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Abstract

A relativistic model for the emission of gravitational waves from an initially unper-
turbed Schwarzschild black hole, or spherical collapsing con�guration, is completely in-
tegrated. The model consists basically of gravitational perturbations of the Robinson-
Trautman type on the Schwarzschild spacetime. In our scheme of perturbation, gravita-
tional waves may extract mass from the collapsing con�guration, and the amount of mass
extracted depends on the particular gravitational wave l-poles emitted (l � 2). The formu-
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which measures the ratio of mass taken out from the source by a l-pole (b0 is a small
positive parameter, of the order of the perturbations, characteristic of the mechanism
of mass emission in a Schwarzschild background spacetime). The quadrupole emission
mode is the dominant mechanism in extracting mass from the con�guration. Robinson-
Trautmann perturbations also include another mode of emission of mass, which we denote
shell emission mode: in the equatorial plane of the con�guration, a timelike (1 + 2) shell
of matter may be present, whose stress-energy tensor is modelled by neutrinos and strings
emitted radially on the shell; no gravitational waves are present in this model. The in-
variant characterization of gravitational wave perturbations and of the gravitational wave
zone is made through the analysis of the structure of the curvature tensor and the use
of the Peeling Theorem. The time behaviour of a l-pole gravitational wave has the form
exp[�(u=3M) l(l + 1)=2 (l(l + 1)=2 � 1)], where M is the initial mass of the collapsing
con�guration and u may be interpreted asymptotically as the retarded time. It follows
that, for a Galilean observer at in�nity, the horizon of the �nal black hole con�guration
takes an in�nite time to form.

Key-words: Gravitational waves; Black holes; Schwarzschild geometry perturbations;
Robinson-Trautman perturbations.
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1 Introduction

In the study of the dynamics of formation of black holes, the �nal state of the collapsing
con�guration is �xed by the so-called Wheeler's lemma \A black hole has no hair" [1].
For a Schwarzschild black hole this lemma is sustained by the complete analysis of scalar,
electromagnetic and gravitational perturbations on the background geometry realized in
Refs. [2{7] and extended for non-classical �elds in Refs. [8{10]. The analysis carried
out in these references treat the perturbations as test �elds. However, in the particu-
lar case of gravitational perturbations, the approach does not consider two important
issues: (i) how do the gravitational perturbations of radiative character extract mass,
and what is the amount of mass carried out by a particular gravitational radiation pole
emitted; (ii) what is the fate of the compact event horizon due to the presence of gravi-
tational perturbations. In this paper, our aim is to examine these issues by considering
a simple class of gravitational perturbations of the radiative type. Our approach here
will be based on perturbations of the Robinson-Trautman type made on a Schwarzschild
background. This class of perturbations may be understood as belonging to the family of
Robinson-Trautman metrics [11], having the Schwarzschild geometry as a particular limit,
the advantage of which is that the de�nition of a mass function appears naturally. A fur-
ther advantage in the use Robinson-Trautman perturbations is that a gravitational wave
zone is well characterized in the perturbed spacetime, such that it constitutes a simple and
suitable model for the exam of the issues discussed above. Also, the Robinson-Trautman
perturbations, if by one hand they contain just a particular set of even-parity perturba-
tions (in the terminology of Regge-Wheeler), by the other hand they are more general in
the sense that they contain a coordinate gauge dependent piece which allows us to obtain
information on how gravitational waves extract mass from the collapsing con�guration
(indeed, invariant information).

The paper is organized as follows. In Section 2, the Robinson-Trautman metrics
are introduced together with the corresponding vacuum Einstein equations, and after
particularized as perturbations of the Schwarzschild metric. In Section 3 we examine the
structure of the curvature tensor for the Robinson-Trautman perturbations, in order to
obtain under what conditions they are true gravitational wave perturbations and have
a well de�ned gravitational wave zone. The use of the Peeling Theorem is made in this
characterization. In Section 4, the integration of �eld equations is completely realized,
based on pertinent initial conditions, and physical results discussed. In Section 5, the
temporal gauge group for Robinson-Trautman metrics is introduced, and an invariant
mass function de�ned, allowing a characterization of mass loss from the con�guration
by emission of gravitational waves. Finally in Section 6, a summing up of the resulting
scenario is made.

