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1 Introduction.

The main goal of this letter is to consider the possibility of measureing the inelastic cross
section in the di�ractive kinematic region and to discuss the di�ractive production of b�b
- pair as a way to extract the value of gluon structure function (xBjG(xBj; Q2)) in the
region of small xBj. New HERA data [1] shows a rapid increase of F2(xBj; Q2) in the
region of small xBj ( xBj < 10�2 ), which could be interpreted as a manifestation of the
growth of the gluon structure function at small xBj. However, the data on F2 does not
allow the extraction of the value of the gluon structure function within good accuracy.
At the present we know the gluon structure function with accuracy up to factor two ( see
Fig. 1, that shows the gluon structure in three parametrizations GRV94 [2], MRS(A) [3]
and CTEQ [4] at di�erent values of Q2 as function of xBj ). Data on photoproduction
of J=	 seems to favor the MRS(A) parametrization [5]. This question, however, is still
open.

We will argue that the large rapidity coverage collider detectors at the Tevatron o�er
an unique oportunity to measure the gluon structure function at 2GeV 2 � Q2 � m2

b+p
2
t ,

where mb is the b - quark mass and pt is its transverse momentum, at 10�4 < x < 10�2

using the process of the di�ractive dissociation of proton into b�b - pair. This process
lego plot and amplitude are pictured on Fig. 2 and Fig.3 respectively. It is clear from
these �gures that this process is a typical large rapidity gap (LRG) process, suggested by
Bjorken [6]. As pointed out by Bjorken, and as we demonstrate below, such a process can
be described as the exchange of a \hard" Pomeron, which could be rewritten through the
gluon structure function due to the intimate relation between inelastic and elastic process
given by the optical theorem (Fig.4), ( see ref. [7] [8]for more details).

We will show that the cross section of the di�raction dissociation ( DD) can be de-
scribed as the sum of two di�erent contributions �:

1. the �rst is proportional to the probability of �nding a �bb color dipole with a small
size, of the order of r2t / 1

m2
b
+p2t

, in the fast hadron wave function before the interaction

with the target. This dipole scatters with the target and produces the measured �nal
state of the DD process. This mechanism has a normal partonic interpretation and, in
the Bjorken frame for the projectile ( in other words in the frame where the �bb color
dipole is at rest), it looks as a measurement of the partonic content of the Pomeron and
corresponds to the Ingelman-Schlein (IS) hypothesis of the Pomeron structure function
[9].

�In what follows we use at large the parton picture of interaction. It is easier to discuss the di�ractive
processes in this picture in the frame where the antiproton is at rest ( the �xed target frame). Of course,
all results will be given in relativistic invariant way.
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2. the second is the production of the �bb - pair after or during the interaction with a
target. We will show that this mechanism corresponds to the so called coherent di�raction
( CD ) (see ref.[10]) and we will demonstrate that the measurement of the �bb di�raction
will allow, thanks to the the di�erent dependance on the transverse momenta of produced
quarks for both mechanisms, the separation of the CD contribution from the (IS) one.

We would like to stress that the above two contributions are closely related to the
classic di�ractive dissociation picture suggested by Good and Walker [11] 25 years ago.
Indeed, there are two di�erent possibilities for the dissociation of a hadron h into a pair of
hadrons ( h1 and h2 ): �rst, the beam particle (h) interacts with the target and dissociates
into the pair of hadrons ( h1 and h2 ); second, the beam particle dissociates �rst and one
of the produced particle interacts with the target ( see ref. [12] for details).

However, we will argue that the di�ractive production of the heavy quark system is
originated from the small distances where we can develop a theoretical approach based
on perturbative QCD (pQCD). The pQCD approach allows us to calculate the di�ractive
dissociation process of �bb in such details which are beyond our reach in \soft" high energy
phenomenology.

2 Notations and kinematics.

1. y = 1
2
ln E+ pL

E� pL
is the rapidity of a particle with energy E and longitudinal momentum

(along the beam direction ) pL. For the rapidity in the center of mass frame we use the
notation y�.

