersymmetric �-model action; Section 4 is devoted to an interpretation of our
results and to the presentation of our conclusions. We also include an Appendix in which
some aspects of the gauging of isometries in (1+3)-signature are clari�ed. In particular,
besides the consistency conditions obeyed by the matter superpotentials (see ref.[22]), we
determine further constraints for the chiral and antichiral matrices of the non-minimal
gauge kinetic terms.
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2 N=1 Supergravity in the Atiyah-Ward Superspace

We begin our study by describing the construction of the relevant N=1 supergravity super-
multiplets in the Atiyah-Ward superspace. The notation and conventions of a superspace
with a base space-time possessing a (2+2)-signature metric we are the same as in ref.[23].
To start with, we introduce supersymmetric matter in terms of a pair of chiral-antichiral
complex scalar super�elds, � and �, with their component �eld expansions writing in
accordance withy:

� = A+ i� + i�2F + i~�~�m�@mA+ 1
2
�2~�~�m@m �

1
4
�2~�22A; (2.1)

� = B + i~�~�+ i~�2G + i��m~�@mB + 1
2
~�2��m@m ~��

1
4
�2~�22B; (2.2)

where A and B are complex scalar �elds,  and ~� are Weyl spinors and F and G are
complex auxiliary �elds. One has to notice here an essential feature of the Atiyah-Ward
superspace: the scalar super�els do not change their chirality properties under the complex
conjugation operation: eD _�� = eD _��� = 0;

D�� = D��� = 0;

(2.3)

with the supersymmetric covariant derivativesz

D� = @� � i~� _�@� _�;

eD _� = e@ _� � i��e@� _�;

(2.4)

obeying the graded di�erential algebra

fD�; eD _�g = �2i �m� _� @m;

fD�; D�g = f eD _�; eD _�g = 0;

[D�; @m] = [ eD _�; @m] = 0:

(2.5)

In order to parametrize supertranslations in the Atiyah-Ward superspace, we choose a
couple of chiral-antichiral real scalar super�eldsx , � and �, possessing the following
structure:

� = �MDM ; � = �MDM ; (2.6)

yThe Grassmann coordinates, � and ~�, are Majorana-Weyl spinors in (2+2) dimensions.
zWe use @� _� = �m

� _�
@m.

xA crucial observation about the Atiyah-Ward superspace is the fact that chiral or antichiral super�elds
may be taken as real non-constant quantities, which is in contrast with the more familiar Minkowskian
situation.
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with DM = f@m; D�; eD _�g standing for the supertranslation generators. The desired
transformation laws for both chiral-antichiral matter super�elds and their complex con-
jugated counterparts write then as:

�0 = ei� � e�i�; �0 = ei� � e�i�;

��0 = ei� �� e�i�; ��0 = ei� �� e�i�;

(2.7)

It should be observed that the supertranslational parameters in (2.6) cannot be arbitrary,
being indeed demanded to obey chirality-antichirality type constraints, namely,

[ eD _�; �] = 0; [D�; �] = 0; (2.8)

which, in turn, may be rephrased as follows:

eD _��� = 0; D�� _� = 0;

eD _��� _� + 2i ��� _�
_� = 0; D��� _� + 2i � _�� �

� = 0:

(2.9)

From eqs.(2.9) above one may determine the solutions

�� = eD2L�; � _� = D2M _�;

�� _� = 4i eD _�L�; �� _� = 4i D�M _�;

(2.10)

where the spinor super�elds L� and M _� are totally arbitrary and mutually independent;
and where the super�elds � _� and �� are left undetermined for the moment.

