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The present status of knowledge on the pure and random Potts models and

various related systems (resistor network, directed bond percolation, Ising-like frus-

trated models, Z(q) model and the discrete cubic model) is reviewed. The available

real-space renormalization group techniques which can further enlighten this picture

are tutorially presented and discussed.
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1 INTRODUCTION

The q-state Potts model [1] is a quite interesting classical system as it presents a remark-

able richness from both theoretical and experimental standpoints. It was formulated to

Potts by Domb as a PhD research subject [2]. This model has been reviewed by Wu [3]

(see also [4] for developments after 1981): the reader is referred to these excellent works

for information mainly concerning exact results (static properties); several experimental

realizations are also discussed in [3]. Further related relevant theoretical work can be

found in Ref. [5].

In the present review we mainly deal with the available real-space renormalization-

group (RG) approaches of the pure and various random Potts models, its particular cases

and its extensions. The properties on which we essentially focus are the phase diagram,

critical exponents and amplitudes, free and internal energies, speci�c heat, equations of

states, surface tension, correlation length, and �nally some quite rich surface and interface

e�ects.

The review has been prepared with every care for exactness but not necessarily for

rigor. It is organized as follows. In Section 1 we introduce the various models we are in-

terested in. In Section 2 we brie
y recall most of the available exact (or nearly so) results;

this information will be frequently used as tests for the approximate frameworks which we

shall develop. In Section 3 we introduce convenient variables (thermal transmissivities)

and present a quite performant operational procedure (referred to as the Break-collapse

method (BCM)) which enables, through simple topological operations, the exact calcula-

tion of correlations as well as zero-�eld partition functions. In Section 4 we present the

main existing RG approaches (with special emphasis on those which use the procedures

introduced in Section 3) for calculating relevant static quantities. Finally, in Section 5,

we present possible lines which could further enlighten and expand the present status of

knowledge.
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1.1 The Potts Model

Slightly di�erent notations are used to de�ne the q-state Potts model Hamiltonian; we

shall use the following one:

H = �q
X
i;j

Jij��i;�j (�i = 1; 2; � � � ; q; 8i) (1)

where the sum runs over all pairs of \spins" located at the sites of an arbitrary lattice

(�nite or in�nite, regular or not, translationally invariant, i.e., Bravais lattice, scale invari-

ant, i.e., fractal lattice, etc.) and ��i;�j is the Kroenecker's delta. Jij might be non-null

only for �rst-neighbours (the notation < i; j > will then be used) or might extend arbi-

trarily far away; Jij > 0 and Jij < 0 will be respectively referred to as ferromagnetic and

antiferromagnetic couplings. The particular case q = 2 is (through a trivial energy shift

in the Hamiltonian) identical to the standard spin 1/2 Ising model. But for arbitrary q,

the Potts model has to be clearly distinguished from the plain spin S Ising model with

q � 2S + 1, whose Hamiltonian is given by

HIsing = � 1

S2

X
i;j

J Ising
ij Sz

i S
z
j (2)

with Sz
i = S; S � 1; � � � ;�S;8i, where S is a �xed integer or half-integer positive number.

The elementary Potts interaction (single bond) yields a two-level spectrum: one level

with energy �qJij and degeneracy q, and the other one with energy 0 and degeneracy

q(q � 1). The elementary Ising interaction yields instead a complex spectrum which

takes values in the interval [�jJ Ising
ij j; jJ Ising

ij j], and which presents (S + 1=2)(S + 3=2)

levels (with degeneracies 2 or 4) if S is a half-integer, and S(S + 1) + 1 levels (with

degeneracies 2 or 4 excepting for the vanishing energy level whose degeneracy is 4S + 1)

if S is an integer. In spite of the relative complexity of this spectrum, the spin S Ising

(ferromagnetic) model brings no deep novelty in the Critical Phenomena area as it belongs

to the same universality class (i.e., it shares the same critical exponents) as the spin

1=2 Ising (ferromagnetic) model [6]. The Potts model instead exhibits, already for its

ferromagnetic case, a rich criticality (due to the degeneracy of its lower-energy level), as

will be seen later on.
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Notice that if we add other terms to eq. (1), the Potts model can be formulated as a

spin S = (q � 1)=2 system whose Hamiltonian is more complex than the above eq. (2)

(see section IV E of [3] for more details).

1.2 Related Models

The Potts (or Ashkin-Teller-Potts or standard, as sometimes referred to) model in its

plain formulation (eq. (1)) or in a more general one with many-body interactions is placed

at a privileged position in a complex network of relations and isomorphisms (or at least

analogies) between important (and less important!) geometrical and/or thermal statistical

models, in the same or in a related lattice structure. This network includes several types

of uncorrelated and correlated, directed and non-directed (or isotropic, as sometimes

referred to), bond, site,bond and/or site, multisite and mixed percolation problems [7{

22], antipercolation [23, 24], generalized resistor and diode network problems [25{28]

(including Kirchho� 1847 laws), the Z(q) model [29{34], the planar (or vector or clock,

as sometimes referred to) Potts model (chiral or not) [35, 36], the Potts lattice gas [37],

polychromatic Potts model [38], polychromatic majority model [39], the classical and

quantum, �nite or in�nite spin length, n-vector models [40] (including the Ising, XY,

Heisenberg and spherical models), the discrete cubic model [41{50], the (N�; N�) model

[51], polymer problems [52, 53], quenched and annealed bond and/or site random problems

[54, 55], various vertex models [5, 56, 57] (including the ice-rule vertex models), spin glass

models [58], the Blume-Capel [59, 60] and the Blume-Emery-Gri�ths [61] models.

It is completely out of the scope of the present review to give an exhaustive description

of the ensemble of models involved in this network and to analyze their intrincated rela-

tionships (such an e�ort would require a review exclusively dedicated to this task!). Herein

we restrict our attention to those few (but relevant) models that attracted considerable

and fruitful RG e�ort.

1.2.1 Bond percolation and similar problems

The bond percolation problem [62, 7, 8, 14] consists in considering a lattice (typically a

regular d-dimensional Bravais lattice) whose bonds might be independently present (or
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active) with probability p, or absent (or blocked) with probability 1� p. It is known that,

for p > pc (pc � critical probability or concentration), two in�nitely distant lattice sites

are connected with �nite probability, whereas this probability vanishes for p � pc (by

\connected" we mean that, between those two sites, exists at least one path constituted

by present bonds). For 0 < p < pc, the system is exclusively constituted by a large number

of �nite clusters (cluster � connected ensemble of bonds); for p > pc, one (and only one

under standard conditions) [63] in�nite cluster appears as well (for p = 1, the in�nite

cluster essentially coincides with the entire lattice). The mean linear size (or correlation

length) � of the (in�nite) set of �nite clusters behaves, in the neighbourhood of pc, as

follows: � � A�=jp� pcj�p. The critical amplitudes A+ and A� respectively correspond to

p! pc+0 and p! pc�0; the critical exponent �p depends on d but not on the particular

Bravais lattice, whereas pc, A+ and A� depend on both.

A notorious connection [16] exists between the general bond percolation problem in

a given lattice (e.g., Bravais, Bethe, hierarchical [64{66] lattices), all the bonds of which

have (possibly di�erent) independent occupancy probabilities fpijg (between sites i and

j), and the q ! 1 limit of the q-state Potts ferromagnet on the same lattice with bonds

representing Potts coupling constants fJijg. All relevant statistical quantities in one

model have their equivalent in the other one provided that

pij = 1� e�Jij=kBT (3)

where kB and T are the Boltzmann constant and the temperature respectively. Immediate

consequences of this connection are that

pc = 1 � e�J=kBTc(1) (4)

and

�p = �t(1) (5)

where J is the q-state isotropic Potts coupling constant, Tc(q) is the para-ferromagnetic

critical temperature, and �t(q) the corresponding correlation length critical exponent (the

sub-index t stands for \thermal").

A problem very similar to the one under consideration is site percolation, where, instead

of the bonds, we randomly and independently occupy (or activate) the sites of a given
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lattice. Its connection with a multisite-interaction Potts model is described in [19, 20].

General and important site percolation results are the following: pc (site) � pc (bond),

and �p (site) = �p (bond).

More general percolation problems can be formulated (which contain both site and

bond percolations as particular cases) by assuming that both sites and bonds are randomly

and independently occupied with occupancy probabilities pS and pB respectively. We may

then de�ne site-and-bond (S \ B) and site-or-bond (S [ B) percolations: in the S \ B
(S [B) problem, two points are said to be connected if a sequence of occupied sites and

(or) bonds joins them. The S\B problem is frequently referred to as site-bond percolation

[67]. Standard site (bond) percolation is recovered as the pB = 1(pS = 1) case of the S\B
problem, as well as the pB = 0(pS = 0) case of the S [ B problem. The phase diagrams

(which we characterize by �S\B(pS ; pB) = 0 and �S[B(pS ; pB) = 0 respectively) of the

S \B and S [B problems on any d > 1 lattice hopefully are, qualitatively, as indicated

in Fig. 1; their universality class presumably is the same as that of the standard bond

percolation. Later on (see section 1.2.5) we shall recover the S \B problem as the T ! 0

limit of a quite general random q-state Potts ferromagnet.

1.2.2 Resistor network

The system which is focused is a random distribution of conductances � on the bonds of

an in�nite array (typically a regular Bravais d-dimensional lattice). The most frequent

case is the quenched one, in which the distribution laws over the bonds are independent

among themselves. By assuming one and the same distribution law P (�) for all the bonds,

and more precisely

P (�) = (1� p)�(� � �1) + p�(� � �2) (6)

we encounter a variety of interesting situations according to the value of the ratio �1=�2.

The extreme situations are the random insulator-resistor mixture (�1 = 0 and �2 �nite)

and the random superconductor-resistor mixture (�1 ! 1 and �2 �nite); the particular

case �1 = �2 clearly corresponds to the non-random resistor network, largely studied in

the context of the Theory of Linear Circuits. The central inquiry for random resistor

networks is the conductivity as a function of parameters such as p and �1=�2. We address
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this question later on.

It can be shown that the q ! 0 limit of the Potts ferromagnetic model is isomorphic to

the resistor problem. A detailed discussion is available in Wu's review [3]. Here we shall

only present an alternative way of looking at this isomorphism. The Potts dimensionless

coupling constant K � J=kBT can be conveniently handled (as we shall see in Section 3)

through the thermal transmissivity de�ned [68] as t � [1 � e�qK]=[1 + (q � 1)e�qK ]. In

the 0 < q << kBT
J

<< 1 limit we obtain t � 1 � 1=K. The transmissivity ts of a series

array of two bonds (characterized by t1 and t2) is given (see Section 3) by ts = t1t2. In

the limit we are interested in, this implies 1� 1=Ks � (1 � 1=K1)(1� 1=K2), hence

1

Ks
� 1

K1
+

1

K2
(series) (7)

On the other hand, for a parallel array of bonds, we obviously have

Kp = K1 +K2 (parallel) (8)

But the composition laws (7) and (8) are precisely those of conductances if we identify K

with �=�0 (�0 � conventional conductance unit). In other words, in the limit where q! 0

and K !1 with qK ! 0, the Potts ferromagnetic interactions compose as conductances

with the transformations 1� t$ �0=�.

1.2.3 Directed bond percolation

We brie
y mention here the directed bond percolation since it is closely related to the bond

percolation. Indeed, its formulation is completely analogous to that of bond percolation,

but the bonds can be active only along one of their two senses. A physical realization of

such a system can be a random network of diodes (instead of conductances): for example,

diodes randomly distributed on the bonds of a d-dimensional hypercubic lattice, and

conducting only along the positive directions of the crystalline axes. Very few exact (or

almost exact) results are available in the literature [69{77],[28], one of them being the

fact that the upper critical dimensionality du (see Section 4) is equal to 5 (whereas for

standard percolation it is du = 6). Related mixed systems can be such that the bonds are

isotropic along some of the crystalline axes and directed along the rest of them. Later on

we shall address one problem similar to this kind.
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1.2.4 Z(q) model

The Z(q) model is a quite rich generalization of the q-state Potts model [30, 31]. The site

random variable can still take q values: let us characterize it by ni = 0; 1; 2; � � � ; q � 1;8i.
But the energy associated with a pair (ni; nj) might be di�erent for di�erent values of

jni�njj, the di�erence (ni�nj) being measured modulus (q). For example, for q = 4, the

two-site con�gurations such that ni�nj = 0; jni�nj j = 1 and jni�njj = 2 correspond to

energies which are not necessarily equal. In other words, and by conventionally assuming

ni = 0, the state nj = 0 corresponds to a certain energy, the states nj = 1; 3 to a (possibly)

di�erent one, and �nally nj = 2 to a third one. Since the zero of energy has no physical

meaning in the present context (it might have in di�erent ones [78{80]), the Z(4) model

involves 2 independent coupling constants. See Fig. 2 for convenient representations of

the Z(4) and Z(5) interactions. Generically speaking, the spectrum of the Z(q) model

presents, if q is even (odd), q
2
+1 ( q+1

2
) levels, two (one) of them being q times degenerate

and the other q
2
� 1 ( q�1

2
) levels being 2q times degenerate. Or more synthetically, and by

introducing �q � integer part of q=2, the Z(q) spectrum has �q + 1 levels: 2(�q + 1) � q of

them have degeneracy q, the other q � �q� 1 levels have degeneracy 2q. To generate such

a spectrum it su�ces �q independent coupling constants.

The Z(q) pair Hamiltonian might be written in various equivalent manners. We shall

adopt the following one:

Hij(ni � nj) = J1 � 2

�qX
�=1

J� cos

�
2��

q
(ni � nj)

�
(9)

The q-state Potts model is recovered as the particular case J1 = J2 = � � � = J�q�1 = 1
2
[3 +

(�1)q]J�q, in which case the Hamiltonian becomes Hij = �qJ1�ni;nj + 2J1. For q � 3 the

Potts model coincides with the Z(q) one. Another interesting particular case is J� = 0 if

� 6= 1 (clock model), in which case the Hamiltonian becomesHij = J1�2J1cos[2�q (ni�nj)];
its q !1 limit recovers the classical spin planar model (S !1XY model).

Another model which is contained in the Z(q) one is the discrete N-vector model [41{

50] (sometimes referred to as the discrete cubicmodel). Consider a classical N-dimensional

unit vector
!
S i which can be aligned only along N orthogonal axes (hence 2N con�gu-

rations), and assume the pair Hamiltonian Hij = �NJ1
!
S i :

!
Sj �NJ2(

!
S i :

!
Sj)2. It is
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easy to verify that this model is a particular case of the Z(2N) one (see [47]). Within

this context let us mention the existence of the (N�; N�) model [51] which generalizes the

cubic one, and reduces to the symmetric Ashkin-Teller model [81] and to the Z(6) model

in the respective cases where (N�; N�) = (2; 2) and (3,2).

In fact this is a good stage for realizing that the Z(q) is itself included into the following

largest q-state classical model. Consider the site variable �i = 1; 2; � � � ; q;8i, and assume

that the pair interaction Hamiltonian is given by the set f"�i;�jg of q2 real numbers. The

interaction matrixW(f"ijg) is de�ned by:

W =

0
BBBBBB@

W11 W12 � � � W1q

W21 W22 � � � W2q

...
...

...

Wq1 Wq2 � � � Wqq

1
CCCCCCA

(Wij � e�"�i;�j =kBT ) (10.a)

This matrix contains (at most) q2�1 independent coupling constants due to the irrelevance
of the zero of energy.

In practically all spin models of physical interests each row and column of the above

matrix contain the same set of numbers, i.e.

qX
i=1

Wij =

qX
j=1

Wij = �0 (10.b)

where �0 is independent of i and the matrix W is not necessarily symmetric. Models

such as the spin S = 1=2 Ising, Potts, chiral Potts [82, 83, 22, 35], clock, Ashkin-Teller,

(N�; N�), discrete cubic and Z(q) are described by Hamiltonians which satisfy condition

(10b).

The Z(q) model is recovered with the restriction that "ij only depends on ji � jj
where (i � j) is measured modulus q (consequently Wii = Wjj and Wij = Wji; 8(i; j)).
The Potts model is reobtained for Wii = W11; 8i, and Wij = W12 for all i 6= j (the

usual choice is "11 = �qJ and "12 = 0). The chiral Potts model corresponds to "�i;�j /
cos[2�(�i � �j ��)=q] with arbitrary �; � = 0 reproduces the clock model.

Before closing this subsection let is illustrate the interaction matrix (10) through a

few examples.
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q = 3: The 3-state Potts model (coincident with the Z(3) model) corresponds to0
BBB@

W11 W12 W12

W12 W11 W12

W12 W12 W11

1
CCCA (�0 = W11 + 2W12) ; (11)

the spin 1 Ising model corresponds to0
BBB@

W11 1 W�1
11

1 1 1

W�1
11 1 W11

1
CCCA (12)

and the chiral 3-state Potts model is described by0
BBB@

W11 W12 W13

W13 W11 W12

W12 W13 W11

1
CCCA (�0 = W11 +W12 +W13) (13)

(chirality vanishes with ("13 � "12)).

q = 4: The Z(4) model corresponds to0
BBBBBB@

W11 W12 W13 W12

W12 W11 W12 W13

W13 W12 W11 W12

W12 W13 W12 W11

1
CCCCCCA

(�0 = W11 + 2W12 +W13) (14)

and the spin 3/2 Ising model is characterized by the matrix:0
BBBBBB@

W11 W
1=3
11 W

�1=3
11 W�1

11

W
1=3
11 W

1=9
11 W

�1=9
11 W

�1=3
11

W
�1=3
11 W

�1=9
11 W

1=9
11 W

1=3
11

W�1
11 W

�1=3
11 W

1=3
11 W11

1
CCCCCCA

(15)

Notice that the spin 1-and 3=2-Ising models do not ful�ll condition (10b). The multi-

component spin model characterized by the interaction matrix (10a) with the condition

(10b) has been considered by Wang and Wu [84] and more recently by Maillard et al [85].

In ref. [84] the duality transformation on two-dimensional lattices and the thermodynam-

ics on a Cayley tree for this model have been derived. In ref. [85] it is shown how the
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eigenvalues of the interaction matrix are related to the convenient vector transmissivity

which will appear, for certain particular cases of this multi-component spin model, in

section 3. As far as we know, the general model described by (10a) (but without the

restriction (10b)) has never been studied. The renomalization group techniques presented

in this review are powerful enough to enable such a study (which is therefore welcome!).

This comes from the fact that the model (10a) is necessarily closed under renormalization

since it is the most general q-state one.

1.2.5 Random models

A great variety of physical situations exist (e.g., alloys and glasses) in which one-body

terms and/or the coupling constants themselves are random variables. A typical case is

the bond random model: the two-body coupling constant Jij (between sites i and j) is a

random variable, which might take, for instance, two di�erent values (binary distribution)

or a continuous spectrum of values (e.g., Gaussian distribution, centered or not in Jij = 0).