2. P1 and P2 are the momenta of colliding proton and antiproton (in the c.m. frame
P1 = P2):

P1 = f
p
s

2
( 1 +

2m2

s
);

p
s

2
; 0; 0 g ; (1)

P2 = f
p
s

2
( 1 +

2m2

s
);�

p
s

2
; 0; 0 g :

3. y1 and y2 are the rapidities of produced b and �b quarks, p1t and p2t are their
transverse momenta and mb is the b mass.

4. M2 is the mass of the produced b�b -pair. m is the mass of the proton or antiproton.
s is the squared energy of the reaction in the c.m. frame and it is equal to s = (P1+P2)2

5. �y = y1 � y2 is the di�erence of rapidities between the produced b and �b.
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6. Y = y1 + y2
2

is the mean rapitity of the �bb system.

7. m2
it = m2

b + p2it where i = 1; 2.

8. For the purpose of obtaining the kinematic relation in the simplest way we use the
Sudakov decomposition [13] of the momenta of all particles, namely

pi� = �i P1� + �i P2� + pit� ; (2)

where vector ~pit is orthogonal to P1� and P2�.

At high energy p2i� = �i �i s � p2it and the rapidity of particle \i" is equal to

y�i =
1

2
ln
�i
�i

: (3)

9. Using Eqs.(1),(2) and (3) we obtain, for produced b quarks:

�1 =
m1tp
s
ey

�

1 ; �1 =
m1tp
s
e� y�1 ; �2 =

m2tp
s
ey

�

2 ; �2 =
m2tp
s
e� y�2 : (4)

and
M2 = 2m1tm2t cosh(�y ) + m2

1t + m2
2t (5)

10. Let us introduce x1 - the energy fraction of hadron \1" carried by gluon k in
Fig.3 and - the energy fraction of hadron \2" carried by the Pomeron with momentum q
( gluon \ladder" in Fig.3). We show below that x1,x2 will be the arguments of the gluon
structure functions in the cross section expression. Directly from Fig.3 one can see that

x1 = �1 + �2 + �q ; x2 = �1 + �2 + �k ; (6)

where (x1; �k ) and (�q; x2 ) are the longitudinal components of the four momenta of
gluon 1 and the Pomeron, respectively.

The main property of high energy scattering is the fact that �q � �1 and or �2 and
�k � �1 and or �2 (see, for example, ref. [14] ). Therefore, we can easily derive from
eq. (6), assuming m1t = m2t:

x1 =
2m1tp

s
eY

�

cosh(
�y

2
) ; x2 =

2m1tp
s

e�Y �

cosh(
�y

2
) : (7)

11. Throughout the paper we will choose a frame where antiproton (see Fig.2 and
Fig.3) is essentially at rest and where all momenta (li) of fast particles look as follows:

li = (li+; li�;~lit) =

�
li+;

m2 + l2t
li+;

;~lt

�
; (8)

where li+ = li0 + li3 and li� = li0 � li3.

12. xG(x;Q2) everywhere in the paper is the gluon structure function.
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3 The value of the cross section in the generalized

parton model.

From Figures 3 and 4 we can see that the value of the cross section of our process

p(P1) + �p(P2) ! b(y1; p1t) + �b(y2; p2t) + X + [LRG(Y )] + �p(P2 � q) (9)

is equal to

d�

dY dq2t d�ydp
2
t

jq2t=0 = (x1G(x1; �
2) )

d�G

dY dq2t d�ydp
2
t

jq2t=0 ; (10)

where �G is the reaction cross section.

G(x1; k
2
t ) + �p(P2) ! b(y1; p1t) + �b(y2; p2t) + [LRG(Y )] + �p(P2 � q) (11)

The physical meaning of eq. (10) is very simple: x1G(x1; �2) is the probability of �nding
a gluon with the fraction of energy x1 inside of the proton and �G is the cross section
of its interaction with the antiproton. In the spirit of the factorization theorem [15] we
introduce the factorization scale �2, the maximal value of k2t at which we still can neglect
the dependence of �G on k2t .