To covariantize matter super�eld monomials under supertranslations, one makes use of
a real super�eld H, the supergravity prepotential, which behaves under supercoordinate
transformations as indicated below:

eiH
0

= ei� eiH e�i�; (2.11)

and introduces the rede�ned quantities:

e� = e�iH � eiH; e�� = e�iH �� eiH: (2.12)

As an illustration, one can easily verify that matter monomials such as � e�� and e� ��

are truly covariant (�-transforming) objects.
The next step consists of de�ning a set of supergravity covariant derivatives. To ac-

complish this task we start by de�ning two non-covariant spinorial di�erential operators{k:

Ê _� � eD _�; Ê� � e�iH D� e
iH: (2.13)

{We adopt a curved superspace notation in which letters from the early greek alphabet are used as
spinorial frame indexes, while letters from the middle and beyond stand for the curved supermanifold
ones.

kFor the sake of simplicity, we work throughout the paper in a chiral type supergravity representation.
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Moreover, a vector derivative can also be obtained from the anticommutator of the spino-
rial ones:

Ê� _� =
i

2

n
Ê�; Ê _�

o
: (2.14)

However, we stress once more that these derivatives are not supergravity covariant. To
see this, we simply let Ê _� vary in�nitesimally to get the following:

�Ê _� = ei� Ê _� e
�i� �

�
Ê _��

_�
�
Ê _�

=
h
i�; Ê _�

i
+ ! _�

_� Ê _� + � Ê _�;

(2.15)

where

! _�
_� = �1

2
eD( _��

_�); � = �1
2
eD _�� _�: (2.16)

To overcome this di�culty, we de�ne a chiral density compensator 	 transforming such
as

�	 = [i�; 	]�� 	; (2.17)

and construct a modi�ed spinorial derivative

�E _� = 	 eD _�; (2.18)

which transforms as
� �E _� =

�
i�; �E _�

�
+ ! _�

_�
�E _�: (2.19)

Furthermore, one may also introduce an antichiral density compensator � transforming
as

�� = [i�; �]�� �; (2.20)

with
� = �1

2
D��

�; (2.21)

and then write
�E� = e�iH � D� e

iH = e�Ê�; (2.22)

where e� = e�iH � eiH: (2.23)

The transformation is now given by:

� �E� =
�
i�; �E�

�
+ ~� �

�
�E�; (2.24)

with
� �
� = �1

2
D(��

�); (2.25)

and
~� �
� = e�iH � �

� eiH: (2.26)

From the frame viewpoint, the spinorial derivatives E� and E _� read as:

E� = N �
�

�E�; E _� = N
_�

_�
�E _�; (2.27)
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where one will later choose the gauge-�xings N �
� = � �

� and N
_�

_� = �
_�

_� upon these
compensating �elds. In the frame language, the vector derivative writes then as:

E� _� = N �
� N

_�
_�

�
�E� _� +

i

2
� _�
� _�

�E _� +
i

2
� �

_��
�E�

�
; (2.28)

with the fermionic spin-connections given in terms of certain holonomy coe�cients:

� _�
� _� = �1

2
C

� _�)
�; �( _� ; � �

_�� = 1
2
C

�) _�
(� _�; _� : (2.29)

Under supertranslations one gets then the following:

�E� _� = [i�; E� _�] + ~� �
� E� _� + !

_�
_� E� _�: (2.30)

To build up the fully covariant derivatives, one needs two further fermionic spin-connections:

� 


�� = �1
4
C


) _�
�; (� _� ; � _


_� _�
= �1

4
C

� _
)

_�; �( _�
: (2.31)

With (2.29) and (2.31) one can �nally obtain the fermionic derivatives:

r� � E� + � 


�� M �

 + � _


� _�
fM _�

_
 ; (2.32)

and er _� � E _� + � 


_�� M �

 + � _


_� _�
fM _�

_
 ; (2.33)

with the Lorentz group generatorsM �

 and fM _�

_
 obeying respectively to the two algebraic
relations: �

M
�; M
�"
�
= �

(�
(
 M

")
�) ;

hfM _
 _�;
fM _� _"

i
= �

( _�
( _

fM _")

_�)
: (2.34)

At this stage, the covariant vector derivative is determined fromn
r�; er _�

o
= �2i r� _�; (2.35)

its expression reading then as:

r� _� = E� _� + � 


� _�;� M �

 + � _


� _�; _�
fM _�

_
 ; (2.36)

with the vector spin-connections possessing the following structure

� 


� _�;� = i

2

h
E��




_�� + �
_�

� _� � 


_��
+ E _��




�� + � �
_�� � 


�� + � �
�� � 


_�� + � 
�
� � _���

i
;