Another typical case is the site random model: the spins Si themselves might be randomly

present or absent. Mixed situations with simultaneous bond and site randomness are

possible as well.

The bond and/or site randomness yields con�gurations (of coupling constants and

presence or absence of spins) which might be either frozen once for ever (quenched model)

or completely free to evolve subject to those particular external conditions such as tem-

perature and applied �elds (annealed model). Many realistic situations are intermediate

in the sense that bonds and/or sites are neither completely frozen nor completely free to

evolve. Several works have been dedicated to the analysis of the thermostatistical impli-

cations of the quenched and annealed limits [86{90], [55]. The quenched limit involves

independent local probability distributions (say of Jij) and is physically a very rich case.

To �x ideas let us consider a random Potts model. Its dimensionless Hamiltonian is

given by

��H =
X
i;j

Kij"i"j��i;�j (�i = 1; 2 � � � ; q) (16)

where fKijg and f"ig are random variables and (i; j) runs over all bonds of a given

arbitrary lattice; the site disorder variable "i takes the values 1 (present spin) and 0
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(absent spin). The sets fKijg and f"ig are weighed with the law P (fKijg; f"ig).
In the annealed limit (for both bonds and sites), P (fKijg; f"ig) can in principle be

obtained from the Boltzmann factor exp(��H). The corresponding free energy is given

by

Fannealed = �kBT ln
X

�i;"i;Kij

e��H (17)

In the quenched limit (for both bonds and sites), P (fKijg; f"ig) has to be known (in

practice, it depends on the procedure of preparation of the sample). If bonds and sites

are independently distributed we have that P (fKijg; f"ig) = PB(fKijg)PS(f"ig), where
PB and PS are the bond and site distributions respectively. The pure bond-random

problem corresponds to PB(fKijg) 6=
Q

(i;j) �(Kij � K0
ij)(fK0

ijg is a set of �xed values)

and PS(f"ig) =
Q

i �("i � 1); the pure site-random problem corresponds to PB(fKijg) =Q
(i;j) �(Kij �K0

ij) and PS(f"ig) 6=
Q

i �("i� 1). In the quenched-bond limit PB(fKijg) =Q
(i;j) Pij(Kij), where fPij(Kij)g are independent laws (i.e., no correlation exists in the dis-

order). On the other hand, the quenched-site limit corresponds to PS(f"ig) =
Q

ifPi("i)g
where fPi("i)g are independent laws. The free energy corresponding to the quenched case
is given by

Fquenched = �kBT
Z

P (fKijg; f"g)(
Y
i

d"i)(
Y
i;j

dKij) ln
X
f�ig

e��H (18)

An important particular case of the quenched limit is the bond-and-site diluted ferro-

magnet. It corresponds to

Pij(Kij) = (1 � pB)�(Kij) + pB�(Kij �K) (K > 0) (19)

and

Pi("i) = (1� pS)�("i) + pS�("i � 1) (20)

Its schematic phase diagram (for d > 1) is depicted in Fig. 3. The T = 0 line is

precisely that of Fig. 1 (S \B percolation). The critical curve of a bond-diluted annealed

ferromagnet is similar to the particular case ps = 1 of Fig. 3. Typical annealed site-diluted

ferromagnets do not show percolation e�ects due to aggregation at low temperatures (see

[55]), and, therefore, their phase diagrams are not qualitatively similar to the pb = 1 curve

of Fig. 3.
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2 SOME EXACT OR ACCURATE RESULTS

We present here a large set of exact or accurate (series, Monte Carlo, RG, conjectures

and others) results concerning mainly critical frontiers (points, lines, surfaces) and critical

exponents (�; �; �; crossover exponent �, etc). The models that we consider are essentialy

those of Section 1 on Bravais lattices. Most of these models are such that the knowledge

of two independent critical exponents (say � and �) determines all of them (hence, the

universality class) through the scaling and hyperscaling relations. We brie
y recall the

most important among them:

� + 2� + 
 = 2 (21)


 = �(� � 1) (22)


 = �(2 � �) (23)

and

2� � = d� (hyperscaling) (24)

where, for standard ferromagnets (and analogously for various other models),

M � order parameter / (Tc � T )� (T ! Tc; H = 0) (25)

C � speci�c heat / jT � Tcj�� (T ! Tc; H = 0) (26)

�
T
� isothermal susceptibility/ jT � Tcj�
 (T ! Tc; H = 0) (27)

� � correlation length / jT � Tcj�� (T ! Tc; H = 0) (28)

M / H1=� (T = Tc; H ! 0) (29)

�(R) � correlation function (between two spins at distance R)

/ 1

Rd�2+� (T = Tc; H = 0; R!1) (30)

H being the external parameter thermodynamically conjugate of the order parameter

associated with the phase transition. In what follows, whenever new quantities (e.g.,

crossover exponents) or departures from the above general trend (e.g., more than two

independent critical exponents, �rst-order phase transitions) appear, we shall speci�cally

discuss them.
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2.1 The Pure Potts Model

Unless otherwise stated, we refer to the ferromagnetic case, the interactions only existing

between �rst-neighbours (J � coupling constant).

2.1.1 d=1

For the linear chain we have
kBTc
qJ

= 0 (8q) (31)

and

� = 1 (32)

with the de�nition �/(e�qJ=kBT )�� (instead of Eq. (28)) in the limit T ! Tc = 0.

2.1.2 d! 1

For the d-dimensional hypercubic lattice in the d! 1 + 0 limit and q > 1 we have [25]

qJ

kBTc
� 1

d� 1
(33)

and

� � 1

d� 1
(34)

Notice that � diverges in the d! 1 limit in contrast with the result indicated in Eq. (32):

this discrepancy is due to the fact that � has been de�ned here via the standard variable

(28).

2.1.3 d=2

The isotropic square-lattice Potts ferromagnetic critical points (see [3]) and critical expo-

nents � [91] and � [92] are given by

kBTc
qJ

=
1

ln(
p
q + 1)

(8q) (35)

� =
2

3

�
2 + �=

�
arccos

�
1

2

p
q

�
� �

���1
(q � 4) (36)
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and

� =
1

12

�
1 +

2

�
arccos

�p
q

2

��
(q � 4) (37)

These results have been represented in Figs. 4 and 5. Eqs. (36) and (37) hold only

for q � 4 because the transition becomes of the �rst-order for q > 4. As a matter of

fact, the common belief is that the Potts ferromagnetic phase transition is a continuous

(�rst-order) one for q � qc(d) (q > qc(d)): see Fig. 6 for a temptative representation of

qc(d) which takes into account various results [93-97,3] available in the literature. It is

suggested that d = 6 (d = 4) separates critical and classical regimes for 0 < q < 2 (q = 2):

this is in variance with Fig. 2 of Ref. [3]

Eq. (35) is generalized, for the anisotropic square lattice (arbitrary Jx and Jy), into

(see [3])

(eqJx=kBTc � 1)(eqJy=kBTc � 1) = q (38)

which is represented in Fig. 7. We may de�ne the d = 1$ d = 2 crossover exponent �12

as follows:

e�qJx=kBTc(Jy=Jx) /
�
Jy
Jx

��12

(Jy=Jx ! 0) (39)

Then Eq. (38) implies

�12 = 1 (8q) (40)

The critical surface for the anisotropic triangular lattice (arbitrary Jx; Jy and Jz along

the corresponding crystalline axes) is given by [98, 99]

(eqJx=kBTc � 1)(eqJy=kBTc � 1)(eqJz=kBTc � 1) + (eqJx=kBTc � 1)(eqJy=kBTc � 1) +

+(eqJy=kBTc � 1)(eqJz=kBTc � 1) + (eqJz=kBTc � 1)(eqJx=kBTc � 1) = q (41)

If we take Jx = 0 (or Jy = 0 or Jz = 0) we reproduce Eq. (38).

For the anisotropic honeycomb lattice (dual of the triangular lattice) we have [98, 99]

q2 + q(eqJx=kBTc � 1) + q(eqJy=kBTc � 1) + q(eqJz=kBTc � 1) �
�(eqJx=kBTc � 1)(eqJy=kBTc � 1)(eqJz=kBTc � 1) = 0 (42)

If we take Jx ! 1 (or Jy ! 1 or Jz ! 1) we reproduce oncemore Eq. (38). In Ref.

[100] critical points (with an expected good accuracy) associated with various other d = 2
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isotropic lattices are conjectured. Finally we present below the critical point corresponding

to the anisotropic Potts antiferromagnet (Jx; Jy < 0) on the square lattice [101]:

(eqJx=kBTc + 1)(eqJy=kBTc + 1) = 4 � q (q � 3) (43)

whose isotropic case is also represented in Fig. 8 (this �gure contains also the ferromagnet

case given by eq. (35)).

2.1.4 d=3

The approximate value of the Potts ferromagnetic critical points on isotropic simple cubic

lattice (SC) and on other d = 3 lattices can be found in Ref. [93]. These phase transitions

are believed to be of the continous type for q < qc with qc
<� 3 [102]. Concerning the

d = 3 Ising ferromagnet (q = 2), accurate estimates of critical exponents can be found in

[103] and references therein.

The critical surface associated with the anisotropic Potts ferromagnet on the SC lattice

(arbitrary coupling constants Jx; Jy and Jz along the three axes) is known with quite good

precision (see [104] and reference therein). We may de�ne the d = 1 $ d = 3 and the

d = 2$ d = 3 crossover exponents �13 and �23 respectively through

e�qJx=kBTc(Jy=Jx=Jz=Jx) /
�
Jy
Jx

��13

(Jy=Jx = Jz=Jx ! 0) (44)

and
kBTc(Jz=Jx ; Jx = Jy)

Jx
� kBTc(0 ; Jx = Jy)

Jx
/
�
Jz
Jx

��23

(Jz=Jx ! 0) (45)

Then we have that (see [104] and references therein)

�13 = 1 (8q) (46)

and

�23 '
8<
: 1:75 if q = 1

7=4 if q = 2
(47)

2.1.5 d� 4

Approximate Potts ferromagnetic critical points corresponding to several d � 4 hypercubic

(as well as some others) isotropic lattices are presented (many of them on conjectural

grounds) in Ref. [93]. For d � 4; qc = 2.
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2.1.6 Bethe lattice

Here we shall follow Baxter's terminology [5] concerning the distinction between Cayley

tree and the Bethe lattice with coordination number z. Both are constructed from a

central point which is connected to z points forming the �rst shell; in general, the nth

shell (n > 1) is created by connecting (z � 1) new points to each of the points in the

(n� 1)th shell. In the Bethe lattice only sites far from the boundary in the limit n!1
are considered, while in the Cayley tree sites close to or on the boundary are also taken

into account. The ferromagnetic Potts model on the Cayley tree presents some quite

unusual properties (see, e.g., [84] and references therein) and we shall not consider it

herein.

The critical point of the Potts ferromagnet on a z-coordinated Bethe lattice is given

by (see [93] and references therein)

1� e�qJ=kBTc

1 + (q � 1)e�qJ=kBTc
=

1

z � 1
(8q) (48)

This result can be extended to anisotropic Bethe lattices where the z bonds (arriving

on each site) are partitioned as follows: n1 with coupling constant J1; n2 with coupling

constant J2; � � � and nN with coupling constant JN such that
PN

i=1 ni = z (the partition

is one and the same for all sites). The critical hypersurface is (conjecturally) given by [93]������������

1 � t1(n1 � 1) �t1n2 � � � �t1nN
�t2n1 1 � t2(n2 � 1) � � � �t2nN

...
...

...

�tNn1 �tNn2 � � � 1 � tN (nN � 1)

������������
= 0 (49)

with

ti � 1 � e�qJi=kBTc

1 + (q � 1)e� e�qJi=kBTc
(i = 1; 2; � � � ; N) (50)

Eq. (49) recovers, as particular cases, all the exact results available in the literature.

With respect to the universality class, all Bethe lattices present classical values for the

critical exponents, in particular � = 1=2 and � = 1 for q = 1 [105], � = 1=2 and � = 1=2

for q = 2 (see, e.g., [5]), and �rst order phase transitions for q > 2 (see [106]).
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2.2 The Bond-Random Potts Ferromagnet

We refer here to the quenched model unless speci�cally stated otherwise.

2.2.1 d=2

We consider, for each bond, the following independent probability law for the coupling

constant:

P (Jij) = (1 � p)�(Jij � J1) + p�(Jij � J2) (51)

with 0 � p � 1 and J1 � 0, J2 > 0.

An accurate critical surface kBTc(p; J1=J2)=qJ2 for the isotropic square lattice [107]

is represented for q = 2 and di�erent values of J1=J2 in Fig. 9. The results for the

triangular and honeycomb lattices are completely analogous [108]. Although known with

high numerical accuracy (see [109, 108, 107]), the exact analytic expressions for these

critical surfaces are not yet available. However some partial exact results can be presented

[110{112]

1

Tc(1; 0)

�
dTc(p; 0)

dp

�
p=1

=
2
p
q

(1 +
p
q) ln(1 +

p
q)

(8q) (square lattice) (52)

�
d exp(�qJ2=kBTc(p; 0))

dp

�
p=pc

=
ln q

(q � 1)pc
(8q) (53)

(square, triangular and honeycomb lattices; pc � bond percolation threshold)�
1 + (q � 1) exp(�qJ1=kBTc

�
1

2
;
J1
J2

�
)

�
�

�
�
1 + (q � 1) exp(�qJ2=kBTc

�
1

2
;
J1
J2

�
)

�
= q (8q) (square lattice) (54)

The exact values for the p = 1 slopes for the diluted case (J1 = 0) on the triangu-

lar and honeycomb lattices [111] are indicated in Table I. The slopes at p = 1 for the

quenched and annealed models coincide (see [113]) for any given lattice (not necessarily

two-dimensional).

With respect to the critical exponents for any d = 2 lattice it is believed that (see,

e.g., [55]):

(i) At Tc = 0, the universality class is that of percolation;
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(ii) At Tc > 0 and q > 4 the phase transition is a �rst-order one;

(iii) At Tc > 0 and 2 < q � 4, the universality class it that of the pure model if p = 1,

and a new one (\random") if p < 1;

(iv) At Tc > 0 and q = 2, the universality class is that of the pure model if p = 1, and

unknown if p < 1;

(v) At Tc > 0 and q < 2, the universality class is that of the pure model, 8p.

2.2.2 Bethe lattice

We consider, on each bond of a z-coordinated Bethe lattice, an arbitrary independent

probability law P (Jij) for the coupling constant, with the unique restriction that P (Jij)

vanishes for Jij < 0. The critical frontier is (conjecturally) given by [93]

<
1� e�qJ=kBTc

1 + (q � 1)e�qJ=kBTc
>P (J)=

1

z � 1
(8q) (55)

where < � � � > stands for the average value with the law P (J). Eq. (55) recovers, as

particular cases, all the exact results available in the literature [111, 55].

2.3 Resistor Network

We consider a quenched random distribution of conductances g on a given lattice, each

bond distribution law being given by

P (g) = (1 � p)�(g � g1) + p�(g � g2) (56)

with 0 � p � 1 and g1; g2 � 0. We denote �(p) the conductivity of the random medium,

and � � g1=g2. In the � = 0 and � ! 1 limits (diluted resistor network and diluted

superconductor network respectively), we de�ne the following critical exponents

�(p) / (p � pc)
t (� = 0; p! pc + 0) (57)

and

�(p) / (p � pc)
�s (�!1; p! pc + 0) (58)

pc being the critical point for bond percolation.
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2.3.1 d=2

The following results are exact for the square lattice [114{116]:

1

�(1)

d�(p)

dp

����
p=0

=
2�(1 � �)

1 + �
(59)

and consistently
1

�(1)

d�(p)

dp

����
p=1

=
2(1� �)

1 + �
(60)

as well as

�(0)=�(1) = � (61)

and, more generally,
�(p)

�(1)

�(1� p)

�(1)
= � (8p) (62)

hence

�(1=2)=�(1) =
p
� (63)

For the square lattice (and for any other d = 2 lattice) we have ([117], [118] and references

therein)

t = s � 1:3 (64)

2.3.2 d � 3

The following results are exact for the d-dimensional hypercubic lattice [115]:

1

�(1)

d�(p)

dp

����
p=0

=
d�(1 � �)

1 + (d � 1)�
(65)

and consistently
1

�(1)

d�(p)

dp

����
p=1

=
d(1 � �)

d� 1 + �
(66)

Also, for any d = 3 lattices we have [115, 119] t ' 1:7 and t=(t+ s) ' 0:7

2.4 Z(q) Model

Unless otherwise stated, we refer to the ferromagnetic case, the interactions only existing

between �rst-neighbours.
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2.4.1 Isotropic Z(4) ferromagnet on the square lattice

The pair Hamiltonian given by eq. (9) can be rewritten, for q = 4, in terms of two coupled

Ising variables �i and �i, namely [120]

Hij = J1 � J1(�i�j + �i�j)� 2J2�i�j�i�j (�i = �1; �i = �1) (67)

The phase diagram presents, for J1 � 0 and J1 + 2J2 � 0, three phases namely the

paramagnetic (P ), ferromagnetic (F ) and intermediate (I) ones. We show in Fig. 10 an

accurate approximation [121] for it which recovers all the exact results available for the

square lattice. The P � F critical line satis�es the duality condition given by

e�4K1 + 2e�2(K1+2K2) = 1 (K� = J�=kBT ; � = 1; 2) : (68)

Its universality class is a continuous function of J1=J2 (a fact which is not reproduced in

[121]). For instance, its critical exponent � is given by [122]:

� = f2 � �

2
cos�1[tanh(4K2)=(tanh(4K2)� 1)]g�1 (�1=2 � J2=J1 � 1=2) (69)

The IP and IF critical lines belong to the Ising universality class, but their analytical

expressions are yet unknown, though they are closely related (through duality). Their

J2=J1 !1 limits are known, namely

lim
J2=J1!1

kBT
IP

J2
=

4

ln(1 +
p
2)

= 2� 2:269 � � � (70)

and

lim
J2=J1!1

kBT
IF

J1
=

4

ln(1 +
p
2)

= 2� 2:269 � � � (71)

thus reproducing the Ising critical point.