Throughout the paper, the units are such that c = 8�G = 1.
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2 The Geometry and the Field Equations

We start by considering the family of Robinson-Trautman spacetimes [11], with metric
given by

ds2 = A2(u; r; �)du2 + 2du dr � r2K2(u; �)(d�2 + sin2 �d�2) : (1)

This geometry is non-stationary and axially symmetric, admitting the obvious Killing
vector @=@�. The components G22 = 0 and G33 = 0 of Einstein's equations in vacuum,
together with G02 = 0 = G12, gives that

A2(u; r; �) = L(u; �) +B(u)=r + 2rK 0(u; �)=K(u; �) ; (2)

with L and K arbitrary functions of u and �, and B an arbitrary function of u. Here a
prime denotes @=@u. The remaining vacuum equations G00 = G01 = G11 = 0 lead us to
choose the function L(u; �) as

L(u; �) = 1=K2 �K��=K
3 +K2

�
=K4 �K�cotg �=K

3 ; (3)

where a subscript � denotes now @=@�, resulting

3B(u)K 0=K +B 0(u) +
1

2K2 sin �
(L� sin �)� = 0 : (4)

Equations (3) and (4) are the basis of our analysis in this paper.
It is easy to see that

L = 1 = K ; B = �2M = const. (5)

is a solution of (3) and (4), corresponding to the Schwarzschild metric in outgoing
Eddington-Finkelstein coordinates [1]. These coordinates are most convenient for our
analysis of a non-spherical, axially symmetric collapse with emission of gravitational
waves. We remark here that the Eddington-Finkelstein retarded coordinate u may be
interpreted as the Newtonian time of an observer a rest at in�nity (r !1) [12, 13], and
r is the parameter distance along the outgoing null geodesics determined by the vector
�eld @=@r. Of course, our description is valid only outside the apparent horizon de�ned
by A2(u; r; �) = 0.

Let us now introduce Robinson-Trautman perturbations on the Schwarzschild solution
(5), namely, we take a geometry of the form (1), (2), (3) given by

ds2 =

"
1 + "W (u; �) +

�2M + "Z(u)

r
+ 2"r@=@u Y (u; �)

#
du2

+ 2dudr � r2[1 + "Y (u; �)]2(d�2 + sin2 �d�2) ; (6)

where " is a small parameter. As we will show later, the curvature tensor calculated from
(6) guarantees that, in general, these perturbations do not result from mere coordinate
transformations but they are physical in the sense that the invariants constructed with
the curvature tensor calculated from (6) are distinct from the ones of the curvature of the
Schwarzschild solution (5).
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The components of the metric perturbations hab(a; b = 0; 1; 2; 3) may be expressed

hab =

0
BBB@
W (u; �) + Z(u)=r + 2r @uY (u; �) 0 0 0

0 0 0 0
0 0 2r2Y (u; �) 0
0 0 0 2r2Y (u; �) sin2 �

1
CCCA (6:a)

After the integration of the �eld equations (3) and (4) for the perturbed metric, when the
functions W (u; �) and Y (u; �) are determined, it will result that perturbations (6.a) are
actually split into two parcels, only one of which will have angular dependence. This latter
parcel is a particular type of even-parity perturbations, in the terminology of Regge and
Wheeler (Ref. [2]), or of polar-type perturbations in the terminology of Chandrasekhar
(Ref. [14]), and are already in the canonical form for even-parity perturbations, as given in
Ref. [2]. The other parcel will contain, as its entries, the function Z(u)=r and separation
constants appearing in the integration. We might be tempted to interpretB(u) = �2M+
"Z(u) as a time-dependent mass term, or Z(u) as a perturbation in the mass M of the
Schwarzschild background. However, as will be discussed in Section 5, we can always
choose a temporal gauge in which B(u) is a constant. Therefore it is not possible to
attach a meaning to the time dependence of B, unless the time coordinate u may be �xed
in an independent way, for instance, as the retarded time coordinate of the Schwarzschild
background. This is a crucial point in our paper, which shall be dealt with in Section 5.
There we will show that we can de�ne an invariant mass function which coincides with
B(u) for large values of u.