(2.37)
and

� _


� _�; _�
= i

2

h
E��

_


_� _�
+ �

_�
� _� � _


_� _�
+ E _��

_


� _�
+ � �

_�� � _


� _�
+ �

_�
� _�

� _


_� _�
+ � _
 _�

� � _� _� _�

i
:

(2.38)
Now, in view of the expressions (2.18), (2.22) and (2.28), the vielbein superdeterminant
may be obtained. One �nds:

E = sdet
�
E M
A

�
= 	2 e�2 sdet

h
Ê M
A (H)

i
: (2.39)
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The tensor eR may be obtained through the anticommutator relation:

fr�; r�g = eR �
��
 M




� ; (2.40)

where eR �
��
 = �E��

�
�
 + � "

�� � �
"
 + � "

�
 � �
�" + � �"

� ��
" +

+ �E��
�

�
 + � "
�� � �

"
 + � "
�
 � �

�" + � �"
� ��
": (2.41)

One has to observe that (2.40) above is assuming implicitly the conventional constraint:

T



�� = C



�� + � 


(��) = 0; (2.42)

where the anholonomy coe�cients are given by:

fE�; E�g = C 


�� E
: (2.43)

Eq.(2.42) entails, in turn, the relation:

���
 = 1
2

�
C�
� � C�(�
)

�
: (2.44)

In the gauge N �
� = � �

� , the anholonomy coe�cients may be determined from:�
�E�; �E�

	
= �C 


��
�E
; (2.45)

with the following result:

C



�� = �C 


�� = �



(�
�E�) ln �: (2.46)

By substituting this into (2.44) one gets:

� 


�� = �1
2�




(�
�E�) ln �2: (2.47)

We get then the following:eR = 1
3
eR ��

�� = 1
3

�
�3 Ê�Ê

� �2
�

=
�
Ê�

�2
�2: (2.48)

The tensor R writes similarly as:

R =
�
Ê _�

�2
	2: (2.49)

To parametrize a restricted class of the super-Weyl transformations in the Atiyah-Ward
superspace one introduces two independent complex super�elds: the covariantly chiral and
antichiral super�elds, 
 and �, respectively. The inverse of the vielbein superdeterminant
and the curvature �eld-strengths will vary in�nitesimally as:

�E�1 = � (
 + 
� +�+��) E�1; (2.50)

and

�R�1 = �[ 2(
 + 
�) � (� + ��) ] R�1 + [ (er2�) + (er2��) ] R�2; (2.51)

� eR�1 = �[ 2(� + ��) � (
 + 
�) ] eR�1 + [ (r2
) + (r2
�) ] eR�2: (2.52)

In the next section, we shall make use of the fundamentals of the Atiyah-Ward N=1
supergravity introduced here to perform the coupling of a class of supersymmetric non-
linear �-models. As it was mentioned in the Introduction, the combined notions of K�ahler
geometry of the target space, local isometry transformations of matter super�elds and the
super-Weyl dilatations will allow us to attain important information on the structure of
the corresponding gauge invariant action functional.
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3 N=1 Supergravity and Gauged Isometries

We now concentrate our attention on the speci�c issue of constructing gauged �-models in
the Atiyah-Ward superspace. Following [10, 11], we introduce the N=1 supersymmetric
action governing the dynamics of two sets of complex chiral and antichiral super�elds of
the type described in the beginning of the previous section. We take��:

S = 2

Z
d4x d2� d2~� K(�i;�i; ��i;��i); (3.1)

with the K�ahler potential K decomposing into two conjugated pieces:

K(�i;�i; ��i;��i) = H(�i;��i) +H�(��i;�i): (3.2)

The pure scalar sector steming from the projection of (3.1) into component �elds is given
by:

Sscalar = 2

Z
d4x

 
@2K

@Ai@B�j
@�A

i@�B�j +
@2K

@A�i@Bj
@�A

�i@�Bj

!
: (3.3)

Dimensional reduction and proper �eld truncations upon Sscalar above will give rise to a
sensible (ghost free) scalar kinetic term in D=1+2 space-time dimensions (see ref.[20]).