2.4.2 Duality

Since Kramers and Wannier [123] derived a duality transformation for the Ising model

on the square lattice (i.e., a relation connecting the partition functions in the high-and

low-temperature regions) there has been many generalizations of this transformation to

di�erent statistical systems (see [31] and references therein).
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For the Z(q) ferromagnet on the square lattice, the duality transformation leaves

invariant the following hypersurface (which becomes a point for q = 2; 3, a line for q = 4; 5,

a surface for q = 6; 7, and so on): [32, 124, 125]

xD� = x� (72.a)

where

x� � exp

(
q�1X
�=0

K�

�
cos

�
2���

q

�
� 1

�)
(72.b)

and its dual variable xD� is given by

xD� =

q�1X
�=0

exp (2�i��=q)x�

q�1X
�=0

x�

(72.c)

hereafter referred to as self-dual hypersurface (not all the points of which are themselves

self-dual; see [125]). If an odd (even) number of phase transitions exists when T increases

from zero to in�nity, necessarily one (none) of them lies on the self-dual hypersurface;

all the others, if any, being strictly related two by two through duality (to each phase

transition existing below the self-dual temperature corresponds one and only one above

that temperature related through the duality transformation; i.e., if there are, for example,

three phase transitions, then one necessarily coincides with the self-dual temperature and

the other two are transformed through duality one into the other). This statement is

correct for all q > 0 and for arbitrary values of the coupling constants along the x-and

y-axes; it implies nothing concerning the nature of the transitions (continuous or of the

�rst-order, with or without spontaneous symmetry breaking, universality class, etc).

The same type of arguments can be extended to other planar lattices (e.g., triangu-

lar and honeycomb) by adding duality to other convenient transformations (e.g., star-

triangle), but this is out of the present scope.
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3 TRANSMISSIVITIES AND THE BREAK-

COLLAPSE METHOD

This Section is devoted to the exact calculation, using the Break-collapse method, of

correlation-like quantities for �nite (connected) graphs (i.e., connected arrays of edges

joining vertices) associated with bond percolation, Potts model and other classical phys-

ical systems. These calculations constitute the basis on which are constructed the RG's

presented in Section 4.

3.1 Bond Percolation

Let us consider a series array of two bonds whose independent occupancy probabilities

are p1 and p2. The equivalent probability ps is given by

ps = p1p2 (73)

where \equivalent" is used in the sense that the array can be replaced by a single bond

connecting the two terminal sites (or external sites, noted �, to distinguish them from the

internal sites, noted �). If the array is a parallel one, the equivalent propability pp can be

obtained through analysis of the 4 possible con�gurations; it is given by

pp = p1p2 + p1(1� p2) + p2(1� p1) (74)

hence

pp = p1 + p2 � p1p2 : (75)

This equation can be rewritten in a series-like form, namely

pDp = pD1 p
D
2 (76)

with

pD � 1� p (77)

The variable pD plays a role, as shown in [126], similar to the dual variable of the

duality transformation for the partition function of the Ising model [123]. Furthermore as
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we shall see below, the geometric dual of two edges in series is two edges in parallel if we

consider the terminal sites as roots (roots are specially distinguished vertices of a graph).

These two facts justify the use of the superscript D standing for dual in eqs. (76) and

(77). A rooted graph is said to be planar if it can be embedded in the plane in such a

way that no edge crossing exists except at a vertex. Any possible embedding of a planar

graph represents a plane graph. In Fig. 11 we show a few two-rooted plane (a-d), planar

(a-e) and non-planar (f,g) graphs. Let us consider a connected two-rooted plane graph

G which has the following characteristics: i) it does not contain any single-edge loop or

any unrooted vertex which has a coordination number 1 (i.e., which is connected to an

unique vertex), ii) its articulation points (an articulation point is one that if we remove it

together with its incident edges the graph becomes disconnected), if any, are not rooted

iii) the roots are on the boundary of the in�nite (exterior) face. Examples of such graphs

G can be seen in Fig. 11 (a-d). Now imagine a boundary line running from each root out

to in�nity; these two non-intersecting lines divide the in�nite face into two regions which

we shall picture as being the \two (imaginary) in�nite faces" of G. The dual GD of such

a graph G is de�ned [127{129] as another two-rooted graph constructed as follows:

i) place one unrooted vertex of GD on each of the �nite (or inner) faces of G

ii) place each rooted vertex of GD on each \imaginary in�nite face"

iii) draw an edge joining the vertices of GD which lie in the faces adjoining an edge of G

(which implies that each edge of one graph crosses one and only one of the other and that

each unrooted vertex of one graph is surrounded by an elementary mesh of the other).

In Fig. 12 we have represented a few couples of two-rooted dual graphs ((a), (c) and

(d) are self-dual). The extension of this duality construction to graphs with any number

of roots has been done in this decade [129], while the dual of a lattice (which can be seen

as an in�nite unrooted graph) and that of an unrooted or one-rooted (the root residing in

the in�nite face) graph has been established much earlier (see [130, 131]). For example,

the triangular (Kagom�e) lattice is the dual of the honeycomb (diced) lattice; the square

lattice is self-dual. The self-duality of the anisotropic bond percolation on the square

lattice (arbitrary px and py) enables, following along the lines of refs. [123] and [6] for

the Ising model, the immediate calculation of its bond percolation critical line. The full
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discussion and derivation was �rst done by Sykes and Essam [126], but a quick derivation

can be done as follows: self-duality yields pDx = py, which, together with de�nition (77),

provides the exact result px + py = 1.

If we have a series or parallel array of ` bonds, the respective eqs. (73) and (76) are

immediately generalized into

ps =
Ỳ
i=1

pi (78)

and

pDp =
Ỳ
i=1

pDi (79)

hence

pp = 1�
Ỳ
i=1

(1� pi) (80)

The use of algorithms (78) and (80) enables, without performing the con�gurational

analysis, the calculation of the equivalent probability of any two-rooted graph sequentially

reducible in series and parallel operations (e.g., graphs appearing in Figs. 12 (b,e,f)), but

not of the irreducible ones (e.g., graphs appearing in Figs. 11(b-g)). We now describe the

Break-collapse method (BCM) which applies to any two-rooted graph.

3.1.1 Break-collapse method and other properties

We consider an arbitrary connected two-rooted graph G with roots 1 and 2, the edges

of which are respectively associated with probabilites fpig. In many cases all the edges

of G are relevant in the sense that the deletion of any of them modi�es the connectivity

properties between the roots, or equivalently that the graph coincides with its backbone

(if we assume that arbitrary �nite electrical conductances are placed on the edges of the

graph, the backbone is the set of edges along which current 
ows when a voltage is applied

between the roots of the graph). See, in Fig. 13, graphs which include at least one

irrelevant edge. We note P12(fpig; G) the probability that the root 1 and 2 be connected

(this is the pair connectedness introduced by Essam [7]), i.e, that at least one path of

active bonds connects the roots. P12(fpig; G) is a polynomial of the fpig; if the graph

includes irrelevant edges, P12 will not depend on their occupancy probabilities (if all edges

have the same probability p, P12 will be a polynomial in p with degree Nb � number
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of relevant edges). In general P12(fpig; G) satis�es P12(fpi = 0g) = 0 and P12(fpi =
1g) = 1, and is a multilinear function of fpig, i.e., it can always be written as follows:

P12(fpig) = A(fpig0)+B(fpig0)pj , where pj is the probability associated with an arbitrarily
chosen bond, and the set fpig0 excludes pj . We note P12(fpig0; Gb

j)(P12(fpig0; Gc
j)) the pair

connectedness probability associated with the j-broken (j-collapsed) graph, de�ned as the

one obtained from G by taking pj = 0 (pj = 1). Gb
j is the graph obtained from G by

deleting the edge j of G, while Gc
j is obtained from G by contracting (i.e., by deleting

the edge j and indentifying its incident vertices) the edge j of G. A and B are trivially

evaluated in terms of the pair connectedness of Gb
j and Gc

j , and the following algorithm

holds:

P12(fpig; G) = (1 � pj)P12(fpig0; Gb
j) + pjP12(fpig0; Gc

j) (81)

The iterative use of this algorithm, which we shall call the break-collapse equation, to-

gether with (78) and (79) will lead eventually to an e�ective edge j whose pair connectivity

is a multilinear function of some p0is. In order to include this case one should regard pj

as being, in fact, the e�ective probability of the edge j given by the pair connectivity of

the subgraph which generated it. Similarly, the pi0s and pDi
0s which appear in eqs. (78)

and (79) should be considered as e�ective probabilities.

Besides eqs. (81), another valuable property is the factorization rule for articulated

graphs; this refers to a situation where there is an articulation point i. In this case the

graph G becomes the union of two subgraphs, G1 and G2, which intersect at only i (we

say that G1 and G2 are in series). We have, thus, to consider two cases according to the

distribution of the roots:

1) If G1 contains one root, say 1, and G2 contains the other root, then the following

factorization occurs [132]

P12(G1UG2) = P1i(G1)Pi2(G2) (82.a)

2) If all the roots belong to only one subgraph (including the case where one of the roots

coincides with the articulation point itself), say G1, then all the edges of G2 are irrelevant

for the pair connectedness P12 and the following relation holds

P12(G1UG2) = P12(G1) (82.b)



{ 29 { CBPF-NF-046/95

which is a particular case of eq. (6.6a) of ref. [133].

An example of the �rst situation is the following:

P12
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where we have illustrated the fact that the articulation point generates in this situation

a root on each of the subgraphs.

An example where eq. (82b) applies is the graph of Fig. (13a).

We shall refer to the iterative use of eqs. (78), (80), (81) and (82) as many times as

needed for calculating P12(fpig; G) as the Break-collapse method (BCM); it enables the full

calculation of the pair connectedness of any two-rooted graph without any con�gurational

analysis. The BCM is operationally very convenient, can be analytically implemented

in computer, and enables consequently the treatment of quite large arrays, practically

untractable within more traditional procedures. Eq. (81) coincides with eq. (3.11) of

Essam [132], referred to as the edge substitution equation for the pair connectedness.

Later on we shall present successive extensions (Potts, resistor, directed percolation, Z(q)

and cubic model), where speci�c variables and operations will be described. However we

can already antecipate that all these procedures essentially rely on a single very simple

property: multilinearity (in appropriate variables) of the relevant quantities.

Before going on, let us perform a brief illustration of the BCM to the graph G shown

on the left of Fig. 12c with p1 = p2 = p3 = p4 = p5 = p:

P12(p;G) = (1 � p)P12(G
b
5; p) + pP12(G

c
5; p) =

= (1 � p)(2p2 � p4) + p(2p � p2)2 = 2p2 + 2p3 � 5p4 + 2p5 (84)

where the 5-broken Gb
5 (5 collapsed G

c
5) graph is shown in the left (right) of Fig. 12f with

each edge having probability p.

This result was �rst obtained, through con�gurational analysis, by Reynolds et al.

(Eq. (12) of [134]).

We list now several interesting properties:

(i) Equation (81) reproduces Eqs. (73) and (75) as particular cases.
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(ii) As an immediate corollary of Eq. (81) we obtain

@P12

@pj
(fpig; G) = P12(fpig0; Gc

j)� P12(fpig0; Gb
j) (85)

(iii) Algorithm (81) can be generalized into a kind of binominal expression if we break-

collapse more than one bond simultaneously. If we note Gbb
jk; G

bc
jk; G

cb
jk and Gcc

jk the

graphs obtained from a given graph G by simultaneously breaking-collapsing (as

indicated in the superscript) its j-th and k-th edges, we verify

P12(fpig; G) = (1 � pj)(1� pk)P12(fpig00; Gbb
jk) (86)

+ (1 � pj)pkP12(fpig00; Gbc
jk)

+ pj(1� pk)P12(fpig00; Gcb
jk) + pjpkP12(fpig00; Gcc

jk)

where the set fpig00 excludes pj and pk. This relation is trivially extended to the

case where we operate on three or more edges simultaneously. Let us illustrate this

property on the following example (where all bonds have occupancy probability p):
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(iv) A pair of dual two-rooted graphs, whose associated pair connectedness are respec-

tively P12(fpig; G) and P12(fpDi g; GD) where the sets fpig and fpDi g are such that

each bond of one graph has an occupancy probability which is the dual of that of

the corresponding bond in the other graph (see various illustrations in Fig. 12),

satisfy

P12(fpDi g; Gd) = 1 � P12(fpig; G) � [P12(fpig; G)]D (88)

In short we could say that \the dual of the (associated) pair connectedness on a

graph is equal to the (associated) pair connectedness of the dual". An immediate

corollary is that any self-dual two-rooted graph (e.g., those appearing in Figs. 11

(a-d)), all the bonds of which have pi = 1=2 (hence pi = pDi ), satis�es P12(G) = 1=2.

This property (and the similar ones for the Potts and other models expressed in the

transmissivity variables) is the basis for using self-dual clusters in the RG approach

of the square lattice (self-dual itself).
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(v) If we have a pair of dual two-rooted graphs, noted G and GD, and break-collapse the

j-th bond of each of the graphs, we verify that

(Gb
j)
D = (GD)cj (89)

and

(Gc
j)
D = (GD)bj (90)

consequently, if G = GD, then Gb
j and Gc

j are dual (if G is given by Fig. 12(c)

and j = 5 then Fig. 12 (f) illustrates this property). Also we have that a graph is

series/parallel reducible if an only if the same happens with its dual. Eqs. (89) and

(90) being topological (and not functional) relations, they are model independent

(i.e., they hold for bond percolation, Potts model, etc.).

3.1.2 Extension to multi-rooted graphs

Within the context of bond percolation it is interesting to de�ne multi-rooted (n-rooted)

graphs (whose edges have occupancy probabilities fpig) which contain n � 1 roots. We

note P12���n(fpig; G) the multi-connectedness function, i.e., the probability that all the n

roots 1; 2; 3 � � � ; n of G be connected. P12���n(fpig; G) vanishes if the graph contains one or

more disconnected roots. P12���(fpig; G) equals 1 for any graph with n = 1, and reproduces

the pair connectedness [7] (discussed in Section 3.1.1) for n = 2. Examples with n � 3

are presented in Fig. 14. Con�gurational analysis yields

P123(p1; p2; p3; G�) = p1p2p3 + (1 � p1)p2p3 + (1 � p2)p1p3 (91)

+ (1� p3)p1p2 = p1p2 + p2p3 + p3p1 � 2p1p2p3

and

P123(p
D
1 ; p

D
2 ; p

D
3 ; GY ) = pD1 p

D
2 p

D
3 (92)

respectively associated with Figs. 14(a) and 14(b).

The break-collapse equation (Eq. (81)) stands precisely as before (i.e., as for n =

2)[133], with the following supplementary rules:

(i) the collapse of two or more vertices yields a root if a least one of them is a root

(consequently, it yields an unrooted vertex only if all of them are unrooted ones);
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(ii) articulation points can be indistinctively considered as roots or unrooted ver-

tices if the connection of the other roots requires paths containing necessarily these

articulation points. For example, Eq. (91) can be recovered as follows if we apply

the break-collapse equation to bond 1 of graph G�:

P12(p1; p2; p3; G�) = p1(p2 + p3 � p2p3) + (1 � p1)p2p3 (93)

Another illustration is indicated in Figs. 14 (d-f).

Before going on, it is worth noting that Eqs. (91) and (92) enable a quick derivation of

the anisotropic bond percolation exact critical frontiers for the triangular and honeycomb

lattices (with occupancy probabilities p1; p2 and p3 respectively along the three crystalline

axes), �rst obtained by Sykes and Essam [126]. The equations, which implicitely involve

the well known star-triangle and duality transformations (see details in [54, 126]), are

respectively given by

P123(p1; p2; p3; G�) = P123(p
D
1 ; p

D
2 ; p

D
3 ; GY ) (triangular lattice) (94)

and

P123(p
D
1 ; p

D
2 ; p

D
3 ; G�) = P123(p1; p2; p3; GY ) (honeycomb lattice) (95)

Let us �nally mention that the factorization rules (eq. 82) (see [133]) and the properties

(ii) and (iii) of Section 3.1.1 hold similarly for multi-rooted graphs.

3.2 Potts Model

In the present Section we extend to the q-state Potts model the results and methods of

Section 3.1, herein recovered as the q ! 1 limit.

3.2.1 Thermal transmissivity

We �rst consider a series array of two edges (with Potts coupling constants J1 and J2)

and three vertices (see Fig. 15(a)). The corresponding Hamiltonian is given by H123 =

�qJ1��1;�3�qJ2��3;�2 , and the associated canonical density operator �123 is proportional to
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exp(�H123=kBT ). All possible thermal equilibrium statistical quantities associated with

this system can be calculated in terms of �123. An important subset of these quantities

involve canonical averages of functions of �1 and/or �2, but not �3; we refer herein to

all those resulting from interactions (with the system) through �1 and/or �2, but not

directly through �3. For this subset of quantities, we can perform the calculations by

using �123 or, better, Tr�3�123. Consistently we next propose a trial Potts Hamiltonian

Hs
12 = �qJs��1;�2 � qJ 00, and check whether the following equality can be imposed:

e�H
s
12=kBT = Tr�3e

�H123=kBT (96)

where J 00 (zero-energy shift) and Js are quantities to be found. By using the property

e���i�j = 1 + ��i;�j (e
� � 1)(8�), and performing the sum

Pq
�3=1

, one straightforwardly

obtain (see [2]):

ts = t1t2 (series) (97)

and

eqK
0
0 = (q � 2) + eqK1 + eqK2 (98)

where

t � 1 � e�qK

1 + (q � 1)e�qK
(99)

and, for all J 0is,

Ki � Ji=kBT (100)

We �rst note that equality (96) is indeed possible, no coupling proliferation occuring (i.e.,

no other interaction is needed than the Potts pair one, with an equivalent coupling constant

Js and a trivial zero-energy shift). This convenient property is, in some sense, a quite

rare one, most many-body interactions not remaining, in this type of array composition,

closed into themselves. The t-variable (hereafter referred to as thermal transmissivity

[68]) will prove to be an extremely useful one for the present purposes; in particular, it

recovers, in the q ! 1 limit, transformation (3). This variable was �rst introduced (with

no particular denomination) by Domb in 1974 [2] in the context of high-temperature series

expansions; it was, since then, practically forgotten (as well as the algorithm (97), also �rst

established by Domb [2]). More recently, the variable was independently rediscovered in
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Oxford [135] and Rio de Janeiro [68], and since then intensively used in the context of RG

treatments and related subjects [112, 109, 93, 108, 107, 104][136{152][133]. Its particular

case for the Ising model (where the transmissivity reduces to t = th(K)) becomes the

high-temperature expression variable noted sometimes w by Domb [154] which has been

introduced much earlier than the general de�nition (99); it has been widely used not

only in the context of series expansions (see [154] and references therein) but also in RG

approaches [155{180].

In the ferromagnetic case (J > 0) and for all q > 0, tmonotonously increases from 0 to

1 while J=kBT increases from zero (completely uncorrelated spins) to in�nity (completely

correlated spins). In the antiferromagnetic case (J < 0), and for all q � 1, it monotonously

decreases from 0 to �1=(q � 1) while jJ j=kBT increases from zero to in�nity. Finally, if

J < 0 and 0 < q < 1 (analytic extension), the variation interval of t is a disconnected

one, namely (�1; 0] and [1=(1 � q);1).