To simplify the color algebra we adopt throughout the paper the colorless probe ap-
proach, replacing the gluon with the transverse momentum kt and the fraction of energy
x1 by a colorless probe with the same kinematics. The physical motivation is clear and
based on the factorization equation (eq. (10)). Indeed, we can measure the gluon structure
function using a colorless probe like the graviton or heavy Higgs boson. The properties
of such a probe have been studied in details in ref. [16].

The cross section for the reaction of eq. (11) can be easily calculated. It is clear that
we have two mechanisms for �bb-production by the colorless probe which we will discuss
in the rest target rest frame ( antiproton in Fig.2).

1. The �rst mechanism is the following: there is a �bb component in the wave function
of the fast probe before its interaction with the target. This �bb pair is a color dipole with
su�ciently small transverse size of the order of r2t / 1

m2
b
+p2t

which scatters with the target

producing the measured �nal state.

2. The second mechanism is the production of the �bb - pair after or during the inter-
action with the target.

These two mechanisms correspond to the two set of the Feyman diagrams pictured in
�guress 5a and 5b, respectively.
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Let us start from the �rst one which looks normal from partonic point of view in
the sense that, in the Bjorken frame for the probe, it looks like the measurement of the
partonic content of the Pomeron and corresponds to the Ingelman - Schlein hypothesis
of the Pomeron structure function [9]. For the set of the Feyman diagrams of Fig. 5a
the amplitude of �bb production can be written as a product of two factors: (i) the wave
function of �bb pair in a virtual gluon 	G�

�1�2
and (ii) the rescattering amplitude of the quark

- antiquark pair on the target T�1�2, where �i is the quark polarization. Following the
conventions of ref.[17], we have:

Mf =
p
Nc

Z
d2p0t
16�3

Z 1

0

dz0	G�

�1�2
(p0t; z

0) T�1�2(p
0
t; z

0 ; pt; z) ; (12)

where pt is the transverse momentumof the produced quark and z is the fraction of energy
carried by b-quark with respect to energy of the gluon. It is easyly found from eq. (4) and
eq. (6) that

z =
�1
x1

=
�1

�1 + �2 + �q
=

e
�y
2

e
�y

2 + e�
�y

2

; (13)

where �q we can be found from the equation: (P2 � q )2 = m2 and it is equal to �q =
q2

(1�x2)s � �1 + �2 at large s. In deriving eq. (13) we have also assumed that ~p1t =

� ~p2t + ~kt + ~qt ! � ~p2t.

The virtual gluon breaks into a quark - antiquark pair with a large lifetime which is
equal to �G� . In leading log(1/x) approximation of pQCD, which we will use here, the time
of interaction is much smaller than �G� and during this time the exchange of gluons does
not change the fraction of energy carried by quark or/and antiquark. It is instructive to
recall the argument of why this is so. According to the uncertainty principle the lifetime
of the �bb uctuation (�G�) is

�G� � 1

�E
= j 1

k� � p1� � p2�
j = x1 z(1 � z)P1 +

m2
t + z(1� z)k2t

: (14)

An estimate of the interaction time can be obtained from the typical time for the emission
of a gluon with momentum l, from the quark p1, say. Then

�i � j 1

p01� � p1� � l�
j = j x1P1+

m2
t

z0
� m2

t

z
� l2t

�l

j ; (15)

where �l =
l+

x1 P1 +
and z0 = z + �l. In the leading log(1=x) approximation of pQCD we

have �l � z and hence

�i � �lx1P1+
l2t

� �G� : (16)
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Therefore, the interaction only changes the transverse momenta of quarks (see Fig.3).
The vertices also do not depend on the type of the diagram since the exchange of gluons
preserves helicity at high energy. Finally the amplitude T can be reduced to the form
[17]:

T�1�2 = (17)

= 16�3
Z
f 2�(~k0t � ~kt) � �(~k0t � ~kt �~lt) � �(~k0t � ~kt +~lt) g � �(z � z0) �(lt; x)

d2ltdl+
16�3 l4t

;

where the function � corresponds to the \ladder" diagram (see Fig.3) and only weakly
(logarithmically ) depends on lt. l+ is the large component of vector l� which we have
introduced in the previous section. The di�erence in signs between the terms in Eq.(17)
reects the di�erent color charge of quark and antiquark.