The target spaces corresponding to the action Sscalar above are 4n-dimensional K�ahler
manifolds, their Hermiteanmetric tensor possessing a four-block structure of the following
type:

gIJ =

0BBBBBBBB@

0 0 0 gi|̂

0 0 g{̂| 0

0 g{|̂ 0 0

g{̂j 0 0 0

1CCCCCCCCA
; (3.4)

where

gi|̂ =
@2H

@�i@��j
; g{̂| =

@2H�

@�i@��j
; g{|̂ =

@2H�

@��i@�j
; g{̂j =

@2H

@��i@�j
; (3.5)

and
I;J = 1; :::; 4n with i; j = 1; :::; n: (3.6)

The particular form of gIJ in (3.4) above will entail a number of consequences for the
geometry of our K�ahlerian target manifold. In fact, the most general type of K�ahler
transformation one can perform upon the potential K while keeping the action (3.1)
invariant and the metric (3.4) unchanged is:

K �! K
0

= K + �(�) + ��(��) + �(�) + ��(��); (3.7)

��
R
d4xd2�d2~� � 1

16

R
d4xD� eD _� eD _�D�
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with (�; ��) and (�; ��) standing for arbitrary chiral and antichiral functions respectively.
Moreover, the complex structures can be parametrized as follows:

J J
I =

0BBBBBBBBB@

i� j
i 0 0 0

0 i� |̂

{̂ 0 0

0 0 �i� |

{ 0

0 0 0 �i� |̂

{̂

1CCCCCCCCCA
: (3.8)

In regard to isometries, they will be symmetries of (3.1) provided their action upon K

writes in a form compatible with the K�ahler transformation in (3.7). The Killing vec-
tors (�ia(�); �

i
a(�); �

�i
a (�

�); � �ia (�)) are the generators of the isometry group G. A global
isometry transforms the target coordinates as:

�
0i = exp (L���) �i; �

0�i = exp (L����) ��i;

�
0i = exp (L��� ) �i; �

0�i = exp (L����) ��i; (3.9)

where � is a real isometry parameter and L��� (resp. L��� ) is for the Lie derivative along
the vector �eld � �� � �a�ia@i (resp. � � � � �a� ia@{̂). As explained in detail in ref.[10], the
gauging of the model demands the introduction of a complex Killing potential Ya writing
as:

Ya = 2 f c
ab �

i
d�

�j
c

@2H

@�i@��j
gbd; (3.10)

where f c
ab and gbd are the structure constants and the Killing metric of the isometry

gauge group, respectively. Here, local isometries are parametrized in terms of a couple
(�g; �g) of real chiral and antichiral super�elds, respectivelyyy. The matter super�elds
transform under local isometries as de�ned below:

�
0i = exp (L�g ��) �

i; �
0i = exp (L�g��) �

i: (3.11)

The gauge sector is constructed from a Lie algebra valued prepotential V which is a real
super�eld transforming as:

exp (LV 0�� ) = exp (L�g�� ) exp (LV ��) exp (�L�g�� ): (3.12)

The action (3.1) is then modi�ed by replacing the antichiral �elds (�; ��) with the
rede�ned quantities (~�; ~��):

~�i � exp (LV �� ) �
i; ~��i � exp (LV ���) �

�i: (3.13)

Furthermore, in order to implement the gauging correctly one is enforced to introduce a
pair of antichiral super�elds (v; v�) playing the role of �ctitious coordinates of the target.
These super�elds transform as:

�� = �a�a(�); ��� = �a��a(�
�): (3.14)

yyThese gauge parameters should not be confused with the supertranslational ones, i.e. � and �.
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The isometry covariant action functional is [10]:

Scov = 2

Z
d4x d2� d2~�

h
H(�i; ~��j) + H�(��i; ~�j) � ~� � ~��

i
: (3.15)

By substituting the original variables and introducing the chiral and antichiral integrals,
one gets the complete gauged action functional:

Scov = 2

Z
d4x d2� d2~�

�
H(�i; ��j) + H�(��i; �j) + 2 Re

�
eL � 1

L
V aY �

a

� �
+

+

Z
d4x d2�

�
F (�i; ��i) � 1

16
gab W

a�W b
�

�
+

+

Z
d4x d2~�

h
G(�j; ��j) � 1

16
gab fW a _�fW b

_�

i
;