Last but not least, let us make clear that imposition of equalities like that of Eq. (96)

is equivalent [139] to preserving, through array composition, the two-body correlation

function �12 between the rooted sites 1 and 2. Indeed if we have two sites (i and j)

connected through the Potts dimensionless coupling constant Kij, we immediately verify,

for the corresponding thermal transmissivity, that

tij = �ij �
q < ��i;�j > �1

q � 1
(101)

where < � � � > denotes canonical thermal mean value.

Note that this expression has a form totally similar to that of the commonly de�ned

Potts ferromagnet order parameter m � (q < ��i;0 > �1)=(q � 1), which varies from 1 to

0 while T increases from 0 to the critical temperature Tc, and remains zero for all T > Tc.

If we have a series array of ` bonds, Eq. (97) is generalized into

ts =
Ỳ
i=1

ti (series) (102)

If all bonds have the same transmissivity t, we obtain the well known two-end correlation

function for the linear chain ts = t` = e�`=�, with the correlation lenght � = 1= ln(1=t),

which diverges at t = 1 (i.e., Tc = 0) with a critical exponent �t = 1;8q.
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We consider now a parallel array of two edges (with coupling constants J1 and J2), as

indicated in Fig. 15(b). The corresponding Hamiltonian is �qJ1��1;�2�qJ2��1;�2 , therefore
the equivalent coupling constant Jp is given by

Jp = J1 + J2 (103)

hence

tp =
t1 + t2 + (q � 2)t1t2

1 + (q � 1)t1t2
(parallel) (104)

which was �rst derived by Domb [2]. Eq. (104) can be rewritten as:

tDp = tD1 t
D
2 (parallel) (105)

with

tD � 1� t

1 + (q � 1)t
(106)

where again D stands for dual since eq. (106) provides the same relation between the

coupling constants for dual lattices as that one which appeared in the duality transfor-

mation for the partition function of the Potts model, �rst derived for the square lattice

by Potts [1]. Let us point out that the form (106) is the most general ratio of linear

funtions of t which vanishes for t = 1, equals unity for t = 0, and which applied twice

leaves the argument invariant. We also note that, in the q = 1 case, Eqs. (104) and (106)

respectively recover Eqs. (75) and (77). The exact [98, 181] ferromagnetic critical line

corresponding to the anisotropic square lattice (with transmissivities tx and ty along the

x and y axes) is quickly derived by using de�nition (106): it is given by tx = tDy .

The neutral element for parallel composition is t = 0 (t2 = 0 implies, in Eq. (104),

tp = t1;8t1); in the same way, the neutral element for series composition is t = 1 (see Eq.

(97)). Also, it is not without interest to mention a similarity with Special Relativity in a

parallel array. t2 = 1 implies tp = 1;8t (see Eq. (104)), in analogy with the relativistic

composition of velocities (the total speed is that of light if one of the speeds is that of

light, no matter the other one). In fact, algorithm (104) becomes, for q = 1, absolutely

isomorphic to the relativistic composition of speeds, the correspondence being t$ v=c (v

and c respectively are the speeds of the system and that of light).
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If we have a parallel array of ` bonds, Eq. (105) is generalized into

tDp =
Ỳ
i=1

tDi (107)

hence

tp =

1�
Ỳ
i=1

1� ti
1 + (q � 1)ti

1 + (q � 1)
Ỳ
i=1

1� ti
1 + (q � 1)ti

(108)

Similarly to the case of bond percolation, algorithms (102) and (108) enable, without

performing any partial tracings, the calculation of the pair correlation functions for any

two-rooted graph sequentially reducible in series and parallel operations. We describe in

the next Section how to deal with the irreducible ones.

3.2.2 Break-collapse method and other properties

Analogously to Section 3.1.1 we consider here an arbitrary connected two-rooted graph

G, the edges of which are respectively associated with transmissivities ftig. The equiva-
lent transmissivity between the roots 1 and 2 of the graph G, noted T12(ftig; G), is the
transmissivity of an e�ective single edge eeff joining 1 and 2 whose e�ective dimension-

less coupling constant Keff is obtained analogously to eq. (96) by using the Hamiltonian

H(G) associated with the graph G instead of H123, i.e.:

T12(ftig; G) = 1� e�qKeff

1 + (q � 1)e�qKeff
(109.a)

with Keff being given by:

eqK
0
oeqKeff��1;�2 = Tr0fe�H(G)=kBTg (109.b)

wher Tr0 refers to the trace over the con�gurations of only the internal spins located on

the unrooted vertices, and K 0
0 is due to the renormalization of the zero-energy.

Some years ago it was proved [139] that for any graph G one has:

T12(ftig; G) = �12(ftig; G) (110)
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where �12(ftig; G) is the correlation function between �1 and �2 on the graph G expressed

in the ti variables whose de�nition is given by eq. (101), where now the thermal average

involves all the spins on the graph G.

T12(ftig; G) is, in fact, a ratio of polynomials in ftig, i.e., T12(ftig; G) =

N12(ftig; G)=D(ftig; G), where both N12 and D are multilinear functions of ftig.
The denominator D is independent of the roots 1 and 2 and also determines the

partition function Z(ftig; G), i.e. [139]

Z(ftig; G) � Tr[e�H(G)=kBT ] = AD(ftig; G) (111.a)

with

A = qNs(G)
Y
i

[1� ti]
�1 (111.b)

where the trace is over all the spin con�gurations of the Ns(G) sites of the graph G, and

the product in (111b) is over all the Nb(G) bonds of G.

Furthermore, it has been shown [139] that both D and N12 can be written as \perco-

lation averages" (noted as < � � � >G;t) of certain quantities in a bond percolation problem

de�ned on G where each edge i has an independent bond occupancy probability ti, namely

D(ftig; G) =< qc >G;t (112)

and

N12(ftig; G) =< qc
12 >G;t (113)

where c(G0) is the cyclomatic number of a graph G0, i.e., the number of independent

circuits (which, for a plane graph, is equal to the number of �nite faces); it satis�es the

Euler law c(G0) = Nb(G0) � Ns(G0) + n(G0) with n(G0) being the number of clusters of

G0 (each isolated vertex counts also as a cluster; n = 1 for a connected graph). 
12(G0) is

de�ned as 1 if the roots 1 and 2 are connected on G0 and zero otherwise. \The percolation

average" of a quantity Q is given by:

< Q >G=
X
G0cG

Q(G0)P(G0) (114)

where the sum is over all the subgraphs G0 of G which have the same Ns(G) vertices of G

and only Nb(G0) edges (Nb(G0) � Nb(G)) of an edge subset E(G0) contained in the edge
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subset E(G) of G. P(G0) is the probability of occurrence of a subgraph G0 given by the

product of the transmissivities ti of the edges of G0 times the product of the probabilities

of absence (1 � ti) of the edges of G which do not appear in G0.

Before mentioning the break-collapse equation, let us focus on some factorization rules,

namely:

1) if G is the union of two subgraphs, say G1 and G2, which have zero or at most one

vertex in common and if the roots 1 and 2 belong both to G1 (including the case where

one of the roots coincides with the articulation point) then [139]:

N12(G) = N12(G1)D(G2) (115.a)

and

D(G) = D(G1)D(G2) (115.b)

If G2 is a loop with transmissity t` then

Dft`; G2g = 1 + (q � 1)t` (115.c)

From eqs. (115a) and (115b) it follows immediately that

T12(G) = T12(G1) (115.d)

This means that the subgraph G2 contains only irrelevant bonds in the sense de�ned

in section 3.1.1. The fact that irrelevant edges do not a�ect the equivalent transmissivity

of a graph happens only for classical models, but not for quantum ones (this point is

explicitely raised by Suzuki and Takano [182], is relevant for many RG approaches [183{

190], and is fully illustrated by Mariz et al [187]). Similarly this is true for uncorrelated

percolation, but not necessarily for various forms of correlated percolation [191{193].

2) if G is the union of two subgraphs, say G1 and G2, which intersect at only the ar-

ticulation point i and if G1 contains the root 1 and G2 contains the other root then the

following series algorithm for G1 and G2 holds [133]

N12(G) = N1i(G1)Ni2(G2) (116.a)
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and

D(G) = D(G1)D(G2) (116.b)

and consequently

T12(G) = T1i(G1)Ti2(G2) (116.c)

which contains, as a particular case, the algorithm eq. (97) of two egdes in series.

3) if G1 and G2 are disjoint graphs (i.e., without any intersection) and each of them

contains one root then [139]

N12(ftig); G) = T12(ftig; G) = 0 (117)

and eq. (116b) continues valid for this case.

Multilinearity of N12(ftig; G) and D(ftig; G) immediately yields the following algo-

rithm for the equivalent transmissivity T12(ftig; G) � N12(ftig; G)=D(ftig; G) of an arbi-

trary graph:

N12(ftig; G) = (1� tj)N12(ftig0; Gb
j) + tjN12(ftig0; Gc

j) (118.a)

and

D(ftig; G) = (1� tj)D(ftig0; Gb
j) + tjD(ftig0; Gc

j) (118.b)

where the set ftig0 excludes the transmissivity tj of an arbitrarily chosen bond j, and

where T12(ftig0; Gb
j) � N12(ftig0; Gb

j)=D(ftig0; Gb
j) and T12(ftjg0; Gc

j) �
N12(ftig0; Gc

j)=D(ftig0; Gc
j) are the equivalent transmissivities of the j-broken (tj = 0)

and j-collapsed (tj = 1) graphs respectively. The iterative use of this algorithm, together

with Eqs. (102) and (108), can lead to an e�ective edge j, whose transmissivity is, in

fact, a ratio, tj = Nj=Dj , of multilinear functions of some t0is. Therefore one should use,

instead of eqs. (118), the more general case given by [133]

N12(G) = (Dj �Nj)N12(G
b
j) +NjN12(G

c
j) (119.a)

and

D(G) = (Dj �Nj)D(Gb
j) +NjD(Gc

j ) (119.b)

where Nj and Dj are the respective numerator and denominator of the transmissivity

tj of the e�ective edge, which is equal to the equivalent transmissivity of the subgraph
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which generated the edge j. Similarly, the transmissivity which appeared in eqs. (102)

and (108) should be regarded as e�ective ones. The respective equivalent transmissivities

Ns=Ds and Np=Dp corresponding to a series and a parallel array of ` edges should thus

be

Ns =
Ỳ
i=1

Ni (series numerator) (120.a)

Ds =
Ỳ
i=1

Di (series denominator) (120.b)

Np =

(Ỳ
i=1

[Di + (q � 1)Ni]�
Ỳ
i=1

[Di �Ni]

)
=q (parallel numerator) (121.a)

and

Dp =

(Ỳ
i=1

[Di + (q � 1)Ni] + (q � 1)
Ỳ
i=1

[Di �Ni]

)
=q (parallel denominator) (121.b)

In spite of the aspect of Eqs. (121) (see [133]), it can be veri�ed that they always

(8`;8fNi=Dig) provide a q-factor in their numerators which cancels that one appearing

in their denominators. For example, for ` = 2, we obtain

Np = N1D2 +N2D1 + (q � 2)N1N2 (parallel numerator) (122.a)

and

Dp = D1D2 + (q � 1)N1N2 (parallel denominator) (122.b)

The iterative use of the factorization rules (eqs. 115-117), the series (eqs. 120) and

parallel algorithms (eqs. 122) together with the break-collapse equation (eqs. 119) con-

stitutes the BCM and enables the full calculations of the pair correlation function of

the Potts model on any two-rooted graph. To be more explicit, the imposition given

by (109b) is possible and automatically satis�ed within the BCM, algebraically complex

tracing operations being thus replaced by simple topological ones.

This BCM is a particular case of the subgraph break-collapse method introduced

in [133] for computing more complicated equivalent transmissivities which arise in the

calculation of many-spin correlation functions (see [140]). In order to implement the
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BCM in a computer one should treat the transmissivity of each edge i as an ordered

pair of quantities (i.e,. fNi;Dig where ti = Ni=Di; for an original edge of G, Ni = ti

and Di = 1) and not as ratios fNi=Dig. The numerator and denominator of T12(ftig; G)
satisfy necessarily the following equalities (see [139]):

N12(fti = 0g; G) = 0 ; D(fti = 0g; G) = 1 (8G) (123)

and

N12(fti = 1g; G) = qc(G) ; D(fti = 1g; G) = qc(G) (8G) (124)

In the q = 1 limit, which corresponds to the bond percolation limit (see Kasteleyn and

Fortuin [16]), the transmissivity coincides with the p-variable of ref. [16] (i.e., ti = pi = 1�
e�Ki), D(ftig; G) = 1 and N12(ftig; G) reduces to the pair connectivity P12(fpi = tig; G)
of section 3.1 (see [140]).

Before going on, let us brie
y illustrate the BCM for the Potts model. We want

to calculate T12(t;G) of the graph G shown on the left of Fig. 12c where, instead of

pi(i = 1; 2; � � � ; 5), we associate the transmissivity t to each of its edges. We �rst choose

an arbitrary bond, say the central one (edge 5), then calculate (by using the series and

parallel composition laws expressed in Eqs. (120) and (122)):

T12(t;G
b
5) �

N12(t;Gb
5)

D(t;Gb
5)

=
2t2 + (q � 2)t2

1 + (q � 1)t4
(125)

and

T12(t;G
c
5) �

N12(t;Gc
5)

D(t;Gc
5)

=
4t2 + 4(q � 2)t3 + (q � 2)2t4

1 + 2(q � 1)t2 + (q � 1)2t4
(126)

where the 5-broken Gb
5 (5-collapsed G

c
5) graph is drawn in the left (right) of Fig. 12f with

each edge having transmissivity t. Finally, using algorithms (119), we obtain:

N12(t;G) = (1� t)N12(t;G
b
5) + tN12(t;G

c
5) (127.a)

and

D(t;G) = (1 � t)D(t;Gb
5) + tD(t;Gc

5) (127.b)

and consequently,

T12(t;G) =
2t2 + 2t3 + 5(q � 2)t4 + (q � 2)(q � 3)t5

1 + 2(q � 1)t3 + (q � 1)t4 + (q � 1)(q � 2)t5
(128)
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This result was �rst obtained, through conventional tracing operations, by Yeomans and

Stinchcombe (the homogeneous case of Eq. (3) of ref. [135]) in a treatment of the dilute

Potts ferromagnet on the square lattice (notice that T12(1=(
p
q+1); G) = 1=(

p
q+1);8q;

this property will lead, within an appropriate RG framework, to the exact critical point).

The q=1 case of Eq. (128) reproduces Eq. (84) as it should be.

We now list some interesting properties, namely:

(i) Eqs. (118) reproduce Eq. (97) if we associate t/1 with a single edge ( e et ) and

0/1 with a disconnected two-rooted graph ( eue ), and they also reproduce

Eq. (104) if we associate [139] [1+ (q� 1)t]=[1 + (q� 1)t] with and elementary loop (

e t ).

(ii) As an immediate corollary of Eqs. (118) we obtain for T12(ftig; G) �
N12(ftig; G)=D(ftig; G),

@T12(ftig; G)
@tj

= (129)

=
N12(ftig0; Gc

j)�N12(ftig0; Gb
j)� T12(ftig; G)[D(ftig0; Gc

j)�D(ftig0; Gb
j)]

D(ftig; G)
which recovers eq. (85) for q = 1.

(iii) Analogously to the bond percolation case, algorithms (118) can be generalized into

a kind of binominal expansion if we break-collapse r bonds simultaneously (r � 1).

We verify that

N12(ftig; G) =

"
rY

s=1

(1� tjs)

#
N12 (ftig00 � � �0 ; Gbb���b

j1j2 ���jr )

+ tj1

"
rY

s=2

(1 � tjs)

#
N12 (ftig00 � � �0 ; Gc b���b

j1j2���jr) + � � �

+

"
rY

s=1

tjs

#
N12(ftig00 � � �0 ; Gc c���c

j1j2���jr ) (2rterms) (130.a)

and

D(ftig; G) =

"
rY

s=1

(1� tjs)

#
D (ftig00 � � �0 ; Gb b���b

j1j2���jr )
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+ tj1

"
rY

s=2

(1 � tjs)

#
D (ftig00 � � � ; Gc b���b

j1j2���jr ) + � � �

+

"
rY

s=1

tjs

#
D(ftig00 � � �0 ; Gc c���c

j1j2���jr) (2rterms) (130.b)

where the notation is self-explanatory and the set ftig00 � � �0 excludes (tj1; tj2; � � � ; tjr),
the transmissivities of r arbitrarily chosen bonds of the graph G whose equivalent

transmissivity T12(ftig; G) � N12(ftig; G)=D(ftig; G) we are looking for. The ap-

propriate use of this property (for r � 2) might lead to a considerable saving of

operational time. A similar property in the fpig variables (pi � 1 � e�qKi ) was

derived by Kasteleyn and Fortuin [16]. As a matter of fact, they used this property

to prove that the pair correlation function can be written as a ratio of percolation

averages (where a bond has an occupancy probability pi) in a similar way as the

ratio between eqs. (113) and (112).

(iv) Analogously to the bond percolation case, an arbitrary pair of two-rooted dual graphs

whose equivalent transmissivities are T12(ftig; G) and T12(ftDi g; GD) satis�es (see

proof in [129])

T12(ftDi g; GD) =
1 � T12(ftig; G)

1 + (q � 1)T12(ftig; G) = [T12(ftig; G)]D (131)

or, in a more symmetric form,

[1 + (q � 1)T12(ftig; G)][1 + (q � 1)T12(ftDi g; GD)] = q (132)

or even, in a probability-like form (see Eq. (77)),

s(ftig; G) + sD((ftig; G) = 1 (133)

with

s(t) � ln[1 + (q � 1)t]

`nq
(8q) (134)

and

sD(t) � s(tD) (8t) (135)

The s-variable transforms, under duality and for all values of q, like a probability;

in the q ! 1 limit, it becomes s = t and is strictly a probability (bond occupancy
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concentration). Property (133) will later on prove to be an extremely convenient one

for RG and other purposes. Notice from eqs. (131) and (110) that the correlation

function �12 keeps the same functional form under duality. As we will see in section

4, a corollary of eq. (131) is that any self-dual two-rooted graph, all bonds of which

have ti = 1=(
p
q + 1) (hence ti = tDi ), satis�es T12(ftig; G) = 1=(

p
q + 1). This

property extends what was already veri�ed in Eq. (128).