Inserting (6) in the �eld equations (3) and (4), we obtain in �rst order in ",

dZ=du � 6M @Y=@u+
1

2 sin �
[(sin � W�)�] = 0 ; (7)

Y�� + Y�cotg � + 2Y = �W : (8)

The form of the above equations suggests the following separation Ansatz

Y (u; �) = y(�)N(u) ; (9)

W (u; �) = w(�)N(u) ;

yielding from (7) and (8),

�
6M

N
[dN=du] = a0 = const: ; (10.a)

1

N
[dZ=du] = b0 = const: ; (10.b)

w�� + w� cotg � + 2a0y + 2b0 = 0 ; (11.a)

y�� + y� cotg � + 2y = �w : (11.b)
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Equations (10) and (11) determine uniquely (up to a temporal gauge freedom to be dis-
cussed later) the Robinson-Trautman gravitational perturbations of Schwarzschild black
hole of mass M .

Before proceeding into the task of integrating equations (10) and (11), taking into
account the initial conditions connected to the emission of gravitational waves, we must
discuss the physical nature of the perturbations considered and what are the new features
present in the spacetime described by (6). In this way, we examine, in the next section,
the structure of the Weyl tensor of (6).

3 The Structure of the Weyl Tensor and the Gravi-

tational Wave Zone

Let us introduce the semi-null tetrad basis determined by the 1-forms

O0 = du ;

O1 = A2=2 du+ dr; (12)

O2 = r K d� ;

O3 = r K sin � d� ;

where the metric (1) assumes the from ds2 = gABO
AOB, with

gAB =

0
BBB@

0 1 0 0
1 0 0 0
0 0 �1 0
0 0 0 �1

1
CCCA :

The tetrad basis has the physical property that it is parallely propagated along the null
geodesics determined by @=@r. As we shall see, these outgoing null geodesics are the
propagation direction of the gravitational waves. In this basis, the non-zero Weyl tensor
components are given by

C2323 = �C0101 = 2 C0212 = B(u)=r3 = [�2M + Z(u)]2=r3 ; (13.a)

C0303 = �C0202 = A(u; �)=r2 ; C0303 = L�=2Kr2 ; (13.b)

C0202 = �C0303 = �D(u; �)=r ; (13.c)

where the functions A and D are

A(u; �) =
1

4K2
(�L�� + 2L�K�=K + L�cotg �) ; (14)

D(u; �) =
1

2K2
@u[(K�=K)� �K�=Kcotg � � (K�=K)2] :

We note that the r-dependence of the components (13.a,b,c) is , respectively, 1=r3; 1=r2

and 1=r. Indeed, from (13), we may express

CABCD = DABCD=r
3 + IIIABCD=r

2 +NABCD=r ; (15)
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where DABCD; IIIABCD and NABCD are of algebraic type D, type III and type N in
the Petrov classi�cation [15, 16, 17], respectively, and have the vector �eld k = @=@r as a
principal null direction (cf. (17) below). In the coordinate basis, they have the property of
being covariantly constant along the null direction k [11]. For the Schwarzschild geometry,
only type D terms are present, and the non-zero components of the Weyl tensor are

C2323 = �C0101 = 2 C0212 = �4M=r3 : (16)

Comparing (13) with (16) we can see that, indeed, the metric (6) is a true perturbation
of the Schwarzschild geometry.

From (15) we can now establish an invariant characterization of the presence of gravita-
tional waves in the perturbed spacetime (6), and of a corresponding gravitational radiation
wave zone. This is based on two pillars:

(i) the Peeling Theorem (for the linearized Riemann tensor of retarted multipole �elds,
see Refs. [21, 22]; for the general case, see Ref. [23]; for a review, including peeling
properties of the Maxwell tensor, see Ref. [20]);

(ii) the analysis of the spacetime of gravitational wave solutions of Einstein's equations,
and their relation to electromagnetic waves in Maxwell's theory [1, 11, 18, 19, 20].

The Peeling Theorem states that the Weyl tensor (or vacuum Riemann tensor) of a
radiative gravitational bounded source, expanded in powers of (1=r), has the general form

CABCD = NABCD=r + IIIABCD=r
2 + IIABDC=r

3 + IABCD=r
2 + � � � (17)

where r is the parameter distance de�ned along the null geodesics determined by the
null vector �eld k = @=@r. The quantitites NABCD; IIIABCD; IIABCD and IABCD, when
expressed in the coordinate basis, have vanishing covariant derivatives along the null
vector �eld k. They are of the algebraic type N , III, II and I, respectively, in the Petrov
classi�cation. The direction of propagation k is a repeated principal null direction [16, 17],
of the Weyl tensor to order r�4, and satis�es