(3.16)
where L � LV �� , F and G are real chiral and antichiral superpotentials, respectively, and
(W�; fW _�) are the gauge �eld-strengths with:

W� � i eD2
�
eiVD� e

�iV
�
; fW _� � iD2

�
e�iV ~D _� e

iV
�
: (3.17)

In the curved Atiyah-Ward superspace, the gauged action (3.16) will be coupled to su-
pergravity and will write as (see the Appendix A):

Scov = � 6
k2

Z
d4x d2� d2~� E�1 e

�
k2

3

n
H(�i; ��j) + H�(��i; �j) + 2 Re

h
eL�1
L

V aY �

a

i o
+

+

Z
d4x d2� d2~� E�1R�1

�
F (�i; ��i) � 1

16 gab W
a�W b

�

�
+

+

Z
d4x d2� d2~� E�1 eR�1

h
G(�j ; ��j) � 1

16 gab
fW a _�fW b

_�

i
:

(3.18)
Under an in�nitesimal isometry transformation, the action (3.18) will vary such as:

�Scov = � 6
k2

Z
d4x d2� d2~� E�1

h
�k2

3

�
�� b

g �b � � b
g �

�
b � � b

g �b � � b
g �

�
b

� i
�

� e
�
�2

3

n
H(�i; ��j) + H�(��i; �j) + 2 Re

h
eL�1
L

V aY �

a

i o
+

+

Z
d4x d2� d2~� E�1R�1

�
� a
g �

i
aFi + � a

g �
�i
a F�{ �

1
16
gab W

a�W b
�

�
+

+

Z
d4x d2� d2~� E�1 �R�1

h
� a
g �

i
aG{̂ + � a

g �
�i
a G�̂{ �

1
16
gab fW a _�fW b

_�

i
:

(3.19)
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On the other hand, a restricted super-Weyl transformation of the type discussed in the
end of Section 2 will induce the following variation:

�WScov = � 6
k2

Z
d4x d2� d2~� E�1 [ � ( 
 + 
� + � + �� ) ] �

� e
�
k2

3

n
H(�i; ��j) + H�(��i; �j) + 2 Re

h
eL�1
L

V aY �

a

i o
+

�

Z
d4x d2� d2~� E�1R�1 ( 3
 + 3
�)

�
F (�i; ��i) � 1

16
gab W

a�W b
�

�
+

�

Z
d4x d2� d2~� E�1 eR�1 ( 3� + 3��)

h
G(�j; ��j) � 1

16
gab fW a _�fW b

_�

i
:

(3.20)
The cancellation between (3.19) and (3.20) implies the di�erential constraints upon the
superpotentials F and G:

� a
g �ia Fi � k2 � a

g �a F = 0; � a
g ��ia F�{ � k2 � a

g ��a F = 0; (3.21)

� a
g � ia G{̂ � k2 � a

g �a G = 0; � a
g � �ia G�̂{ � k2 � a

g � �a G = 0: (3.22)

The introduction of non-minimal kinetic terms for the gauge �elds may also be taken into
account along the lines envisioned in the Appendix A. In this case, chiral and antichiral
coupling matrices would also obey to non-trivial conditions (see the equations (A.22) and
(A.23)).

4 Concluding Remarks

We have explicitly constructed and discussed the essential elements of N=1 supergravity
in the Atiyah-Ward superspace. The method employed here consisted of determining the
correct covariant derivatives of supergravity by postulating the convenient supertrans-
lational transformations for the matter super�elds (see ref.[21]). In a second step, we
presented the consistent coupling of the so-called Atiyah-Ward supergravity to a class of
N=1 supersymmetric non-linear �-models. Subsequently, one implemented the gauging
of isometries of the corresponding target manifolds by making use of a general framework
introduced by Hull et al. in [15]. One observes that, in order to attain local isometry in-
variance of the gauged action functional, the matter superpotentials must obey constraint
equations for both chiralities, in a similar form as it was obtained in the Minkowskian case.
We also indicate the conditions which have to be imposed onto the chiral and antichiral
matrices of the non-minimal couplings for the gauge kinetic terms.