Substituting eq. (17) in eq. (12) we obtain:

Mf =
p
Nc

Z
�	G�

�1�2
(pt; lt; z) �(lt; x)

d2ltdl+
16�3 l4t

(18)

where
�	G�

(pt; lt; z) = 2	G�

(pt; z) � 	G�

(pt � lt; z) � 	G�

(pt + lt; z) : (19)

Function 	 has been found to be (see for example ref. [17] ):

	G�

� (pt; z) = � g
�u�1(p1)~ � ~�G�

v�2(p2)p
z ( 1 � z ) ( k2 � m2

b
+p2t

z(1�z) )
= (20)

= � g � 1

a2 + p2t
f��1��2 [�1 (1� 2z) � 1 ]~�G

�

� � ~pt � mb ��1 �2 ] g

where �S = g2

4�
; ~�G

�

� is the circular polarization vector of the gluon ( ~�G
�

� = 1p
2
( 0; 1;� 1; 0 ))

and a2 = m2
b + k2z(1 � z). We have used formulae from refs.[18] and [16] in the above

calculations.

Considering l2t � m2
bt we obtain :

�	G�

� (pt; lt; z) = �2 g � l2t � (21)

�f 4 a2

( a2 + p2t )
3
��1 �2 [�1(1� 2z) � 1 ]~�G

�

� � ~pt + mb

a2 � p2t
( a2 + p2t )

3
� ��1��2 g :

In the leading log approximation in ln(1=x) and ln(a2=�2) [19, 17]
Z

�(lt; x)
d2ltdl+
16�3 l2t

= i
4�2TR�S

Nc

(s+ k2)xG(x; a2 + p2t ) ; (22)
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where TR=Nc arises from averaging over colors (TR = 1=2).

Collecting all previous equations we can calculate cross section:

d�G

dY dq2t d�ydp
2
t

jq2t=0 =

P
�1�2

M2
f

16�s2
dz

d�y
=

dz

d�y
��2S

16�2

9
� (23)

� f [ (z2 + (1 � z)2) p2t ] (
a2

( a2 + p2t )
3
)2 +

1

4
m2

b (
a2 � p2t

( a2 + p2t )
3
)2 g � (xG(x; a2 + p2t ))

2

Finally, we can rewrite eq. (23) in the form ( Nc = 3 ):

d�G

dY dq2t d�ydp
2
t

jq2t=0 = (24)

=
16�2�3S

9

1

4 cosh2(�y
2
)
[
cosh(�y)

2cosh2(�y
2
)
p2t +

m2
b

4
( 1� p2t

a2
)2 ] � f a2

(a2 + p2t )
3
g2 (xG(x; a2+p2t ))2 :

For the cross section of the di�ractive dissociation we have (after sum over gluon
polarization and correct averaging over color (Nc = 3)):

d�

dY dq2t d�ydp
2
t

jq2t=0 =
�
x1G(x1; �

2)
� � (25)

�16�
2�3S
9

1

4 cosh2( �y
2 )

[
cosh(�y)

2cosh2(�y2 )
p2t +

m2
b

4
( 1� p2t

a2
)2] � f a2

(a2 + p2t )
3
g2 (x2G(x2; a2+p2t ))2

From the expression for a we can set the factorization scale, since our cross section
ceases to depend on k2t if k

2
t � 4m2

bt. Therefore, the reasonable choice is �
2 = 4m2

bt. We
can neglect the scale dependance in our cross section and put a2 = m2

b. All ingredients of
Eq.(25) are clearly seen in Fig. 6.

Taking into account the running QCD coupling constant we have to replace �3S in
Eq.(25) by �S(�2)�2S(a

2 + p2t ).