NABCDk
D = 0 ;

IIIABC[Dk
CkE] = 0 ;

IIABC[DkE]k
BkC = 0 ; (18)

k[EIA]BC[DkF ]k
BkC = 0 :

If the spacetime is such that NABCD is non-zero, then, for large values of the distance
parameter, the curvature tensor has the approximate asymptotic expression CABCD =
NABCD=r, that is, it is of Petrov type N , with the degenerate principal null direction given
by k. This is the curvature tensor of a gravitational wave spacetime [1, 11, 18, 19, 20],
with propagation vector k (cf. (18)). In other words, the �eld looks like a plane wave
at large distances. The non-vanishing of the scalars NABCD is then taken as a invariant
criterion for the presence of gravitational waves, and the asymptotic region (where the
0(1=r) term in (17) is dominant) de�ned as the wave zone.
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Now if we compare (15) with (17), we see that the invariant condition for gravitational
wave perturbations in (6) is that (cf. (14))

D(u; �) = �"=2[y�� � y�cotg �]dN=du = �"(a0=12M)[y�� � y�cotg �]N 6= 0 : (19)

From the comparison of (13) and (15) with (17), we can see that the perturbations (6)
are not general, in the algebraic sense. In fact, (6) is algebraically special [24]. However,
the credo in the literature is that exact radiation �elds must be algebraically general.
This comes from the analysis of the linearized vacuum Riemann tensor of a retarded
multipole �eld [20, 22], the form of which is the same as (17), and the consideration that
exact radiation �elds are at least as complicated as their linearized approximation. For
instance, in the linear approximation, a static quadrupole gives rise to terms proportional
to r�5, while terms going as r�1; r�2; r�3 and r�4 arise if the quadrupole moment varies in
time [21]. Nevertheless the problem of the structure of the source of a radiation �eld in the
full non-linear theory is still open (we should mention a tentative de�nition of multipole
structure of the gravitational source, based upon a detailed analysis of the linearized
theory [25]). From the point of view of Einstein's equations, the expression (15) may well
be sustained while it is inconsistent from the point of view of the linearized theory. We
assume that (15) can well represent a particular structure of the bounded source of the
�eld, which indeed radiates even-parity multipoles, as we will show. For our purposes,
these even-parity perturbations of the Schwarzschild geometry are su�cient to give us an
answer about the question of how a collapsing star (or black hole), when perturbed, may
loose mass by emitting a particular gravitational radiation l-pole.

4 The Integration of Field Equations and Initial Con-

ditions

Equation (10) can be immediately integrated to

N = N0 exp[(�a0=6M)u] ; (20)

Z = Z0 � (6b0M=a0)N0 exp(�a0u=6M) ;

where N0 and Z0 are integration constants. The model envisaged for the initial conditions
which �x the integration constants Z0 and N0 is that of an initially collapsing spherical
star, or unperturbed Schwarzschild black hole of mass M , which, in a given time, say
u = 0, starts to emit gravitational radiation in the Robinson-Trautman regime, that is, in
accordance to (6). In view of this, gravitational waves are emitted with initial amplitude

(this is a provisional denomination, justi�ed in Refs. [18, 19, 20]) N0 and we must have
Z(u = 0) = 0 (cf. Ref. [26]). The mass perturbation (21) is then �xed to

Z = (6b0M=a0)[1�N0 exp(�a0u=6M)] : (21)

The gravitational waves emitted carry the information that the system was switched on in
u = 0, through the �nite discontinuity of the O(1=r) components of the Riemann tensor
in the �rst gravitational wave front u = 0 emitted. This discontinuity is determined by

[NABCD](u = 0) = �"a0N0=6M ; (22)
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up to an angular factor (cf. (13c)). We remark that the discontinuity appearing in (6),

due to the time derivative
dN

du
(u = 0), can be properly eliminated by a coordinate trans-

formation, but its presence in the scalars (13) of the Weyl curvature tensor is unavoidable.
In the integration of the angular equations (11) we must distinguish two cases:

(i) a0 6= 0; the requirement of solutions regular at p = 0 and p = � demands that

a0 = : Al = 2
l(l + 1)

2

"
l(l+ 1)

2
� 1

#
(23)

wl = 2 b0=Al + w0lPl(cos �) (24.a)

yl = �b0=Al +

"
l(l + 1)