The gauge-invariant supersymmetric �-models constructed here may be of interest in
the study of the dynamics of lower-dimensional supersymmetric �eld theories. Indeed,
the supression of one time coordinate of these action functionals allows one to uncover
new examples of three-dimensional Minkowskian �eld models. Moreover, it seems quite
reasonable to believe that the coupling to supergravity entails new consequences for these
dimensionally reduced theories.
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A Appendix: N=1 Supergravity and Gauged Isome-

tries in D=1+3 Dimensions

In the present appendix we discuss some aspects of the coupling of supergravity to a gen-
eral gauged (isometry covariant) N=1 supersymmetric non-linear �-model in the usual
Wess-Zumino superspace with base space-time of (1+3)-signature. As mentioned in the
introduction, after the component �eld formulation developed by Bagger in ref.[24], this
issue has been focused in the literature by some authors. Indeed, the �rst curved super-
space formulation for such a construction was developed by Samuel in ref.[25] and, later
on, by Grimm in [26] in the so-called K�ahler superspace framework (see refs.[27, 28] for a
more complete account on that structure) and by Bagger and Wess in [22]. Here, we aim
at clarifying some aspects concerning the use of the restricted superscale transformations
of supergravity which, being employed in conjunction with the local isometry ones, char-
acterize a combined invariance of the theory. In what follows, we switch to the notation
and conventions of ref.[21] and exploit the strategy and results obtained by Hull et al. in
ref.[15] for the 
at N=1 superspace situation.

In the 
at N=1 superspace case, the �-model action gorverning the dynamics of the
complex scalar super�elds involves the K�ahler potential of a complex manifold of coordi-
nates (�i; ��j) and is given by (see ref.[29]):

S =

Z
d4x d4� K(�i; ��j); (A.1)

which is known to be invariant under global isometry transformations of that internal
space which, at the in�nitesimal level write as below

��i = �AkiA; � ��j = �A�kAj ; (A.2)

with kiA(�) and �kAj(��) standing for holomorphic and antiholomorphic Killing vectors
obeying the Lie algebraic relations

k
j

[Ak
i
B] ;j = f C

AB kiC;
�k[Aj�k

;j

B]i = f C
AB

�kCi: (A.3)

However, the action (A.1) is not invariant under isometry transformations of the local
type:

��i = �AkiA; � ��j = �A�kAj ; (A.4)

where the parameters � and �� are now promoted to chiral and antichiral super�elds
respectively. To covariantize (A.1) one introduces a real functional, the Killing potential
X(�i; ��j), which satis�es the equations

kiAKi = iXA + �A; �kAiK
i = �iXA + ��A; (A.5)

with �A(�) and ��A(��) being the chiral and antichiral functions of a general K�ahler trans-
formation. In the speci�c case of a semi-simple isometry group, the expression for the
Killing potential can be explicitly determined:

XA = 2i f C
AB kiD

�kCjK
i
jg

BD; (A.6)
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where gBD is the inverse Killing metric. Furthemore, one is enforced to introduce a couple
of \auxiliary" variables � and �� which vary under in�nitesimal isometries as follows [15]:

�� = �A �A; ��� = ��A ��A: (A.7)

Next, we rede�ne the antichiral matter �elds ��j to transform in terms of the chiral gauge
parameter � rather than ��. One sets then:e�j = eiLV:�k ��j; (A.8)

where L = iLV:�k is the Lie derivative along the vector �eld direction iV:�k, and assuming
moreover the additional transformation law for the prepotential V

eiLV 0:�k = eL�:�k eiLV:�k e�L��:�k : (A.9)

By collecting all these facts one arrives at the gauged action given below:

S =

Z
d4x d4�

h
K(�i; ~�j)� � � ~�

i
; (A.10)

which, with the aid of the relations ( see ref.[15] )

K(�i; ~�j) = K(�i; ��j) +
eL � 1

L
K i�kAi(iV

A); (A.11)

and

~� = �� + i
eL � 1

L
��AV

A; (A.12)

may be rewritten as

S =

Z
d4x d4�

�
K(�i; ��j) +

eL � 1

L
XAV

A

�
+

+

Z
d4x d2�

�
P (�i) + 1

4 QAB(�
i) WA�WB

�

�
+

+

Z
d4x d2��

�
P (��j) + 1

4
�QAB(��j) �WA _� �WB

_�

�
;