Now, let us consider the diagrams of Fig. 5b. They correspond to the possibility
of producing a �bb pair inside of the Pomeron. Indeed, the Pomeron is not a point-like
particle; gluons inside it live su�ciently long time and during this time they can create a
�bb-pair which rescatters with the proton by exchange only one gluon. Indeed, the lifetime
of GlGl - pair in the diagram of Fig. 5b is equal to �l = x1 s

k2t +
l2
t

zl(1�zl)

, where zl is the
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energy fraction of gluon l. This time is much bigger than the time �b that �bb - pair lives
(�b =

x1 s

M2 � �l).

As has been discussed many times (see, for example refs. [16] [20] [21]) we can safely
calculate the diagram of �g. 5b by closing the contour of integration over �l on the
propagator marked by cross in Fig. 5b. We anticipate that lt < kt and that the vertex of
emission of the gluon 10 is proportional to l�t (see ref.[14]). The interaction of the gluon
with transverse momentum kt + lt with the target is calculated using eq. (18) with

�	(pt; lt; z) = 	(pt + lt; z) � 	(pt � lt; z) : (26)

Substituting eq. (20) in eq. (26) one obtains after integration over the azimuthal angle of
vector lt:

�	(pt; lt; z) = �2 g l2t ~pt� (27)

�f ��1��2 [ (1� 2z)�1 � 1 ]
a2

( a2 + p2t )
2
� ��1 �2 mb �1

1

( a2 + p2t )
2
g :

Using eq. (22) and eq. (23) we obtain (Nc = 3 ):

d�G
�

[CD]

dY dq2t d�ydp
2
t

jq2t=0 = (28)

=
4�2�3S

9

1

4 cosh2(�y
2
)
[
cosh(�y)

2 cosh2(�y
2
)
a4 + m2

b p
2
t ] �

1

k2t
� f 1

(a2 + p2t )
2
g2 (x2G(x2; k2t ))2 :

Notice that extra factor 1=k2t in eq. (28) comes from the fact that �	 of eq. (27) does not
depend on the polarization of the gluon with transverse momentum kt which is propor-
tional to kt and cancels one of the gluon propagators in eq. (23). We would like to recall
that in the previous calculation we assumed that lt < kt and this inequality establish the
scale in the gluon structure function in eq. (28). The answer for the cross section of the
coherent di�raction has the form:

d�[CD]

dY dq2t d�ydp
2
t

jq2t=0 =

Z m2
bt dk2t

k4t

@x1G(x1; k2t )

@ ln k2t

�
x2G(x2; k

2
t )
�2 � (29)

�4�
2�3S(k

2
t )

9

1

4 cosh2(�y
2 )

� [ cosh(�y)

2 cosh2(�y
2 )

a4 + m2
b p

2
t ] �

1

( a2 + p2t )4
:

This equation gives the contribution for so called coherent di�raction (CD) [10]. The most
contribution to the integral comes from the region of su�ciently small kt due to the factor
k4t in the dominator and for the proton kt / 1

Rp
where Rp is the proton radius. It means
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that we cannot trust our perturbative calculation for the CD contribution. However,if we
calculate the integral

Z m2
bt dk2t

k4t

@x1G(x1; k2t )

@ ln k2t

�
x2G(x2; k

2
t )
�2

; (30)

using the current parametrization of the gluon structure function, we can �nd out that
the typical k2t , which is essential in the integral, is not very small but about 1 - 2 GeV 2.
To understand this fact we have to remember that the gluon structure function behaves
as (k2t )

<> (at least in semiclassical approach) and the value of <  > calculated in the
current parametrization for the gluon structure function turns out to be rather big in the
region of k2 � 1 � 2GeV 2 (see Fig. 9 ). One can see that if <  >> 0:5 the integral
converges on the upper limit or, in other words, the small distances start to be important.

To check this statement we calculate the integrand of eq. (30) as a function of ln(k2t =Q
2
0)

with @x1G(x1;k
2
t )

@ lnk2t
= 1. Q2

0 = 0.34 GeV 2 is the initial virtuality in the GRV parametrization.