2Al

#
w0lPl(cos �) ; (24.b)

where l is a non-negative integer and w0l is an arbitrary non-zero constant [27]. Here
Pl(cos �) is the Legendre polynomial with angular momentum l. The condition a0 =:
Al 6= 0 de�ning case (i) implies that

l � 2 ; (25)

that is, only quadrupole or higher-order poles gravitational radiation �elds are emitted,
as should be expected. Obviously outgoing gravitational waves are present in the space-
time: condition (19) for holds a0 6= 0, with wave zone de�ned by the O(1=r) non-zero
components of the Weyl tensor

C0202 = �C0303 = �
"

r

l(l+ 1)w0l

24M
(�2 cos �dPl=d� + l(l+ 1)Pl)N0 exp(�Alu=6M) :

(26)

In sum, the general Robinson-Trautmann perturbations hab for this case can be split into

hab = h
(1)
ab
+ h

(2)
ab

(27)

where

h
(1)
ab
=

0
BBB@
Al=(l(l + 1))� (Al=6M)r 0 0 0

0 0 0 0
0 0 r2 0
0 0 0 r2 sin2 �

1
CCCA � (28)

�
l(l+ 1)

Al

w0lPl(cos �)N0l exp(�Alu=6M) ;

and

h
(2)
ab

=
Z(u)

r
+
�
2

Al

+
r

3M

�
b0N0l exp[(�Al=6M)u])�0

a
�0
b
+

�
2r2

Al

b0N0l exp[(�Al=6M)u](�2
a
�2
a
+ sin2 ��3

a
�3
b
) ; (29)

with Z(u) given by (21). The perturbations (28) are already in the canonical form for even
parity perturbations, in the terminology of Regge and Wheeler [2]. Under the inversion
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operation �! �� �, they transform as h
(1)
ab
! (�1)lh

(1)
ab
. Perturbations (29) are denoted

\mass perturbations". Although dependent on the temporal gauge, they will cause an
e�ective decrease of the mass of the system. This analysis will be done in Section 5,
where an invariant mass perturbation function (due to outgoing gravitational waves) is
de�ned. The �nal con�guration will be a Schwarzschild geometry with mass smaller than
the original mass, the e�ective decrease of mass being dependent on the particular pole
emitted.

The non-radiatable modes correspond to the case
(ii) a0 = 0 : as expected, no gravitational radiation is present (N = const, C0202 =
�C0303 = 0, cf. (19) and (20)). Solutions of equations (11) for a0 = 0 and b0 6= 0 are, in
general, singular at p = 0 and and p = �. We select the particular set

w = w0 + 2b0 ln(1 + cos �) ;

y = �(w0 + b0)=2 � b0 ln(1 + cos �) + y0P1(cos �) ; (30.a)

which are regular at � = 0, and

w = w0 + 2b0 ln(1� cos �) ;

y = (w0 + b0)=2 � b0 ln(1� cos �) + y0P1(cos �); (30.b)

which are regular at � = �. We remark that the parcel y0P1(cos �) appearing in both Eqs.
(30) can be eliminated by a convenient coordinate transformation, which asymptotically is
interpreted as an in�nitesimal Lorentz boost with velocity parameter "y0. Solutions (30)
coincide at p = �=2. We therefore de�ne the continuous solution in [0; �] as the union
of (30.a) in [0; �=2], and (30.b) in [�=2; �]. Although continuous in p = �=2, its �rst
derivative has a �nite discontinuity, de�ning physically a shell of matter at the equatorial
plane. This shell can be modelled by neutrinos and strings being emitted radially in the
1 + 2 spacetime of the shell. This con�guration was examined in Ref. [28], and will be
referred to here as the shell emission mode for b0 6= 0. The parameter b0 is proportional
to the neutrino ux emitted on the shell; this, in fact, gives us a direct mechanism for the
measurement of b0. The mass function pertubation of this mode is

Z(u) = b0N0u+ const: (31)

We interpret b0 as the mass emissivity parameter of the collapsing con�guration, either
in gravitational wave emission modes l � 2, or in a shell emission mode a0 = 0. This
parameter appears to be characteristic of mass variation in the Schwarzschild background,
and we conjecture that its existence is independent of the particular perturbations con-
sidered. In the next Section, this parameter will allow us to de�ne a mass emissivity
function associated to a l-pole. Physical considerations implies obviously b0 � 0.