(v) Consider an arbitrary (connected) two-rooted graph with equivalent transmissivity

T12 � N12=D, then take any of the edges incident with one of its roots (as long

as more than one edge arrives there), disconnect it from that root and connect it

to the other root (leaving the rest untouched); we thus obtain another (connected)

two-rooted graph with equivalent transmissivity ~T12 � ~N12= ~D. A curious property

(named \onion property" from the topological operation to be done, which looks

like peeling an onion) can be veri�ed (and proved [139]), namely the invariance of

D + (q � 1)N12, i.e.

D + (q � 1)N12 = ~D + (q � 1) ~N12 (136)

Let us illustrate this property on the graph G shown in Fig. 12c, whose equivalent

transmissivity is given in Eq. (128). By using the series and parallel composition

laws we straightforwardly obtain

~T12 �
~N12

~D
� ~T12

0
@ �

�@
@
�
�

e

e

uu t
t t

t
t

1
A =

t2 + 2t3 + (4q � 7)t4 + (q � 2)2t5

1 + (q � 1)t2 + 2(q � 1)t3 + (q � 1)(q � 2)t4

(137)

This equation and Eq. (128) enable the veri�cation of Eq. (136). This example

illustrates that if we did not already know T12 � N12=D, we could calculate it

through Eq. (136) if we knew D (which can be directly calculated through eqs.

(111) or (112)) and ~T12 � ~N12= ~D (easy to calculate because it is series/parallel

reducible). This procedure can be considered as an alternative option for time-

saving.
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3.2.3 Extension to multi-rooted graphs

The useful role that n-rooted graphs (n � 2) played in bond percolation can be extended

to the Potts model. The corresponding equivalent transmissivity T12���n(ftig; G) among

the roots 1; 2; � � � ; n of a graph G is de�ned as follows [140]:

T12(ftig; G) = 1

q � 1
< q��1;�2 � 1 > (n = 2) (138)

T123(ftig; G) =
(q � 2)1=2

(q � 1)
< q3��1;�2��2;�3��1;�3 � q2(��1;�2 + (139)

+ ��2;�3 + ��3;�1) + 2 > (n = 3)

where < (� � �) >� fTr
1;2;���Ns

e��H12���Ns(���)(� � �)g=Tr
1;2;���Ns

fe��H12���Nsg. The de�nition in terms

of body correlations becomes more and more complex for higher values of n (see [140]);

however, in all cases, it is simply equal to a ratio of percolation averages [140] which

generalizes the case n = 2 (see eqs. 112 and 113), namely:

T12���n(ftig; G) = N12���n(ftig; G)
D(fTig; G) (140.a)

with D(ftig; G) being given by eq. (112) and the numerator being the generalization of

eq. (113), namely:

N12���n(ftig; G) =< q
12���n >G;t (140.b)

where the connectedness indicator 
12���n(G0) is 1 if all the n roots are connected among

themselves on the graph G0 and zero otherwise. Let us mention a few general properties

of T12���n:

(i) For n � 2,

T12���n(fti = 0g; G) = 0 (8G) (141)

or more generally, T12���n(ftig; G) = 0 if any of the roots is not connected to all the

others.

(ii) For any connected graph G and n � 2:

N12���n(fti = 1g; G) = D(fti = 1g; G) = qc(G) (142)
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and therefore

T12���n(fti = 1g; G) = 1 (143)

(iii) the factorization rules in eqs. (115) continue to be valid if all the roots belong to

G1, with N12 and T12 being replaced by N12���n and T12���n respectively;

(iv) the factorization rules given by eqs. (116) generalize to:

N12���n(G) = N12���`i(G1)Ni`+1���n(G2) (144.a)

and

T12���n(G) = T12���̀ i(G1)Ti`+1���n(G2) (144.b)

where we supposed that the roots 1; 2; � � � ; ` belong to G1 and the remaining ones

(` + 1; � � � ; n) belong to G2.

(v) in the q = 1 limit, T12���n(ftig; G) reduces to the multi-conectedness P12���n(ftig; G)
de�ned in section 3.1.2 where ti = pi.

To illustrate the present generalized de�nition of equivalent transmissivity we calculate

those of the three-rooted graphs of Figs. 14(a) and 14(b) (with fpig and fpDi g replaced
by ftig and ftDi g respectively), and obtain

T123(t1; t2; t3; G�) � N123(t1; t2; t3; G�)

D(t1; t2; t3; G�)
=

t1t2 + t2t3 + t3t1 + (q � 3)t1t2t3
1 + (q � 1)t1t2t3

(145)

and

T123(t
D
1 ; t

D
2 ; t

D
3 ; GY ) � N123(tD1 ; t

D
2 ; t

D
3 ; GY )

D(tD1 ; t
D
2 ; t

D
3 ; GY )

= tD1 t
D
2 t

D
3 (146)

which recover eqs. (91) and (92) respectively for q = 1.

The break-collapse algorithm (Eqs. (119)) stands precisely as for n = 2 replacing N12

by N12���n, with the same supplementary rules as for bond percolation (i.e., the collapse

of two or more vertices yields a root if at least one of them is a root, and articulation

points can indistinctively be considered unrooted or not if the connection of the other

roots requires paths containing necessarily these articulation points. For example Eq.
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(145) can be quickly reobtained as follows [68]:

N123

0
@

�
�
�A
A
A

e

ee

3

t1 t2

12 t3

1
A = (1 � t1)N123

 
e

e

e

3

1

2

t3

t2

!
+ t1N12

 
e

e

1

t2

2 � 3

t3

!
(147)

= (1 � t1)t2t3 + t1[t2 + t3 + (q � 2)t2t3]

= t1t2 + t2t3 + t3t1 + (q � 3)t1t2t3

and

D =

0
@

�
�
�A
A
A

e

ee

3

t1 t2

12 t3

1
A (1� t1)D

 
e

e

e

3

1

2

t3

t2

!
+ t1D

 
e

e

1

t2

2 � 3

t3

!
(148)

= (1� t1)1 + t1[1 + (q � 1)t2t3] = 1 + (q � 1)t1t2t3

which immediately provides T123(G�) � T123

�
�
� A
A
e

ee

�
= N123

�
�
� A
A
e

ee

�
=D
�

�
� A
A
e

ee

�
as

given by Eq. (145).

It is worthy noting that Eqs. (145) and (146) enable a quick derivation (implicitely in-

volving the star-triangle and duality transformations) of the anisotropic Potts ferromagnet

exact critical frontier for the triangular and the honeycomb lattices, �rst obtained inde-

pendently by Baxter et al. [98] and by Burkhardt and Southern [99] (see also [163]). The

equations are respectively given by

T123(t1; t2; t3; G�) = T123(t
D
1 ; t

D
2 ; t

D
3 ; GY ) (triangular lattice) (149)

and

T123(t
D
1 ; t

D
2 ; t

D
3 ; G�) = T123(t1; t2; t3; GY ) (honeycomb lattice) (150)

Properties (ii) (eq. (129)) and (iii) (eqs. (130)) apearing in Section 3.2.2 hold for

multi-rooted graphs.

Furthermore, it can be shown [140] that the numerator N12���n(ftig; G) (denominator

D(ftig)) of the equivalent transmissivity T12���n(ftig) � N12���n(ftig; G)=D(ftig; G) of an
arbitrary graph G depends (does not depend) on the number and location of the roots.

The denominator contains, besides unity, only \cycle" terms (i.e. every edge belongs to a
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cycle); the numerator contains only terms which join all the roots. These properties can

be veri�ed in the following examples:

T12

0
BB@ �

�@
@
�
�@

@

e

e

t5
t2t1

t4t3

1

2

uu

1
CCA = [t1t3 + t2t4 + t1t4t5 + t2t3t5

+ (q � 2)(t1t2t3t4 + t1t2t3t5 + t1t2t4t5 + t1t3t4t5 + t2t3t4t5)

+ (q � 2)(q � 3)t1t2t3t4t5]=[1 + (q � 1)(t1t2t5 + t3t4t5 + t1t2t3t4) +

+ (q � 1)(q � 2)t1t2t3t4t5] (151)

and

T1234

0
BB@ �

�@
@
�
�@

@

e

e

t5
t2t1

t4t3

1

2

e e43

1
CCA = [t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 + t1t3t5 + t2t4t5 + (152)

+ t1t4t5 + t2t3t5 + (q � 3)(t1t2t3t5 + t1t2t4t5 + t1t3t4t5 + t2t3t4t5) +

+ (q � 4)t1t2t3t4 + (q2 � 5q + 8)t1t2t3t4t5]=1 + (q � 1)(t1t2t5 + t3t4t5 +

+ t1t2t3t4) + (q � 1)(q � 2)t1t2t3t4t5]

Eq. (151) plays, as we shall see later on, a central role for certain RG approaches [135, 107]

of the bond-random Potts ferromagnet on the square lattice.

3.2.4 Bond-random model

In this subsection we present another type of extension in the sense that the transmissivity

itself is allowed to become a random variable with an arbitrary probability law P(t)

satisfying Z
dtP (t) = 1 (153)

The reason for this generalization (which recovers, for P (t) = �(t� t0), the previous case

where the transmissivity was single-valued) clearly is to describe bond-random systems

in the quenched limit (the probability laws associated with di�erent edges of a graph are

assumed to be strictly independent). Typical examples are the binary distribution, given

by

P (t) = (1� p)�(t� t1) + p�(t� t2) (154)
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(0 � p � 1; t1; t2
�
� 0), and the gaussian distribution, given by

P (t) =
1p
2��

e�(t�t0)
2=2�2 (155)

(t0
�
�0; � � 0); they both contain the single-valued distribution as a limiting case.

If we consider a series array of two bonds respectively associated with P1(t) and P2(t),

the equivalent probability law Ps(t) will be given by

Ps(t) =

Z Z
dt0dt00P1(t

0)P2(t
00)�(t� t0t00)

=

Z 1

t

dt0

t0
P1(t

0)P2(t=t
0) � P1s
P2 (156)

where we have used Eq. (97); also, at the second step where the limits of the integral

have been speci�ed, we have assumed for simplicity that P (t) takes non-zero values only

for 0 � t � 1. The product de�ned in Eq. (156), and hereafter referred to as series-

product [127], generalizes Eq. (97), and has the structure of a commutative monoid (no

inverse), the neutral element being Is(t) � �(t� 1) (see [127] for details and examples).

It can be shown that this product is isomorphic to the convolution product through the

transformation t = e�x. If our series array had ` bonds, Eq. (156) would generalize into

Ps = P1 s
 P2 s
 � � � s
 P` � s
Ỳ
i=1

Pi (157)

If our array of two bonds is a parallel one, the equivalent probability law Pp(t) will be

given by

Pp(t) =

Z Z
dt0dt00P1(t

0)P2(t
00)�
�
t� t0 + t00 + (q � 2)t0t00

1 + (q � 1)t0t00

�
(158)

=

Z t

0

dt0
1 + (q � 2)t0 � (q � 1)t02

[1 + (q � 2)t0 � (q � 1)tt0]2
P1(t

0)P2

�
t� t0

1 + (q � 2)t0 � (q � 1)tt0

�
� P1 p
 P2

where we have used Eq. (104). The product just de�ned, and hereafter referred to as

parallel-product [127], generalizes Eq. (104). It is isomorphic to the series-product, the

neutral element of the monoid now being Ip(t) � �(t). If the parallel array has ` bonds,

Eq. (157) generalizes into

Pp(t) = P1 p
 P2 p
 � � � p
 P` � p

Ỳ
i=1

Pj (159)
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Let us next introduce the dual distribution PD(t) through

PD(tD)dtD = �P (t)dt (160)

where the minus sign is introduced because tD monotonously decreases with t (see de�n-

ition (106)). Relation (159)) (and de�nition (106)) leads to the following expression

PD(t) =
q

[1 + (q � 1)t]2
P

�
1� t

1 + (q � 1)t

�
(161)

This expression recovers, for q = 1, de�nition (24) of ref. [127], and, for q = 2, de�nition

(6) of ref. [159]. It is straightforward to prove that

(P1 p
 P2)
D = PD

1 s
 PD
2 (162)

or, more generally,  
p

Ỳ
i=1

Pi

!D

= s
Ỳ
i=1

PD
i (163)

which respectively generalize Eqs. (105) and (107).

Let us mention two useful properties concerning duality:

(i) the dual of the following discrete distribution

P (t) =
JX
j=1

pj�(t� tj) (164)

(j � 1;
PJ

j=1 pj = 1; ftjg � set of arbitrary transmissivities) is given by

PD(t) =
JX

j=1

pj�(t� tDj ) (165)

(ii) if f(t) is an arbitrary function of the transmissivity t, and P(t) an arbitrary distrib-

ution such that < f(t) >P�
R
dtf(t)P (t) is well de�ned, then

< f(t) >P=< f(tD) >PD (166)

Algorithms (156) and (158) enable the calculation of the distribution associated with

any two-rooted graph reducible in series and parallel operations. A break-collapse algo-

rithm would be very convenient to treat irreducible graphs. We have not succeeded in

establishing it for arbitrary q, but we have for q=1: let us present it here.
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We note fPi(t)g the set of distributions respectively associated with the Nb (relevant)

edges of the graph G; let Pj(t) be an arbitrarily chosen distribution of that set. The

distribution PG(t) associated with the graph G is given by

PG(t) =

Z (
NbY
i=1

[dt(i)Pi(t
(i))]

)
�(t� T (ft(i)g)) (167)

where T (ft(i)g) is the equivalent transmissivity corresponding to the set ft(i)g of edge

transmissivities. The integral appearing in (167) can be extremely heavy to handle in

practical applications. We can take advantage of a generalized multilinearity property to

make the problem sensibly easier from the operational standpoint. PG(t) can be expressed

as follows

PG = A ? (B s
 Pj) (168)

where ? denotes the standard convolution product, and A and B are distributions which

only depend on the set fPig0 where Pj has been excluded. To determine A and B we break

and collapse the j-th bond, i.e., we respectively consider Pj = Ip and Pj = Is, and obtain

P b
G = A ? (B s
 Ip) = A ? Ip = A (169)

and

P c
G = A ? (B s
 Is) = A ? B (170)

where P b
G and P c

G respectively denote the distributions associated with the broken and

collapsed graphs. Eq. (170) implies

F (P c
G) = F (A)F (B) (171)

and hence

B = F�1[F (P c
G)=F (A)] = F�1[F (P c

G)=F (P
b
G)] (172)

where we have used Eq. (169), and where F and F�1 respectively denote the direct and

inverse Fourier-transformed distributions. Replacing Eqs. (169) and (172) into Eq. (168),

we �nally obtain

PG = P b
G ? fF�1[F (P c

G)=F (P
b
G)] s
 Pjg (173)
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which, for q = 1, extends to distribution laws the BCM algorithm expressed in Eq. (81).

This equation is herein recovered as the particular case where the set fPi(t)g exclusively
contains single-valued distributions. Let us work out explicitely this case.

We have Pi(t) = �(t� pi);8i. Also P b
G(t) = �(t� T (Gb

j)) and P c
G(t) = �(t� T (Gc

j)).

Therefore

F c(�) � F (P c
G) �

Z
dte�i�tP c

G(t) = e�i�T (G
c
j) (174)

and

F b(�) � F (P b
G) �

Z
dte�i�tP b

G(t) = e�i�T (G
b
j) (175)

hence

F�1[F (P c
G)=F (P

b
G)] = �(t� [T (Gc

j) � T (Gb
j)]) (176)

We now use Eq. (173) to calculate PG(t) � �(t� T (G)):

�(t� T (G)) = �[(t� T (Gb
j))] ? f�(t� [T (Gc

j)� T (Gb
j)]) s
 �(t� pj)g (177)

= �(t� T (Gb
j)) ? �(t� [(Gc

j)� T (Gb
j)]pj) = �(t� [T (Gb

j) + T (Gc
j)� T (Gb

j)pj])

hence

T (G) = (1� pj)T (G
b
j) + pjT (G

c
j) (178)

which reproduces Eq. (81).

Unfortunately the extension of Eq. (173) to arbitrary q is not available: it would of

course be very welcome.

3.3 Related Models

In this subsection we extend the above notion to a few models directly related to the

Potts one.

3.3.1 Resistor network

A series (parallel) array of two conductances �1 and �2 provides the well known equivalent

conductance algorithm

�s =
�1�2

�1 + �2
(series) (179)



{ 53 { CBPF-NF-046/95

and

�p = �1 + �2 (parallel) (180)

By introducing the dual conductance �D through

�D � �20=� (181)

(�0 � arbitrary reference conductance), algorithms (179) and (180) can be alternatively

expressed as follows:

�Ds = �D1 + �D2 (series) (182)

and

�Dp =
�D1 �

D
2

�D1 + �D2
(parallel) (183)

To calculate the equivalent conductance �12(G) � N=D between the terminals 1 and

2 associated with a graph G (with bond conductances f�ig) which is irreducible in series

and/or parallel operations, we can use the following algorithm [194]:

N12(f�ig; G) = N12(f�ig0; Gb
j) + �jN12(f�ig0; Gc

j) (184)

and

D(f�ig; G) = D(f�ig0; Gb
j) + �jD(f�ig0; Gc

j) (185)

or more generally

N12(G) = DjN12(G
b
j) +NjN12(G

c
j) (186)

and

D(G) = DjD(Gb
j ) +NjD(Gc

j ) (187)

where �12(Gb
j) � N12(Gb

j)=D(Gb
j ) and �12(Gc

j) = N12(Gc
j)=D(Gc

j ) respectively are the

equivalent conductances of the broken and collapsed graphs, f�ig0 being the set which

excludes the arbitrarily chosen conductance �j � Nj=Dj . By following along the same

lines, it is trivial to formulate the BCM for resistances (instead of conductances).

Finally it is worth mentioning that it is possible to de�ne a convenient variable s which

plays, for conductance, the same role as that de�ned in Eq. (134) for the Potts model.

We refer [194] to

s(�) � �

� + �0
(188)
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which satis�es

sD(�) � s(�D) = 1� s(�) (189)

3.3.2 Directed bond percolation

If we are dealing with oriented graphs (e.g., see Fig. 16(a)) the BCM recursive equations

becomes [28]

P12(fpig; G) = (1 � pj)P12(fpig0; Gb
j) + pjP12(fpig0; Gc

j) (190)

where P12(Gb
j) and P12(Gc

j) are respectively the pair connectedness (i.e., the probability

that the roots 1 and 2 are connected by a path of bonds which can be traversed in the

direction of the arrows) associated with the j-broken graph (pi = 0; see Fig. 16(b)) and

the j-precollapsed one (pj = 1; see Fig. 16(c)). Note that the precollapsed, -and not

the collapsed - graph, has to be considered in order that the information concerning the

sense of possible 
ow is retained. For graphs containing precollapsed edges, Eq. (190)

has to be recursively applied until a directed path appears which is entirely constituted

by precollapsed bonds and joins the roots in the desired sense: the pair connectedness of

such graph equals unity.