The result of the calculation is plotted in Fig. 8a for the GRV, in Fig. 8b for the MRS(A')
and in Fig. 8c for the CTEQ parametrizations. We see a de�nite maximum in ln k2t =Q

2
0

dependence around k2t � 1� 1:5GeV 2 which becomes more pronounced at smaller values
of x2. It means that we can safely use the perturbative QCD approach to calculate the
CD contribution.

In numerical esstimates of eq. (29) we use the GLAP equation [24] to calculate
@x1G(x1;k

2
t )

@ ln k2t
, namely :

@x1G(x1; k2t )

@ ln k2t
=

�S(k2t )

2�
f 4
3

Z 1

x

dz

z
[z2 + 2(1 � z) ]

X
i

x

z
qi(

x

z
; k2t ) + (31)

+ 6

Z 1

x

dz

z
[ z2(1 � z) + 1 � z ]

x

z
G(

x

z
; k2t ) + 6

Z 1

x

zdz

1� z
[
x

z
G(

x

z
; k2t ) � xG(xk2t ) ] +

+ 6 [
11

12
� Nf

18
]xG(x; k2t ) g ;

where Nf is the number of avours and NC = 3 is the number of colors. The running
coupling QCD constant �S(k2t ) =

4�

( 11� 2
3 Nf ) ln

k2
t

�2

.

It is worthwhile mentioning that in the case of the di�ractive dissociation in the deep
inelastic scattering the smallest value of kt is k2t = Q2 and eq. (29) gives the contribution
of the order of 1=Q2. In other words, the coherent di�raction in this case is a high twist
contribution while the (IS) di�raction (see eq. (25)) occurs in the leading twist.This result
has been obtained in ref. [22].
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It should be stressed that there is no interference between the Ingelman-Schlein and
the coherent di�raction contributions. Indeed, the interference term vanishes due to
integration over the azimuthal angle of pt and summation over gluon polarizations, as one
can see comparing Eq.(21) and Eq.(27)

4 Numerical estimates.

Setting x1 = 0:1 we can estimate x2 � 0:6 10�3. As far as the value of the cross section
is concerned, we get at �y = 0 and pt = 0 the value ( at �S = 0.25)

d�

dY dq2t d�ydp
2
t

jq2t=0 � 0:1 10�3
mbarn

GeV 4

Here, we took x2G(x2;m2
bt) = 20, which is the value in the GRV parametrization.

The result of a detailed calculation is presented in Fig. 10. To test the sensitivity of
our result to high order QCD corrections we plotted the cross section for the coherent
di�raction for two cases: �xed and running QCD coupling constant. The di�erence is
rather big but it does not change the main conclusion: the coherent di�raction gives
much bigger cross section than the Ingelman-Schlein contribution of Eq.(25). (IS in Fig.
9a). Terefore, the measurement of the di�ractive dissociation in b�b system gives the
unique opportunity to study the CD unlike the deep inelastic processes where the CD is
suppressed.

One can see from Fig. 9b that the value of the di�erential cross section crucialy
depends on the parametrization of the gluon structure function with the di�erence about
factor 2. This di�erence encourages us to claim that the measurement of the b�b di�ractive
production could provide the selection of the parameterization and give an important
contribution to the extraction of the value of the gluon structure function from experiment.

We also calculate the integrated cross section de�ned as

d�

dY
=

Z 1

pmin
t

dp2t

Z +1

�1
d�y

Z 1

0

dq2t
d�

dY d�ydq2t dp
2
t

; (32)

The value of pmin
t can be taken from the experimental values obtained by the Tevatron

Collider experiments. In reference Ref. [25] analysis techniques are used to separate
muons coming from di�erent sources and, in particular, from b ! � + � + c process for
pmin
t � 5 GeV. We assumed, in the integration over q2t , an exponential behaviour of d�
with respect to q2t
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d�

dq2t
=

d�

dq2t
jq2t=0e�bq

2
t (33)

We take the slope b = 4:9GeV �2 as it has been measured at HERA [23]. In our
estimates we took �S = 0.25 which corresponds to the value of the running QCD coupling
constant (�S(k2) ) at k2 � m2

b .