We must now comment on the superposition of the modes l � 2, and also of the shell
emission mode with a l � 2 mode. It is easy to verify that the solutions

W = �
l

ClWl ; Y = �
l

ClYl ; Z = �
l

ClZl ;
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where Wl; Yl and Zl are given by 
Wl

Yl

!
=

 
2b0=Al + w0lPl(cos �)
�b0=Al + [l(l+ 1)=2Al]w0lPl(cos �)

!
: N0 exp(�Alu=6M) ; (32)

Zl = (6b0M=Al)N0l[1� exp(�Alu=6M)] ;

satisfy the �eld equations (7) and (8). Note that necessarily the same coe�cients Cl appear
in the three linear combinations. Also a linear combination of a set solutions (32) with a
solution for the shell emission mode satisfy (7) and (8).

5 The Temporal Gauge Group, the Invariant Mass

Function and The Mass Emissity

The Robinson-Trautmann metrics described by (1), (2), as well the �eld equations
(3) and (4), are invariant under a subgroup of coordinate transformations (u; r; �; �) !
(�u; �r; �; �) described by

�r = rF ;

d�u = du=F ; (33.a)

where F is an arbitrary function of u. Under (33.a), the quantities appearing in the metric
(1){(2) transform as

�L = LF 2 ;

�B = BF 3 ; (33.b)

�K = K=F ;

In other words, under (33) it is enough to replace, into Equations (1) to (4), unbarred
coordinates and variables by the corresponding barred ones. We remark the generality of
(33), because they are general transformations leaving the Weyl scalars (13) invariant.

From (33.b) we can see that the time dependence of the mass function B(u) is not an
invariant, but we de�ne the invariant mass aspect or mass function [29]

m(u; �) = �BK3=2 (34)

which, for our purposes, will provide an useful invariant characterization of the mass
variation due to the emission of gravitational waves. It is interesting to note how the
Weyl curvature scalars (13.a), associated to the Newtonian component of the �eld (cf.
(16)), is expressed in terms of this invariant function. Indeed,

C2323 = �C0101 = 2C0212 =
BK3

(rK)3
;

justifying our characterization of BK3 as invariant mass function. We also note that these
are the sole Weyl scalars where the mass variation function is present. For the case of the
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Schwarzschild spacetime, it follows immediately that the invariant de�nition (34) yields
exactly the constant mass parameter M . This can be checked either for the expression
(1) with (5), or for the expression of the Schwarzschild geometry given by (6), with (20),
(21) and (24), and w0l = 0 (cf. also Ref. [27]).

From (6), (9), (20), (21) and (24.b) we obtain

m(u; �) =M �
3"MN0l

Al

(
b0 �

l(l+ 1)

2
w0lPl(cos �) exp[(�Al=6M)u]

)
: (35)

This invariant mass function (35) will coincide with the gauge-dependent one given from
(21), for u!1, resulting in the constant value

m =M � 3"b0MN0l=Al : (36)

Therefore (36) can be properly interpreted as the invariant mass of the �nal con�guration.
Hence, in the limit u ! 1, the geometry will be the one of a Schwarzschild black hole
with invariant mass given by (36), smaller than the mass M of the original con�guration
(u < 0). We note that (35) can be interpreted as mass only for some speci�c limits, for
instance u ! 1, when no gravitational waves are present. The total amount of mass
extracted by each gravitational wave pole emitted is given by

�m = 3"b0MN0l=Al =
3"b0MN0l

2[l(l + 1)=2(l(l + 1)=2 � 1)]
: (37)

The l = 2 quadrupole emission appears then as being the most e�ective mode in the
mechanism of extracting mass by emission of gravitational waves. From (37) we are
led to de�ne the mass emissivity factor el as the mass fraction extracted by a l-pole
gravitational wave of unit amplitude, that is,

el =: �m=MN0l =
3"b0

2[l(l + 1)=2(l(l + 1)=2 � 1)]
: (38)

We conjecture that the l-pole dependence given in (38) is a characteristic of the
Schwarzschild black hole, and independent of the perturbations which gave rise to the
gravitational waves emitted.