(A.13)

where we have added the chiral and antichiral integrals. Here, one has to observe that
the two auxiliary �elds dropped out from the �nal gauged action due to their chiral and
antichiral characters respectively. Equation (A.13) represents the most general version of
the gauged N=1 supersymmetric non-linear sigma model in 
at superspace. In the curved
superspace, (A.13) will assume the form:

S = � 3
�2

Z
d4x d4� E�1e

�
�2

3

h
K(�i; ��j) + eL�1

L
XAV

A

i
+

+

Z
d4x d4� E�1R�1

�
P (�i) + 1

4
QAB(�

i) WA�WB
�

�
+

+

Z
d4x d4� E�1 �R�1

�
P (��j) + 1

4
�QAB(��j) �WA _� �WB

_�

�
;

(A.14)
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where R�1 and �R�1 are the inverses of the chiral and anti-chiral curvature �eld-strengths
respectively. Here, we attribute zero super-Weyl weights to the matter and gauge super�elds�.
An in�nitesimal isometry will induce the following variation upon S:

�S = � 3
�2

Z
d4x d4� E�1

h
��2

3

�
��B�B � ��B��B

� i
e
�
�2

3

h
K(�i; ��j) + eL�1

L
XAV

A

i
+

+

Z
d4x d4� E�1R�1

�
�AkiAPi + 1

4

�
�CkiCQABi � f D

[AC �CQDB]

�
WA�WB

�

�
+

+

Z
d4x d4� E�1 �R�1

�
��A�kAi �P

i + 1
4

�
��C�kCi �Q

i
AB � f D

[AC
��C �QDB]

�
�WA _� �WB

_�

�
:

(A.15)
To check that (A.14) above is invariant under the local isometries in (A.4), one is enforced
to simultaneously implement a restricted type of superscale transformation [30, 31]. Under
the action of these speci�c superscalings, we get the following in�nitesimal transforma-
tions:

�E�1 = �
�
� + ��

�
E�1; (A.16)

for the inverse supervielbein superdeterminant, and

�R�1 = �
�
2�� ��

�
R�1 +

�
�r2��

�
R�2; (A.17)

� �R�1 = �
�
2��� �

�
�R�1 +

�
r2�

�
R�2; (A.18)

for the inverse curvature �eld-strengths. The parameters � and �� are chiral and anti-
chiral super�elds respectively. The gauged action S in (A.14) will vary then as:

�WS = 3
�2

Z
d4x d4� E�1

�
� + ��

�
e
�
�2

3

h
K(�i; ��j) + eL�1

L
XAV

A

i
+

�

Z
d4x d4� E�1R�1( 3� )

�
P (�i) + 1

4 QAB(�
i) WA�WB

�

�
+

�

Z
d4x d4� E�1 �R�1( 3�� )

�
P (��j) + 1

4
�QAB(��j) �WA _� �WB

_�

�
;

(A.19)

where we observe that the non-homogeneous parts of the transformations (A.17) and
(A.18) give rise to surface terms which do not contribute to �WS. Now, to obtain the
cancellation between the two variations one is led to impose the following conditions upon
the potentials P (�i), QAB(�i) and their complex conjugated counterparts:

�AkiAPi � �2�A�AP = 0; (A.20)

��A�kAi �P
i � �2��A��A �P = 0; (A.21)

and
�CkiCQABi � f D

[AC �CQDB] � �2�C�CQAB = 0; (A.22)

�In general, super-Weyl weights for matter are arbitrary.
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��C�kCi �Q
i

AB � f D
[AC

��C �QDB] � �2��C ��C �QAB = 0: (A.23)

The two conditions (A.20) and (A.21) above have been derived in ref.[12], while (A.22)
and (A.23) were lacking in the literature. They represent highly non-trivial constraints
upon the potentials and turn out to be essential for the gauge invariance of the N=1
supersymmetric �-model in curved superspace.
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