Fig. 10 shows that the value of the integrated cross section is not very small and
can be meausered by the Tevatron detectors in the next run. One can also see that the
di�erences between the estimates in di�erent parameterizations is rather big. It is about
a factor 2-3 between the highest values of the cross section in the GRV parameterization
and the lowest one in the MRS(A') parameterization.

Finally, we would like to stress that the Tevatron provides an unique possibility to look
inside the microscopic mechanism of di�ractive dissociation by measuring the coherent
di�raction which gives a small contribution to the deep inelastic proccesses. The formulae
written in this paper give us the basis for the Monte Carlo simulation of the di�ractive
events in 3-dimension phase space (�; �; pt ) which we are going to present in further
publications. This Monte Carlo will provide a more detailed estimates of the experimental
possibilies at the Tevatron and, we hope, will encourage future experiments on large
rapidity gap physics. We �rmly believe that the di�ractive dissociation opens a new
window to study such di�cult questions as the Pomeron structure, the matching between
hard and soft processes and the search of new collective phenomena in QCD related to the
high density parton system. We thank the Fermilab Theory, Computing and Research
Divisions for the hospitality. E.L. is very grateful to LAFEX-CBPF/CNPq for the support
and warm atmosphere during his stay in Brazil. We would like to thank H.Montgomery
for fruitfull discussions in Rio, and to Helio da Motta for reading the manuscript.

References

[1] ZEUS collaboration, M. Derrick et.al.: Z. Phys. C65 (1995) 379;
H1 collaboration, T.Ahmed et.al.: Nucl. Phys. B439 (1995) 471;
ZEUS collaboration, M. Derrick et.al.: Z. Phys. C68 (1995) 569;
H1 collaboration, T.Ahmed et.al.: Phys. Lett. B348 (1995) 681.

[2] M. Gl�uck, E.Reya and A. Vogt: Z. Phys. C67 (1995) 433.

[3] A.D.Martin, R.G. Roberts and W.J. Stirling: Phys. Lett. B354 (1995) 155.



{ 12 { CBPF-NF-046/96

[4] H.L. Lai, et. al., CTEQ collaboration: Phys. Rev. D51 (1995) 4763

[5] M.G.Ryskin et.al: Durham University preprint, DTP/95/96, November 1995.

[6] Yu.L. Dokshitzer, V.A. Khoze and T.Sjostrand: Phys. Lett. B274 (1992) 116;
J.D. Bjorken: Phys. Rev. D45 (1992) 4077; Phys. Rev. D47 (1992) 101;Nucl. Phys.
B ( Proc. Suppl.) 23C (1992) 250; Acta Phys. Pol. B23 (1992) 637.

[7] M.Albrow et.al.:\Future Experimental Studies of QCD at Fermilab: report of the
QCD section: option for a Fermilab Strategic Plan" FERMILAB-FN 622,Aug.1994.

[8] A.H. Mueller, B. M�uller,C. Rebbi and W.H. Smith: \Report of the DPF Long Range
Planning Group on QCD".

[9] G. Ingelman and P.Schlein: Phys. Lett. B152 (1985) 256.

[10] J. Collins, L. Frankfurt and M. Strikman: Phys. Lett. B307 (1993) 161.

[11] M.L.Good and W.D.Walker: Phys. Rev. 120 (1960) 1857

[12] G. Cohen Tannoudji, A. Santoro and M. Souza: Nucl. Phys. B125 (1977) 445;
E.L.Berger and P.Pirila: Phys. Rev. D12 (1975) 3448; Phys. Lett. B59 (1975) 361;
E.L.Berger and R.Cutler: Phys. Rev. D15 (1977) 1903;
G.Alberi and G.Goggi: Phys. Rep. 74 (1981) 1 and references therein.

[13] V.V. Sudakov: ZhETF 30(1956) 187.