An interesting more general case is that in which each pair of neighbor sites is con-

nected through a double opposite-directed bond (e.g., see Fig. 17(a)). We note pi and qi

the independent occupancy probabilities respectively corresponding to each branch of the

i-th double bond (the two branches being considered in a de�nite sense). In this prob-

lem, a two-rooted graph, (a de�nite root of which is chosen as \entrance", the other one

being the \exit") is therefore characterized by the set fpi; qig, and the pair connectedness

P12(fp;qig; G) satis�es [28]

P12(fpi; qig; G) = (1� pj)(1� qj)P12(fpi; qig0; Gbb
j ) + (1� pj)qjP12(fpi; qig0; Gbc

j )

+ pj(1� qj)P12(fpi; qig0; Gcb
j ) + pjqjP12(fpi; qig; Gcc

j ) (191)

where the set fpi; qig0 excludes the arbitrarily chosen (pj ; qj)-bond, and where Gbb
j ; G

bc
j ; G

cb
j

and Gcc
j correspond respectively to (pj ; qj) = (0; 0); (0; 1); (1; 0) and (1,1). The broken

(Gbb
j ), collapsed (Gcc

j ) and two precollapsed (Gcb
j and Gcb

j ) graphs, obtained from the graph

G of Fig. 17(a) through operation on its central bond, are indicated in Figs. 17(b-e).
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By making use of the property

P12(G
bc
j ) + P12(G

cb
j ) = P12(G

bb
j ) + P12(G

cc
j ) (192)

we can alternatively rewrite eq. (191) in the following simpler forms:

P12(fpi; qig; G) = (1�pj)P12(fpi; qig; Gbb
j )+qjP12(fpi; qig0; Gcc

j )+(pj�qj)P12(fpi; qig0; Gcb
j )

(193)

or

P12(fpi; qig; G) = (1�qj)P12(fpi; qig0; Gbb
j )+pjP12(fpi; qig0; Gcc

j )+(qj�pj)P12(fpi; qig0; Gbc
j )

(194)

Eq. (193) recovers, for qi = 0 (8i), Eq. (190), and, for pi = qi(8i), Eq. (81). The latter is
not a trivial fact, as a double-oriented bond admits con�gurations which 
ow in one sense

but not in the opposite, whereas such situation is impossible for a non-directed bond.

As an illustration of the double-bond problem, we consider the graph G of Fig. 17(a).

It can be easily established that, for pi = p and qi = q 8i [28]:

P12(p; q;G) = p5 � 3p4 + p3 + 2p2 + (p4 � 2p3 + p2)q (195)

All these concepts are straightforwardly extended to cover n-rooted directed graphs,

the roots of which have to be joined in a de�nite order. In particular, algorithm (190)

remains as it stands.

3.3.3 Models with frustration

In order to discuss the T = 0 properties of spin-glass systems of the spin 1/2 Ising type,

it might be convenient to introduce a generalized bond [195] which can take four di�erent

con�gurations, namely the ferromagnetic (F) one (Jij = J > 0) with probability p, the

antiferromagnetic (AF) one (Jij = �J) with probability q, the absent (A) one (Jij = 0,

non frustrated) with probability r, and the frustrated (�) one (Jij = 0, frustrated) with

probability s; obviously p + q + r + s = 1.

The series algorithm for two edges (denoted 1 and 2) is the following:

ps = p1p2 + q1q2 (196.a)
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qs = p1q2 + p2q1 (196.b)

rs = r1 + r2 � r1r2 (196.c)

ss = (p1 + q1)s2 + (p2 + q2)s1 + s1s2 (196.d)

And the parallel algorithm is the following:

pp = p1 + p2 � p1p2 � p1q2 � p2q1 (197.a)

qp = q1 + q2 � q1q2 � p1q2 � p2q1 (197.b)

rp = r1r2 (197.c)

sp = p1q2 + p2q1 + r1s2 + r2s1 + s1s2 (197.d)

we can easily verify that ps + qs + rs + ss = pp + qp + rp + sp = 1. Eqs. (196a) and

(197a) reproduce the standard bond percolation algorithms if q1 = q2 = 0. Eqs. (196.c)

and (197.c) also reproduce the bond percolation algorithms with (1-r) playing the role of

bond occupancy probability (this is related to the \hole e�ect" mentioned by Toulouse

[196]). It is interesting also to notice that the r = 0 subspace is a closed one (in the sense

that r1 = r2 = 0 is equivalent to rs = rp = 0), as well as the q = 0 subspace (q1 = q2 = 0

is equivalent to qs = qp = 0); the same property does not hold for the p = 0 and the s = 0

subspaces. Notice �nally that frustration introduces great changes, which are re
ected in

the very di�erent algorithms for composing the r-variables and the s-variables, in spite of

the fact that the Ising coupling constant vanishes for both of them.

We illustrate now on the graph G of Fig. 18 the BCM corresponding to the present

problem. It is su�cient to calculate pG; qG and rG since sG can be obtained through the

relation pG + qG + rG + sG = 1. If we were to work through con�gurational analysis we

should have to consider 45 = 1024 con�gurations (4Nb in the general case). We proceed

instead as follows. We arbitrarily choose one edge of the graph, say edge-5, and use

multilinearity, therefore the probalibilty PGthat the graph has a ferromagnetic equivalent

bond is:

PG � p(G) = Ap5 +Bq5 + Cr5 +Ds5 (198)

where we have used the fact that bond-5 has to be in one of its 4 possible con�gurations;

A,B,C and D depend on all bonds excepting bond-5. Let us introduce the following
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notation: ee � � � � , ee , ee and will respectively indicate ferromagnetic

(p = 1), antiferromagnetic (q = 1) and frustrated (s = 1) bonds. It immediately comes

that

A =

0
@�

�@
@
�
�@

@

e

e

uu

21

43

� � � �
1
A (199.a)

B = p

0
@�

�@
@
�
�@

@

e

e

uu

21

43

1
A (199.b)

C = p

0
@�

�@
@
�
�@

@

e

e

uu

21

43

1
A (199.c)

D = p

0
@�

�@
@
�
�@

@

e

e

uu

21

43

1
A (199.d)

Therefore Eq. (198) can be rewritten as follows
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or even

p

2
4��@@

�
�@

@

e

e

uu

21

43

5

3
5 = p5p

0
@�

�@
@
�
�@

@

e

e

uu � � � �
1
A+ q5p

0
@�

�@
@
�
�@

@

e

e

uu

1
A+ (1 � p5 � q5)p

0
@�

�@
@
�
�@

@

e

e

uu

1
A (201)

where we have used the fact that

p

0
@�
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�
�@
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uu
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A = p
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�
�@

@

e

e

uu

1
A (202)

Property (202) holds in general and could be stated as follows: \In the calculations of

p(G) of an arbitrary two-rooted graph, a fully frustrated bond (s = 1) can be deleted if

its deletion does not disconnected the roots". This is due to the fact that both absent

and frustrated bonds are associated to a vanishing coupling constant, consequently, the

e�ective probability p of a graph being ferromagnetic is determined by the rest of the

edges of the graph. This property can be veri�ed on Eqs. (196.a) and (197.a), where it
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can be noticed the absence of the variables r and s. Eq. (202) generalizes into

p(G�
j ) = p(Gb

j) (203)

where j indicates that we are operating on the (arbitrarily chosen) j-th bond, and G�
j

and Gb
j denote respectively the j-th frustrated-precollapsed (sj = 1) and broken (rj = 1)

graphs.

Eq. (201) is generalized into the following algorithm:

p(G) = pjp(G
F
j ) + qjp(G

AF
j ) + (1 � pj � qj)p(G

b
j) (204)

where GF
j and GAF

j denote respectively the j-th ferro-precollapsed (pj = 1) and antiferro-

precollapsed (qj = 1) graphs. This algorithm recovers, for qj = 0, algorithm (81) with GF
j

becoming the collapsed graph Gc
j.

In a totally analogous manner we obtain for the probalibity q(c) that the graph G has

an antiferromagnetic equivalent bond:

q(G) = pjq(G
F
j ) + qjq(G

AF
j ) + (1 � pj � qj)q(G

b
j) (205)

where we have used the following property:

q(G�
j ) = q(Gb

j) (206)

This equation is totally analogous to Eq. (202), and can be veri�ed on the fact that Eqs.

(196.b) and (197.b) do not contain the variables r and s.

Finally the algorithm for the r-variable is that of bond percolation (Eq. (81)), with

bond occupancy probabilities (1� ri), i.e.,

r(G) = (1 � rj)r(G
c
j) + rjr(G

b
j) (207)

wheres it appears r-variables only.

The recursive use of Eqs. (204) (205) and (207) (together with Eqs. (196) and (197))

would enable the solution of an arbitrary graph, were it not for the fact that algorithms

(204) and (205) eventually lead, as a �nal product, to irreducible graphs exclusively con-

stituted by ferro- and antiferro-precollapsed bonds, whose solution we shall handle now.
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We assume a F con�guration on the roots of the graph G (i.e., the spins on both roots

are parallel), and, considering all possible con�gurations for the internal spins (in general,

2Ns�2 spin con�gurations), we obtain the lowest energy, noted EF , and the correspond-

ing degeneracy, noted gF . We then assume an AF con�guration on the roots (i.e., the

spins on both roots are antiparallel), and consider oncemore all possible con�gurations for

the internal spins, thus obtaining the lowest energy, now noted EAF , and its degeneracy

gAF . We �nally use the following set of rules (which will incidentally lead to a better

understanding of the big di�erence existing between absent and frustrated bonds):

(i) if EF < EAF ; or if EF = EAF and gF > gAF ;

then the graph is equivalent to a fully F-bond (i.e.,

p(G) = 1 and q(G) = r(G) = s(G) = 0); (208.a)

(ii) if EF > EAF ; or ifEF = EAF andgF < gAF ;

then the graph is equivalent to a fully AF-bond (i.e.,

q(G) = 1 and p(G) = r(G) = s(G) = 0); (208.b)

(iii) if EF = EAF and gF = gAF ;

then the graph is equivalent to a fully �-bond (i.e.,

s(G) = 1 and p(G) = q(G) = r(G) = 0): (208.c)

We illustrate these rules on Table II for the b = d = 2 Wheatstone-bridge. The rules (208)

together with Eqs. (196), (197), (204), (205) and (207) completely close the procedure.

It is obviously much simpler than considering the 4Nb bond con�gurations and, for many

among them, examining the spin con�gurations. However, it could in principle be even

simpler because it does not completely avoids some con�guration analysis; indeed the

last step (rules (208)) demands, for each of the 2Nb (at most) bond con�gurations of an

irreducible graph, the consideration of 2Ns�2 (at most) spin con�gurations. An appreciable

improvement would be a manner of connecting each bond con�guration of the graph (�rst

columm of Table II) directly with is equivalent bond (third column of Table II) without

having to inspect the ground states (intermediate column of Table II), as this is a quite

time-consuming operator. We have not succeeded, and new attempts would be welcome.

The observation of Table II yields the following hints:
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(i) The equivalent bond is frustrated if and only if an odd number of the 2(c � Nb�Ns+1

for a general connected graph) elementary plaquettes are frustrated, which in turn

happens if and only if the plaquette perimeter contains and odd number of AF-bonds;

(ii) Two con�gurations which can be obtained one from the other through F-bond 


AF-bond interchanges, correspond to the same equivalent bond.

As an illustration, we have solved [195] the graph of Fig. 19 with the BCM (this

two-rooted graph is self-dual, and will later on be used for RG applications for the square

lattice). We obtain

p0 = 24pq2 � 24pq3 � 30pq4 + 84pq6 � 72pq7 + 18pq8

� 30p2q2 � 50p2q3 + 84p2q4 + 262p2q5 � 394p2q6

+ 140p2q7 + 8p3 � 12p3q � 26p3q2 + 36p3q3 + 398p3q4

� 832p3q5 + 400p3q6 � 6p4 � 28p4q + 60p4q2

+ 386p4q3 � 973p4q4 + 612p4q5 � 6p5 + 12p5q (209.a)

+ 218p5q2 � 748p5q3 + 588p5q4 + 96p6q

� 376p6q2 + 372p6q3 + 12p7 � 100p7q + 144p7q2 � 9p8 + 28p8q + 2p9

q0 = 8q3 � 6q4 � 6q5 + 12q7 � 9q8 + 2q9 � 12pq3 � 28pq4

+ 12pq5 + 96pq6 � 100pq7 + 28pq8 + 24p2q � 30p2q2

� 26p2q3 + 60p2q4 + 218p2q5 � 376p2q6 + 144p2q7

� 24p3q � 50p3q2 + 36p3q3 + 386p3q4 � 748p3q5

+ 372p3q6 � 30p4q + 84p4q2 + 398p4q3 � 973p4q4

+ 588p4q5 + 262p5q2 � 832p5q3 + 612p5q4 + 84p6q (209.b)

+ 394p6q2 + 400p6q3 � 72p7q + 140p7q2 + 18p8q

r0 = 8r3 � 6r4 � 6r5 + 12r7 � 9r8 + 2r9 (209.c)

and

s0 = 1� p0 � q0 � r0 (209.d)
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The generalization of the present procedure to �nite temperatures presents [195] non

trivial di�culties and will not be discussed herein.

3.3.4 Z(q) model

In this subsection we extend the transmissivity of the q-state Potts model in order to

cover the Z(q) model where the transmissitivity becomes a vector. The Hamiltonian of a

single bond (between sites i and j) is given by eq. (9). With that bond we associate the

vector transmissivity ~t � (t0; t1; � � � ; tq�1) de�ned through [120]:

t� =

q�1X
�=0

exp

 
�qX


=1

2K
 cos
2��


q

!
exp(

i2���)

q

q�1X
�=0

exp

 
�qX


=1

2K
 cos
2��


q

! (210)

with K� � J�=kBT .

We immediately verify that t� is a real number which satis�es

to = 1 (211)

t� = tq�� (� = 1; 2; � � � q � 1) (212)

Consequently
!
t contains �q independent components. The Potts model corresponds to the

particular case t1 = t2 = � � � = tq�1 � t.

A series array of two bonds with transmissivities
!
t
(1)

and
!
t
(2)

has an equivalent

transmissivity
!
t
(s)

given by [120]

t(s)� = t(1)� t(2)� (� = 0; 1; � � � ; q � 1) (213)

If the array is a parallel one, the equivalent transmissivity
!
t p is given by

t(p)D� = t(1)D� t(2)D� (� = 0; 1; � � � ; q � 1) (214)

where (for j = 1; 2; p) ~t(j) � (t(j)0 ; t
(j)
1 ; � � � ; t(j)q�1) and its dual ~t(j)D � (~t(j)D0 ; t

(j)D
1 ; � � � ; t(j)Dq�1 )
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are related through

tD� =

q�1X
�=0

t� exp(�i2���=q)

q�1X
�=0

t�

(� = 0; 1; � � � ; q � 1) (215)

and

t� =

q�1X
�=0

tD� exp(�i2���=q)
q�1X
�=0

tD�

(� = 0; 1; � � � ; q � 1) (216)

Let us illustrate the series parallel algorithms with the Z(4) model. In this case we

have [125]:

t(s)� = t(1)� t(2)� (� = 1; 2) (217)

for the series array,

t
(p)
1 =

t
(1)
1 + t

(2)
1 + t

(1)
1 t

(2)
2 + t

(2)
1 t

(1)
2

1 + 2t(1)1 t
(2)
1 + t

(2)
2 + t

(1)
2 t

(2)
2

(218)

and

t
(p)
2 =

t
(1)
2 + t

(2)
2 + 2t(1)1 t

(2)
1

1 + 2t
(1)
1 t

(2)
1 + t

(1)
2 t

(2)
2

(219)

for the parallel array, and �nally [121, 125]

tD1 =
1� t2

1 + 2t1 + t2
(220)

and

tD2 =
1� 2t1 + t2
1 + 2t1 + t2

(221)

or equivalently

t1 =
1 � tD2

1 + 2tD1 + tD2
(222)

and

t2 =
1 � 2tD1 + tD2
1 + 2tD1 + tD2

(223)

for the dual relations. In eqs. (217-223) the vector transmissivity ~t � (1; t1; t2; t3) is

de�ned as (see eq. 210):

t1 = t3 =
1 � e�4K1

1 + 2e�2(K1+2K2) + e�4K1
(224.a)
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t2 =
1 � 2e�2(K1+2K2) + e�4K1

1 + 2e�2(K1+2K2) + e�4K1
(224.b)

Now let us consider the general case corresponding to an arbitrary connected two-

rooted graph G whose edges are associated with q-dimensional vector transmissivities

f~tig. Similarly to the Potts model (see eqs. 109), one can de�ne the vector transmissivity

~T (1; 2;G) � fT�(1; 2;G); � = 0; 1; � � � ; q � 1g between the roots 1 and 2 of G as the

transmissivity ~teff of a single e�ective edge eeff between 1 and 2 having an equivalent

Hamiltonian Heq(n1 � n2) given by [197]:

Ce�Heq(n1�n2)=kBT = Tr0fe�H(G)=kBTg (225)

where C is constant and Tr0 denotes the trace over the con�gurations of only the internal

spins (on the unrooted vertices).

It has been proved [197] for any graph G that:

T�(1; 2;G) =< e�2�i(n1�n2)�=q >=
N�(1; 2;G)

D(G)
(� = 0; 1; � � � ; q � 1) (226)

where < � � � > stands for a thermal average involving all the spins on the graph G.

Analogously to the Potts model (see eqs. 111), the denominator D(G) (which is

independent of the roots and of the component �) of T�(1; 2;G) is related to the partition

function Z(G) through [197, 198]:

Z(G) = BD(G) (227.a)

with

B = qNs�Nb

NbY
e=1

(
q�1X
�=0

e�He(�)=kBT

)
(227.b)

where the product is over all the Nb edges feg (e = 1; 2; � � � ; Nb) of the graph G with

Ns vertices; to each edge e joining the vertices i and j is associated the Hamiltonian

He(� = ni � nj) given by eq. (9).

Concerning the numerators fN�(1; 2;G)g (� = 0; 1; � � � ; q � 1) they satisfy [197]:

N�(1; 2;G) = Nq��(1; 2;G) (� = 1; 2; � � � ; q � 1) (228.a)
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and

N0(1; 2;G) = D(G) (228.b)

from which it follows that the relations (211) and (212) are valid, not only for an edge,

but also for an e�ective edge linking the roots of a graph G, i.e., for T�(1; 2;G).

In the case of the Potts model, these numerators reduce, for � 6= 0, to [197]:

N1(1; 2;G) = N2(1; 2;G) = � � � = Nq�1(1; 2;G) = N12(G) (229)

where N12(G) is the numerator of T12(G) de�ned previously (see section 3.2.2). Conse-

quently the Potts model corresponds to the particular case T1(1; 2;G) = T2(1; 2;G) =

� � � = Tq�1(1; 2;G) = T12(G).