The following remarks are pertinent here. As we have seen, in our perturbative scheme
for the Schwarzschild geometry, a temporal gauge in�nitesimal transformation can always
be performed such that �Z = 0. From this it could be incorrectly inferred that the results
(36)-(37) on mass decrease may be eliminated, because the parameter b0 would then not
appear in the solutions in the new gauge. This is not the case, since the perturbations in
the new gauge are

�W = W +
1

3M
Z

�Y = Y �
1

6M
Z

�Z = 0
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where Z is given in (21). Therefore b0 is still present in the solutions and in the limit
�u!1 when no gravitational waves are present, the usual Schwarzschild mass de�nition
yields (36). Analogously we could have started the integration directly in a temporal
gauge where Z = 0. Eqs. (7) and (8), and the separation Ansatz Y = y(�)N(u) + L(u),
W = w(�)N(u)� 2L(u) yields the same result (36) in the limit u!1.

Wemust �nally comment the existence of solutions with b0 = 0 and a0 6= 0, correspond-
ing to outgoing gravitational waves which do not extract mass from the con�guration. No
gravitational wave experiments will distinguish the cases b0 = 0 and b0 > 0. The only
direct experiment to measure b0 is the detection of the shell emission mode; in this case,
b0 is proportional to the ux of neutrinos emitted radially on the shell. If we adhere
to the general formulation of Bondi, Van der Burg and Metzner [29] for the emission of
gravitational waves by an axially symmetric bounded source, we should then discard the
b0 = 0 solutions as being physically not meaningful. Their presence is possibly due to the
simple form we have assumed to the Robinson-Trautmann perturbations. We intend to
return to this point in the future.

6 Conclusions and Final Remarks

In this paper we discussed gravitational wave perturbations of a static black hole or a
spherical collapsing star, the exterior spacetime of which is described by the Schwarzschild
metric, by using the so-called Robinson-Trautman perturbations. This class of radiative
type perturbations belongs to the family of Robinson-Trautman metrics, which have the
Schwarzschild geometry as a particular limit. Einstein's �eld equations are integrated
completely. We obtain that Robinson-Trautman perturbations are constitued of two
distinct pieces, one of them being a particular set of even-parity perturbations (in the
terminology of the formalism of Regge-Wheeler). Although the second piece is coordi-
nate gauge dependent, it allows us to obtain information on how mass is extracted from
the con�guration by the emission of gravitational waves. An invariant mass function is
de�ned, and it results that gravitational waves may extract mass from the collapsing
con�guration, and the amount of mass extracted depends on the particular gravitational
wave l-poles emitted. We are able to de�ne a mass emissivity function

el =
3b0

fl(l+ 1)[l(l+ 1)=2 � 1]g
;

which measures the ratio of mass taken out from the source by a l-pole. Here b0 is a small
positive parameter, of the order of the perturbations and characteristic of the mechanism
of emission. The quadrupole emission mode (l = 2) is the dominant mechanism in ex-
tracting mass from the con�guration. Robinson-Trautman perturbations also includes a
mechanism of extracting mass from the collapsing con�guration, denoted shell emission
mode, where no gravitational waves are present; this mode corresponds to neutrinos and
strings emitted radially on a shell of mass at the equatorial plane of the con�guration.
Although this mode might be superposed to gravitational wave models (l � 2), we could
have used it as a mechanism to perturb the con�guration, previous to the emission of grav-
itational waves. In the Robinson-Trautman regime, the presence of gravitational waves,



{ 12 { CBPF-NF-046/97

and of a gravitational wave zone are well characterized by the analysis of the asymptotic
structure of the Weyl curvature tensor. From the result of the integration of Einstein's
equations, namely Eqs. (11), and from the condition a0 6= 0 necessary for the presence
of gravitational waves and a gravitational wave zone (cf. Eq. (19)), only, it follows that
the lowest gravitational wave pole emitted is the quadrupole (l = 2). This result was
expected from classical radiation theory for a spin-2 �eld and from Einstein's linearized
theory for gravitational waves.

Extraction of mass appears to be an essential characteristic of gravitational wave
emission and we conjecture that the l-dependence expressed in Eq. (38) is a characteristic
of the Schwarzschild exterior geometry only, and does not dependent on the class of
perturbations which gave rise to the gravitational waves emitted.

The time behaviour of a l-pole gravitational wave has the form

exp[�(u=3M)l(l+ 1)=2(l(l + 1)=2 � 1] ;

where M is the initial mass of the collapsing con�guration. It follows that, for a Galilean
observer at in�nity, the horizon of the �nal black hole con�guration takes an in�nite time
to form.
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