[14] L. V. Gribov, E. M. Levin and M. G. Ryskin: Phys.Rep. 100 (1983) 1.

[15] J. Collins, D.E. Soper and G. Sterman: Nucl. Phys.B308 (1988) 833;In Perturbative
Quantum Chromodynamics,ed. A.H. Mueller. Singapore: World Scienti�c (1989) and
reference therein.

[16] A.H. Mueller: Nucl. Phys. B335 (1990) 115;

[17] S.J. Brodsky et al: Phys. Rev. D50 (1994) 3134.

[18] S.J.Brodsky and G.P.Lepage: Phys. Rev. D22 (1980) 2157

[19] E.M. Levin and M.G.Ryskin: Sov. J. Nucl. Phys. 45 (1987) 150.

[20] E.A. Kuraev, L.N. Lipatov and V.S. Fadin: Sov. Phys. JETP 45 (1977) 199 ; Ya.Ya.
Balitskii and L.V. Lipatov:Sov. J. Nucl. Phys. 28 (1978) 822; L.N. Lipatov: Sov.
Phys. JETP 63 (1986) 904;
J.Bartels: Nucl. Phys. B175 (1980) 365;
J. Kwiecinski: Phys. Lett. B94 (1980) 413.



{ 13 { CBPF-NF-046/96

[21] E. Levin and M. W�ustho�: Phys. Rev. D50 (1994) 4306.

[22] E.Levin: \Deep Inelastic Scattering and Related Subjects" Eilat, Israel, 6-11 February
1994, ed. Aharan Levy, WS, 1994, p.83;
A. Berrera and D. Soper: Phys. Rev. D50 (1994) 4328.

[23] H1 collaboration. A. De Roeck et al.: DESY 95 - 52, August 1995.
ZEUS collaboration. M.Derrick et al.: DESY 95 - 133, July 1995.

[24] V.N.Gribov and L.N. Lipatov:Sov.J.Nucl.Phys. 15 (1972) 438: L.N. Lipatov: Yad.
Fiz. 20 (1974) 181; G. Altarelli and G. Parisi: Nucl. Phys. B126 (1977) 298; Yu.
L. Dokshitser: Sov. Phys. JETP46 (1977) 641.

[25] D0 Collaboration, S.Abachi et al., Phys. Rev. Lett. 74 (1995) 3548, and CDF Col-
laboration, F.Abe et al., Phys. Rev. Lett. 75 (1995) 1451



{ 14 { CBPF-NF-046/96

Fig.1a Fig.1b

Fig.1c

Figure 1: Gluon structure function xG(x;Q2) in di�erent parameterizations: GRV [2]
( Fig.1a ), MRS(A')[3] ( Fig.1b ) and CTEQ [4] ( Fig.1c).
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Figure 2: Lego - plot of b�b di�ractive production in p�p collision.
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Figure 3: Amplitude of b�b - di�ractive production.
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Figure 4: Optical Theorem.
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Figure 5: Feyman diagrams for b�b di�ractive production by colorless gluon probe.
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Figure 6: The cross section for b�b di�ractive production in the Ingelman - Schlein approach
[9].
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Figure 7: The behaviour of average <  > for the GRV parameterization of the gluon
structure function.
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Fig. 8a Fig.8b

Fig.8c

Figure 8:
(x2G(x2;k2t ))

2

k2t
versus ln(k2t =Q

2
0) in di�erent parameterizations: GRV [2] ( Fig.1a ),

MRS(A') [3] ( Fig. 1b ) and CTEQ [4] (Fig. 1c).
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Fig. 9a Fig.9b

Figure 9: (a) The cross section for b�b di�ractive production for the coherent di�raction
(CD) (Eq. (29)) and the Ingelman - Schlein (IS) di�raction ( Eq. (25)); (b) The cross
section for b�b for the coherent di�raction (CD) in di�erent parameterizations for the gluon
structure function.
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Figure 10: The integrated cross section for the coherent di�raction ( Eq.(32)) versus pmin
t

in di�erent parameterizations of the gluon structure function.