Pair correlation functions can normally be written as the thermal average of some

function f(n1 � n2) which depends only on the di�erence, mod-q, of the state variables

n1 and n2. It has been shown that the Fourier decomposition of < f(n1 � n2) > involves

T�(1; 2;G) through [197]:

< f(n1 � n2) >=
1

q

q�1X
�=0

fq��T�(1; 2;G) (230)

The above relation reduces, for the Potts model, to eq. (110) if one chooses f(n1� n2) =
[q�(n1 � n2)� 1]=(q � 1).

The generalizations of the factorization rules (115), (116) and (117) to the Z(q) model

are given, respectively, by [197]:

N�(1; 2;G) = N�(1; 2;G1)D(G2) (231)

N�(1; 2;G) = N�(1; i;G1)N�(i; 2;G2) (232)

and

N�(1; 2;G) = T�(1; 2;G) = 0 (� = 0; 1; � � � ; q � 1) (233)

Notice that eq. (232) reduces to eq. (213) for two edges in series.

The extension to the Z(q) model of the parallel algorithm (eq. 122) for e�ective

edges with vector equivalent transmissivities ~T (1) � fN (1)
� =D(1), � = 0; 1; � � � ; q � 1g and

~T (2) � fN (2)
� =D(2); � = 0; 1; � � � ; q � 1g is [197]:

~N (p)
� = ~N (1)

�
~N (2)
� (� = 0; 1; � � � ; q � 1) (234.a)
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where, for j = 1; 2; p; ~N� is the discrete Fourier transform of N�:

~N� =

q�1X
�=0

N� exp(�2�i��=q) (� = 0; 1; � � � ; q � 1) (234.b)

Observe that, for an ordinary edge with vector equivalent transmissivity

~t � (t0; t1; � � � ; tq�1), the ratio ~N�= ~N0 equals tD� (� = 0; 1; � � � ; q � 1). Therefore eq.

(234a) recovers eq. (214) for two edges in parallel.

With eqs. (231-234) we can calculate pair correlation functions for the Z(q) model on

any two-rooted graph G reducible in series and/or parallel operations. If the graph is an

irreducible one, we should use the following break-collapse equation [197] for q � 4:

N�(1; 2;G) =

 
D(j) + (�q � 2)N (j)

1 �
�qX

�=2

N
(j)
�

!
N�(1; 2;G

bb���b
j ) +

N1effN�(1; 2;G
cc���c
j ) +

�qX
�=2

(N
(j)
� �N

(j)
1 )N�(1; 2;G

bb���c���b
j ) (� = 0; 1; � � � ; �q)(235)

with the superscript c in the last term occupying the �th position. N�(1; 2;Gbb���b
j );

N�(1; 2;Gcc���cc
j ) and N�(1; 2;Gbb���c���b

j ) are the N� of the respective broken (bb � � � b; t(j)1 =

t
(j)
2 = � � � = t

(j)
q�1 = 0), collapsed (cc � � � c; t

(1)
1 = t

(j)
2 = � � � = t

(j)
q�1 = 1) and the �-

type precollapsed (bb � � � c � � � b; t(j)� = t
(j)
q�� = 1 and t

(j)

 = 0 for 
 6= �; q � �; 0) graphs.

N
(j)
� (� = 1; 2; � � � ; q�1) and D(j) correspond, respectively, to the numerators and denom-

inator of the �-component of the vector transmissivity ~t(j) associated with the e�ective

edge j.

Notice that eq. (235) recovers eqs. (119) for the Potts model (where N
(j)
1 = N

(j)
2 =

� � � = N
(j)
�q � Nj). Furthermore the equation reduces, when j is an ordinary (i.e., non-

e�ective) edge, to the break-collapse equation conjectured by Mariz et al for q = 4 [121]

and q = 6 [199]. Let us make it explicit for the Z(4) model namely:

N�(1; 2;G) = (1� t
(j)
2 )N�(1; 2;G

bb
j ) + t

(j)
1 N�(1; 2;G

cc
j ) (236)

+ (t(j)2 � t
(j)
1 )N�(1; 2;G

bc) (� = 0; 1; 2)

See, in Fig. 20, the standard Wheatstone-bridge graph, and its corresponding broken,

collapsed and precollapsed graphs where the break-collapsing has been done on the central

bond.
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The iterative use of Eqs. (217-219) and (236) yields, for the Z(4) model, the complete

answer for ~T (1; 2;G) if we know the answer for that same graph with all its bonds being

precollapsed (last and unique non trivial element of the iterative chain). It has been proved

[197] that such a graph is precollapsed itself with the following attribution: t1 = 0=2c and

t2 = 2c=2c, with the cyclomatic number c = Nb �Ns + 1 for a connected graph G.

The BCM enabled a relatively easy solution for the graph of Fig. (20.a); the solution is

given [200] by T1(1; 2;G) = N1(1; 2;G)=D(G) and T2(1; 2;G) = N2(1; 2;G)=D(G) with

N1(1; 2;G) = N3(1; 2;G) = t
(1)
1 t

(2)
1 + t

(3)
1 t

(4)
1 + t

(1)
1 t

(4)
1 t

(5)
1 + t

(2)
1 t

(3)
1 t

(5)
1

+ t
(1)
1 t

(2)
1 t

(3)
2 t

(4)
2 + t

(3)
1 t

(4)
1 t

(1)
2 t

(2)
2 + t

(1)
1 t

(4)
1 t

(5)
1 t

(2)
2

+ t
(1)
1 t

(4)
1 t

(5)
1 t

(3)
2 + t

(2)
1 t

(3)
1 t

(5)
1 t

(1)
2 + t

(2)
1 t

(3)
1 t

(5)
1 t

(4)
2

+ t
(1)
1 t

(2)
1 t

(3)
2 t

(5)
2 + t

(1)
1 t

(2)
1 t

(4)
2 t

(5)
2 + t

(3)
1 t

(4)
1 t

(1)
2 t

(5)
2

+ t
(3)
1 t

(4)
1 t

(2)
2 t

(5)
2 + t

(1)
1 t

(4)
1 t

(5)
1 t

(2)
2 t

(3)
2 + t

(2)
1 t

(3)
1 t

(5)
1 t

(1)
2 t

(4)
2 (237.a)

N2(1; 2;G) = t
(1)
2 t

(2)
2 + t

(3)
2 t

(4)
2 + t

(1)
2 t

(4)
2 t

(5)
2 + t

(2)
2 t

(3)
2 t

(5)
2

+ 2t
(1)
1 t

(2)
1 t

(3)
1 t

(4)
1 + 2(t

(1)
1 t

(3)
1 t

(5)
1 t

(2)
2 + t

(1)
1 t

(3)
1 t

(5)
1 t

(4)
2

+ t
(2)
1 t

(4)
1 t

(5)
1 t

(1)
2 + t

(2)
1 t

(4)
1 t

(5)
1 t

(3)
2 ) + 2t(1)1 t

(2)
1 t

(3)
1 t

(4)
1 t

(5)
2 (237.b)

and

D(G) = 1 + t
(1)
2 t

(3)
2 t

(5)
2 + t

(2)
2 t

(4)
2 t

(5)
2 + 2(t(1)1 t

(3)
1 t

(5)
1 +

+ t
(2)
1 t

(4)
1 t

(5)
1 ) + t

(1)
2 t

(2)
2 t

(3)
2 t

(4)
2 + 2t

(1)
1 t

(2)
1 t

(3)
1 t

(4)
1 +

+ 2(t
(1)
1 t

(2)
1 t

(3)
1 t

(4)
1 t

(5)
2 + t

(1)
1 t

(3)
1 t

(5)
1 t

(2)
2 t

(4)
2 + t

(2)
1 t

(4)
1 t

(5)
1 t

(1)
2 t

(3)
2 ) (237.c)

Let us now focus on the Z(6) model where the equivalent vector transmissivity ~T (1; 2;G)

of an arbitrary two-rooted graph is given by T�(1; 2;G) = N�(1; 2;G)=(G) (r = 1; 2; 3).

Setting q = 6 in eq. (235) and choosing an ordinary edge j, one obtains the following

break-collapse equation:

N�(1; 2;G) = (1 + t
(j)
1 � t

(j)
2 � t

(j)
3 )N�(1; 2;G

bbb
j ) + t

(j)
1 N�(1; 2;G

ccc
j ) + (238)

+ (t
(j)
2 � t

(j)
1 )N�(1; 2 : G

bcb
j ) + (t

(j)
3 � t

(j)
1 )N�(1; 2;G

bbc
j ) (� = 0; 1; 2; 3)
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See, in Fig. 21, the standard Wheatstone-bridge graph and its corresponding broken,

collapsed an precollapsed graphs, the j-th bond being the central one.

The iterative use of Eqs. (231-234) and (238) yields the complete answer for ~T (1; 2;G)

if we know the answers for all the associated graphs where all of its bonds are precollapsed.

An arbitrary graph G yields in general, for the Z(6) model, 2Nb such associated terminal

graphs (noted fGprg) as each one of its bonds can be either of the precollapsed-2 or of

the precollapsed-3 type.

In this case there are no simple formulae for the T�(1; 2;Gpr) (� = 1; 2; 3) such as

those mentioned for q = 4. Their calculation involves the explicit enumeration of certain

mod-6 
ows on Gpr. A model-N 
ow ~� on any graph G is de�ned as follows (see ref.

[139]). First, consider an arbitrary directing of the Nb edges e1; e2; � � � ; eNb
of G and then

associate to each edge ei a value �i which takes on the N values 0; 1; � � � ; N � 1. De�ne

an incidence matrix S for each vertex j and edge e by:

Sje =

8>>><
>>>:

1 if e is directed into j

�1 if e is directed out of j

0 if j is not a vertex of e

(239)

We say that ~� = (�1; �2; � � ��Nb
) is a mod-N 
ow on G if for each vertex j there is a

conservation condition mod-N given by

@�j �
NbX
e=1

Sje�e = 0 mod-N (240)

~� is a rooted mod-N � 
ow on G if (240) applies to all unrooted vertices and if, in addition,

there is an external 
ow � entering at root 1 and leaving at root 2, in other words:

@�j =

8>>><
>>>:
�� if j = 1

+� if j = 2

0 otherwise

(241)

The particular case of � = 0 corresponds to a mod-N 
ow.

Concerning our problem of calculating T�(1; 2;Gpr), it has been proved [197] that

N�(1; 2;Gpr) (� = 1; 2; 3) is the number of rooted mod-6 � 
ows such that the 
ow on

any precollapsed edge of type 2 must be 0,2 or 4 and the 
ow on any precollapsed edge of
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type 3 must be 0 or 3. D(Gpr) corresponds to the particular case of zero external 
ow, i.e.,

D(Gpr) = N0(Gpr). An example of a terminal graph Gpr with 2 and 3 precollapsed edges

of respective types 2 and 3 is shown in Fig. 22. In this example there is only one mod-6

� 
ow for a �xed external 
ow �(� = 0; 1; 2; 3) and therefore T�(1; 2; Gpr) = (1
1
; 1
1
; 1
1
) for

this speci�c terminal graph.

We have presented in Fig. 23 the 14 non equivalent associated Gpr graphs of Fig. 21

(a) with their respective T�(1; 2;Gpr) (� = 1; 2; 3). As an illustration of the use of the

Z(6) BCM we present below the result obtained for the graph of Fig. 21 (a) with all

transmissivities equal among themselves and given by (t1; t2; t3), namely [199]:

N1(1; 2;G) = 2ft21+ t31+ 3t21t
2
2+ t22t

2
3 +2t31t2+ 2t1t

2
2t3+ 2t1t2t

2
3+ 3t21t

2
2t3+2t1t

3
2t3 + t1t

2
2t
2
3g

(242.a)

N2(1; 2;G) = 2t22+2t32+ t41+5t42+2t21t
2
3+4t31t2+4t1t2t

2
3+2t21t2t

2
3+6t21t

2
2t3+4t31t2t3+4t21t2t3

(242.b)

N3(1; 2;G) = 2ft23 + t33 + 2(t21t
2
2 + t31t

2
2 + t21t

3
2) + 4(t21t2t3 + t1t

2
2t3) + 2t21t

2
2t3g (242.c)

and

D(G) = 1+4t31+4t
3
2+2t

3
3+2t

4
1+2t

4
2+t

4
3+2t

4
1t2+4t

3
1t

2
2+4t

2
1t

2
2t3+4t

2
1t2t

2
3+4t1t

2
2t

2
3+2t

5
2 (242.d)

where ti is related to the coupling constants through (see eq. 210):

t1 = t5 � [1 + e�(K1+3K2+4K3) � e�3(K1+K2) � e�4(K1+K3)]=D0 (243.a)

t2 = t4 � [1� e�(K1+3K2+4K3) � e�3(K1+K2) + e�4(K1+K3)]=D0 (243.b)

t3 � [1� 2e�(K1+3K2+4K3) + 2e�3(K1+K2) � e�4(K1+K3)]=D0 (243.c)

with

D0 = 1 + 2e�(K1+3K2+4K3) + 2e�3(K1+K2) + e�4(K1+K3) (243.d)

For a general �xed value of q the BCM for the Z(q) model consists in applying eqs.

(231-235) as many times as needed to arrive at terminal graphs Gpr with all edges pre-

collapsed. Such graphs contain, at most, (�q � 1) di�erents types of precollapsed edges.

The calculation of their corresponding N�(1; 2;G) (� = 0; 1; � � � ; �q) requires, except for
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q = 4, the explicit enumeration of all rooted mod-q 
ow on Gpr with the constraint that

the 
ow on each precollapsed edge of type � (� = 2; 3; � � � ; �q) can take only the values

0; � or q � �.

There has been also established [197] a generalization, to the Z(q) model, of the

subgraph break-collapse method for the Potts model [133]. In ref. [197] it is argued that an

alternative break-collapse equation, which uses �xed-
ow bonds rather than precollapsed

ones, leads to an algorithm more e�cient than the BCM.

3.3.5 The Discrete Cubic Model

As we mentioned in section 1.2.4, the discrete N -vector model (or the N-component cubic

model) is an interesting particular case of the Z(2N) model. It contains many importannt

limiting cases (e.g, self-avoiding walks, spin 1=2 Ising model, the Ashkin-Teller model and

the Potts model) and it reduces to the Ising and Z(4) models for N = 1 and 2 respectively.

In this subsection we particularize the vector transmissivity and the BCM of the previous

section to the case of the discrete cubic model.

Let us recall that the dimensionless pair Hamiltonian can be written as [42]:

Hij

kBT
= �NK~Si � ~Sj �NL(~Si � ~Sj)2 (K � J1=kBT; L � J2=kBT ) (244)

where the N -component unit vector ~Si can point in one of the 2N directions (positive

and negative) of the N -dimensional orthogonal axes, i.e.

~Si = (�1; 0; � � � ; 0) or (0;�1; 0; � � � ; 0) or � � � (0; 0; 0; � � � ;�1) (245)

When the pair interaction energies Hij(� � ni � nj) (� = 0; 1 � � � ; 2N � 1) of the

Z(2N) model become highly degenerate such that

Hij(1) = Hij(2) = � � � = Hij(N � 1) = Hij(N + 1) = � � � = Hij(2N � 1) (246)

then one recovers (see [47]) the N -component cubic model with dimensionless coupling

constants K and L given by:

Hij(N)�Hij(0) = 2NkBT (247.a)
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and

Hij(1)�Hij(0) = N(K + L)kBT (247.b)

In this case the Z(2N) spectrum of (N +1) levels became reduced to only 3 levels (8N) :

Hij(0) and Hij(N) having, each one, a degeneracy 2N and the other level (corresponding

to the case given by eq. 246) has a degeneracy (4N2 � 4N).

Substituting eqs. (246) and (247) in the de�nition of ~t (eq. 210) we obtain that:

t1 = t3 = � � � = t2N�1 =
1� e�2NK

1 + 2(N � 1)e�N(K+L) + e�2NK
� t1 (248.a)

and

t2 = t4 = � � � = t2N�2 =
1 � 2e�N(K+L) + e�2NK

1 + 2(N � 1)e�N(K+L) + e�2NK
� t2 (248.b)

showing that the N -component cubic model has a vector transmissivity ~t � (t1; t2) with

only 2 di�erent components.

The series and parallel algorithms of 2 edges continue to be given by eqs. (213) and

(214) respectively where now the dual vector transmissivity ~tD � (tD1 ; t
D
2 ) is [46, 47]

tD1 =
1 �Nt1 + (N � 1)t2
1 +Nt1 + (N � 1)t2

(249.a)

and

tD2 =
1� t2

1 +Nt1 + (N � 1)t2
(249.b)

The parallel algorithm ~t(p) � (t
(p)
1 ; t

(p)
2 ) can be obtained directly through [46, 47]:

t
(p)
1 =

t
(1)
1 + t

(2)
1 + (N � 1)[t

(1)
2 t

(2)
1 + t

(1)
1 t

(2)
2 ]

1 +Nt
(1)
1 t

(2)
1 + (N � 1)t(1)2 t

(2)
2

(250.a)

and

t
(p)
2 =

t
(1)
2 + t

(2)
2 +Nt

(1)
1 t

(2)
1 + (N � 2)t

(1)
2 t

(2)
2

1 +Nt
(1)
1 t

(2)
1 + (N � 1)t(1)2 t

(2)
2

(250.b)

Using eqs. (226) and (230) one can show that the equivalent vector transmissivity

~T (1; 2;G) � fT1(1; 2;G); T2(1; 2;G)g between the roots 1 and 2 of a graph G is:

T1(1; 2; G) =
N1(1; 2;G)

D(G)
=< ~S � ~S2 > (251.a)
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and

T2(1; 2;G) =
N2(1; 2;G)

D(G)
=
< N(~S1 � ~S2)2 � 1 >

N � 1
(251.b)

The factorization rules (eqs. (231-233)) are not modi�ed in the case of the cubic

model, while the parallel combination of graphs is given by eq. (234a) where now the

discrete Fourier transforms ~N� are [47]:

~D(G) = ~N0(G) = D(G) +NN1(1; 2;G) + (N � 1)N2(1; 2;G) (252.a)

~NN (1; 2;G) = D(G) �NN1(1; 2;G) + (N � 1)N2(1; 2;G) (252.b)

and

~N�(1; 2;G) = D(G) �N2(1; 2;G) (8� 6= 0 or N) (252.c)

The break-collapse, for the cubic model, (eq. (235)) reduces to [47]:

N�(1; 2;G) = (D(j) �N
(j)
2 )N�(1; 2;G

bb
j ) +N

(j)
1 N�(1; 2;G

cc
j ) +

+ (N (j)
2 �N

(j)
1 )N�(1; 2;G

bc
j ) (� = 0; 1; 2) (253)

where Gbb
j ; Gcc

j and Gbc
j are the broken (t

(j)
1 = t

(j)
2 = 0), collapsed (t

(j)
1 = t

(j)
2 = 1)

and precollapsed (t
(j)
1 = 0; t

(j)
2 = 1) graphs and the edge j has a vector transmissivity

~tj � (t(j)1 = N
(j)
1 =D(j); t

(j)
2 = N

(j)
2 =D(j)).

Notice that, unlike the break-collapse equation for the Z(2N) model (eq. 235), eq.

(253) allows the calculation of T�(1; 2;G) as a function of N rather than for a speci�ed

value of N . Furthermore, instead of (N � 1) precollapsed graphs generated by the appli-

cation of eq. (235) to the Z(2N) model, there is only one precollapsed graph (independent

of the value of N) generated by eq. (253).

The iterative use of eqs. (231-233), (234a), (252) and (253) (which constitutes the

BCM) leads to the calculation of ~T (1; 2;G) for any two-rooted graph G provided that we

know ~T (1; 2;Gpr) for that same graph with all its bonds being precollapsed. It has been

proved [47], similarly to the Z(4) model, that such a graph is precollapsed itself with the

following attribution:

T1(1; 2;Gpr) = 0=N c and T2(1; 2;Gpr) = N c=N c :
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The application of the BCM to the graph of Fig. (20a) for the homogeneous case

where the vector transmissivities are all equal to ~t � (t1; t2) leads to [47]:

N1(1; 2;G) = 2t21 + 2t31 + 6(N � 1)t21t
2
2 + 2(N � 1)(N � 2)t21t

3
2 +

+ 4(N � 1)t31t2 + 2(N � 1)2t31t
2
2 (254.a)

N2(1; 2;G) = 2t22 + 2t32 +Nt41 + 5(N � 2)t42 + 4Nt31t2 + 2N(N � 2)t31t
2
2

+ N(N � 1)t41t2 + (N � 2)(N � 3)t52 (254.b)

and

D(G) = N0(1; 2;G) = 1 + 2Nt31 + 2(N � 1)t32 +Nt41 + (N � 1)t42 + (N � 1)(N � 2)t52

+ 2N(N � 1)t31t
2
2 +N(N � 1)t41t2 (254.c)

Let us also mention that the modi�cations of the subgraph break-collapse algorithm

of the Potts model necessary for dealing with the cubic model are described in ref. [47].
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4 REAL-SPACE RENORMALIZATION-GROUP AP-

PROACHES

Since the formulation of the renormalization group formalism by Wilson in 1971 [201]

(see also [202]), we have witnessed an explosion of theoretical studies focusing the sta-

tic (and dynamic) properties associated with critical phenomena occuring in all types

of cooperative systems (geometrical, thermal and mixed statistical systems). Two main


ows can be distinguished which only di�er methodologically, but not in the essence of

the formalism. We refer to reciprocal-space and real-space techniques. The former use

Field Theory mathematical tools, which typically substitute the crystalline system by

its continuous limit (vanishing crystalline parameter), and therefore loose the particular

structural information (e.g., no distinction remains between simple cubic, FCC and di-

amond structures). As a natural consequence, these techniques are normally unable for

predicting values for critical points, critical lines, phase diagrams generally speaking. But

in compensation they naturally provide analytical, and quite well controlled, asymptoti-

cally exact results for the critical exponents (�; �; 
; etc) which characterize the various

universality classes of the equation of states and correlation functions. Typical such re-

sults are the " ! 0 expansions (d = 4 � "; d = 1 + "; d = 2 + ") for arbitrary n, and

n!1 expansions for arbitrary d, for the n-vector model (d and n being respectively the

dimensionalities of the space and of the �eld therein de�ned); also the " = 6�d expansion
for uncorrelated non-directed percolation. Quite generally speaking, the "-expansions can

in principle be done (see e.g. [203{204]) for d = du � "; d = d` + " and d = ds + ", where

du is the upper critical dimensionality above which all (static) critical exponents equal

their classical, Landau-like, values, (e.g, du = 4 for the n ferromagnetic model, du = 6 for

uncorrelated non-directed percolation, du = 5 for uncorrelated directed percolation); d`

is the lower critical dimensionality below which no critical phenomenon occurs at �nite

values of the relevant external parameter, for instance T > 0 for thermal transitions,

1� p > 0 for percolation, p being the bond (or site) concentration (d` = 1 for the q-state

Potts ferromagnet, d` = 2 for the Heisenberg ferromagnet); �nally, ds = 2s is a special

dimensionality for which [31] some s-simplex models are self-dual (e.g, s = 1 might be the
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bond Z(q) ferromagnet, which includes the Potts model as a particular case, s = 2 might

be the plaquette Z(q) ferromagnet and so on). The n!1 (spherical model) asymptotic

behaviour as well as the long range interaction case (see, for instance, [206] as well as

[207{210]) have been analytically studied, for arbitrary d, along similar lines.

The other main 
ow concerns the real-space techniques. Within these techniques, the

renormalization is based upon cells which are �nite along at least one direction, their (lin-

ear) size being characterizad by b (in units of the crystalline parameter). The expectation

is that the lattice under study can be recovered in the b!1 limit. The RG recursive re-

lations are established by renormalizing a b-sized cell into a b0-sized cell, with b0 < b. The

b!1 extrapolations are typically done with constant b0 or with constant b�b0 (the latter
is a procedure which normally presents faster convergence towards the in�nite lattice re-

sult, as illustrated in [211{213] and Appendix). These techniques are capable of predicting

both phase diagrams and critical exponents (and even full equations of states and similar

thermodynamical functions), the treatment of the small sizes (both b an b0 comparable to

unity) being in general quite simple from the operational stand-point. However the re-

sults are in most cases only approximate; to achieve precision, b!1 extrapolations (not

always operationally simple) are quite often unavoidable. Furthermore, the estimation

of errors is typically quite less controlled than in the reciprocal-space techniques, as the

results for �nites b and b0 might strongly depend on the shapes and symmetries chosen

for the cells, as well as on the variables retained for the construction of the RG parame-

ter space. For the real-space techniques, much more than for the reciprocal-space ones,

applies Wilson's remark [214] \that achieving a reduction to subproblems of manageable

size is a challenge and an art". To the illustration of this challenge and this art we devote

the present Section.

Within the statistical equilibrium static properties of a system, two classes can be dis-

tinguished, namely phase diagrams and state functions. A phase diagram is represented

in the space of the external parameters of the problem (temperature, concentrations, cou-

pling constants, electric and magnetic �elds, stress), and appears as a partition of the

physically accessible parameter-space into two or more regions corresponding to the equi-

librium phases of the system, these regions are separated by critical fontiers (e.g., critical
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point, line or surface in a one, two-or three-dimensional parameter-space). Within the

recursive RG framework the regions appear as attractive basins, each of which being as-

sociated with an attractor, typically a �xed point (named trivial �xed point), but whose

nature might be more complex (see, for instance, [215, 216]); the critical frontiers separat-

ing these regions appear as lower dimensionality attractive basins which present at least

one unstable direction (in the full parameter-space), and are associated with semi-stable

attractors, typically (but not necessarily) �xed points (named critical �xed points, each

of which determines the universality class of its attractive basin). A critical frontier might

present more than one attractive basin, in turn separated by multicritical frontiers (even

lower dimensionality and more unstable regions); critical frontiers are commonly singular

on their multicritical regions, the singularities being characterized by crossover critical

exponents and amplitudes. Typical phase diagrams and their RG 
ows are illustrated on

Fig. 24. A state function X is a statistical equilibrium quantity de�ned in the parameter-

space fYrg described above; examples of state functions are the free and internal energies,

speci�c heat, equation of states, susceptibility, surface tension and correlation length.

The equation of state contains an important particular case, namely the behaviour of

the spontaneous order parameter, i.e., the dependence, on its relevant parameters, of the

order parameter at vanishing value of its thermodynamically conjugate parameter (e.g.,

the thermal behaviour of the magnetization at vanishing external magnetic �eld for a

standard ferromagnet). The state functions are singular (X non analytic in fYrg) on

the critical frontier, where they typically (but not necessarily) vanish or diverge. The

singularity is commonly characterized by its critical exponents and amplitudes as follows:

X �Xc �
X
r

Ar(Yr � Y c
r )

�r (Yr ! Y c
r ; 8r) (255)

where fY c
r g is a critical point (e.g., M � AM(Tc � T )� in the T ! Tc � 0 limit, and

� � A�� jT � Tcj�
 and � � A�� jT � Tcj�� in the T ! Tc � 0 limits, for a standard

ferromagnet). Within the attractive basin of a critical �xed point, f�rg do not vary with

fY c
r g but fArg (as well as Xc) in general do.

The RG formalism is essentially based on the fractal structure [217, 218] normally

exhibited by the system at its critical frontiers. Consequently, what is commonly done
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is to establish a recursive relation which transforms the parameter-space fYrg into itself.
The RG 
ow enables then the determination of the phase diagram (numerically most of

the time, but also analytically occasionally), as well as of some critical exponents (typically

the corrrelation length, magnetic �eld and crossover critical exponents noted �, yH and �

respectively) through the linearization of the recursive relation in the neighbourhood of

the various semi-stable or fully unstable �xed points. The rest of the critical exponents

f�rg can be determined through scaling and hyperscaling relations (e.g., �+2� + 
 = 2,


 = �(2 � �), 2 � � = d�, etc). However if to the fYrg RG equations we add recursive

relations for one or more state functions (X1;X2; � � � ; ), we can directly obtain not only

the f�rg but also the fArg and (X1c;X2c; � � �). Furthermore, if the recurrence scheme

for the X-variables is conveniently constructed, we can obtain their dependence on fYrg
for the entire parameter-space, and not only in the neighbourhood of the critical frontiers

(where the fractal structure strictly holds). The results can be quite good approximations,

which can be systematically improved. This is not so surprising if one takes into account

that very frequently the critical phenomenon, whenever it exists, is of such importance

that its e�ects remain heavy even far away from the critical point (e.g., for T >> Tc

or T << Tc for thermal phase transitions): this fact can be veri�ed in a variety of

theoretical and experimental situations [219{222]. The �rst treatment of a state function

of a Hamiltonian system, for the entire parameter-space, is due to Niemeijer and van

Leeuwen [223]. Since then, several alternative procedures (either more direct, or enabling

the calculation of subextensive quantities such as the surface tension, or deviced for non

Hamiltonian systems such as the geometrical ones) have been proposed [224{228], [134].

We discuss the phase diagram (and associated critical exponents) and the state func-

tion problems in Section 4.1 and 4.2 respectively; �nally, we treat in Section 4.3 the phase

diagram problem associated with complex systems, namely those presenting interfaces.

4.1 Phase diagram and critical exponents

This subsection might, in some sense, be considered as the central part of the present

review as it is here where we apply the exact cluster calculations presented in Section 3

to treat, with RG techniques, various pure and random Potts-like models. In 4.1.1 we
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exhibit in detail how to construct the RG recurrence in the parameter-space by preserving

appropriate correlation functions; in 4.1.2 we summarize similar procedures (the phenom-

enological, Monte Carlo and mean �eld RG0s) which have been applied with success to

several problems; �nally in 4.1..3 we compare the correlation function preserving and the

phenomenological RG0s.

4.1.1 Correlation function preserving RG

q-state isotropic Potts ferromagnet on the square lattice

Let us consider the q-state isotropic Potts ferromagnet on the square lattice described

by the dimensionless Hamiltonian (a particular case of eq. (1))

��H = qK
X
<i;j>

��i;�j + constant (�i = 1; 2; � � � ; q;8i) (256)

where < i; j > runs over all pairs of �rst-neighbouring sites of a square lattice and K > 0.

We recall that the corresponding thermal transmissivity associated to each bond is given

by

t � 1 � e�qK

1 + (q � 1)e�qK
t 2 [0; 1] (257)

We choose, for instance, a two-rooted graph Gb with roots 1 and 2 (we could similarly

choose three { or higher-rooted graphs) whose chemical length (number of bonds of the

shortest path between the roots) is b, and a smaller two-rooted graph G0 (also noted Gb0)

whose chemical length is b0 < b. We then renormalize one into the other by imposing

Tr
3;4;��� ;N 0s

e��HG0(K
0) = Tr

3;4;��� ;Ns
e��HGb

(K) (258)

which implies that the equivalent transmissivity T12(t;Gb) of the graph Gb equals the

equivalent transmissivity T12(t0; Gb0) of the graph G0, hence the two-body correlation

function �12 (see de�nition 101) between the roots is preserved [139]. In other words,

Eq. (258) implies that

T12(t
0; Gb0) = T12(t;Gb) (259)

Any reasonable choice of the graphs Gb and G0 will admit t = 0 and t = 1 as trivial

(stable) �xed points characterizing the paramagnetic (P ) and ferromagnetic (F ) phases
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respectively; in between, another �xed point, critical (unstable) this time, will exist at

t = t0 = t�bb0, which will be an approximation of the critical point tc we are looking for.

The expectation is that

texactc = lim
b!1
b0<b

t�bb0 (260)

The calculation of the correlation length critical exponent � proceeds as follows. Lin-

earization of Eq. (259) at t�bb0 yields

dT12(t0; Gb0)

dt0
jt�
bb0

(t0 � t�bb0) �
dT12(t;Gb)

dt
jt�
bb0

(t� t�bb0) (261)

On the other hand, the original and renormalized correlation lengths (� and �0 respectively)

are approximately given by

� � A�

jt� t�bb0j�bb0
(t! t�bb0 � 0) (262.a)

and

�0 � A�

jt0 � t�bb0j�bb0
(t0! t�bb0 � 0) (262.b)

hence
�

�0
�
����t0 � t�bb0
t� t�bb0

����
�bb0

�
���� dT12(t;Gb)=dt

dT12(t;Gb0)=dt

����
�bb0

t�
bb0

(263)

where we have used Eq. (261). Finally, if we take into account that �=�0 = b=b0 we obtain

that ����dT12(t;Gb)=dt

dT12(t;Gb0)

����
�bb0

t�
bb0

=
b

b0
(264)

hence

�bb0 =
ln(b=b0)

ln
��� dT12(t;Gb)=dt
dT12(t;Gb0)=dt

���
t�
bb0

(265)

which is an approximation of the critical exponent we are looking for. The expectation is

that

�exact = lim
b!1
b0<b

�bb0 (266)

To treat the square lattice we can consider the family of two-rooted graphs presented in

Table III. The expectation (over which we will come back later on) is that the square lattice

is obtained at the right-lower corner of this table (b!1,N !1). In the phenomelogical

RG approach (section 4.1.2) the expectation is to achieve that limit through strips (b!
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1, N �nite). In the present approach we shall work along the b = N diagonal because

its graphs are self-dual and therefore very adapted to the square lattice, self-dual itself.

This choice yields, for all b and b0 < b, the exact critical point, i.e., t�bb0 = tc = 1=(
p
q+1).

One can easily prove this as follows. Consider eq. (259) evaluated at the �xed point

t = t0 = t�bb0, namely

T12(t
�
bb0; Gb0) = T12(t

�
bb0; Gb) (267)

Applying the duality transformation to both sides in the case of self-dual graphs (i.e.,

GD
b = Gb and Gb0 = GD

b0 ) and using eq. (131) one obtains that:

T12(t
�D
bb0 ; Gb0) =

1 � T12(t
�
bb0; Gb)

1 + (q � 1)T12(t�bb0; Gb)
(268)

Suposing that there is only one phase transition (and hence t�bb0 = t�
D

bb0 ), eq. (268) evaluated

at the critical point tc together with eq. (267) leads to:

T12(tc; Gb0) =
1 � T12(tc; Gb0)

1 + (q � 1)T12(tc; Gb0)
(269)

from which it follows that T12(tc; Gb0) = 1=(
p
q + 1), and in particular for b0 = 1 corre-

sponding to a single bond one gets that tc = 1=(
p
q + 1) which coincides with the exact

critical point of the Potts model on the square lattice.

The equivalent transmissivities between the roots have been calculated through the

(computer-implemented) BCM , and are given by

T12(t;Gb) =

b2+(b�1)2X
i=b

ni(q)t
i

1 +

b2+(b�1)2X
i=3

di(q)t
i

(b = 1; 2; � � �) (270)

where the fni(q); di(q)g are given in Table IV.

The correlation length critical exponent is given by

�bb0 =
ln(b=b0)
ln(�b=�b0 )

(271)

where �b � [dT12(t;Gb)=dt]t=1=(pq+1) can be expressed as follows:

�b =

`bX
i=0

aiq
i=2

mbX
i=0

biq
i=2

(272)
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where `b(mb) is the maximum value of the integer i which appears in the numerator

(denominator) of �b such that ai is non-null; fai; big are given in Table V (see [107]). The

various approximations for �(q) are presented in Fig. 25 and compared to the exact result

[91]. We also present, in Table VI, the numerical results corresponding to q = 1; 2; 3 and

4, as well as the q ! 0 and q!1 asymptotic behaviours.

We remark in Fig. 25 that nothing happens in the neighbourhood of q = 4 which

could indicate a tendency of the transition to become a �rst-order one above q = 4.

This is in great contrast with the exact q-dependence of � (see Fig. 25), and can be

considered as a very strong suspicion that expectation of Eq. (266) is not veri�ed for

all values of q. However, our calculations are exact for the two-rooted graphs we have

been considering: what is it wrong? What happens is that we have implicitely replaced

our Bravais square-lattice (translationally invariant) by a family of hierarchical lattices

(scale invariant). For instance, our (b; b0) = (2; 1) RG approach is exact [64{66] for

the hierarchical lattice indicated in Fig. 26, whose intrinsic fractal dimensionality df =

lnNb= ln b (Nb � aggregation number�number of bonds; see [128, 229]) is given by df =

ln 5= ln 2 ' 2:32 (whereas the dimensionality of our Bravais lattice is d = 2). Our result

for �(q) implies that, for the hierarchical lattice, the transitions are of the second order

for all values of q. This is a good illustration of the kind of limitation that might appear

in real-space techniques. We shall verify (in Section (4.1.2)) the same limitation in the

phenomelogical RG. As a matter of fact, as far as we know, only very recently appeared

[230] a real space RG (the �nite size scaling RG), for the pure Potts ferromagnet, which

recovers the �rst-order transitions for q high enough (see [231] for a RG approach where

this fact can be recovered if a model larger than the pure Potts ferromagnet is assumed).

Before closing the discussion of this model (which can be treated along similar lines for

cubic and hypercubic lattices [227]) it is worth mentioning (without proof) two interesting

properties of hierarchical lattices:

(i) Hyperscaling hopefully holds as follows [229] (at least for the Potts ferromagnet):

2� � = df� (273)

where � is the speci�c heat critical exponent [66, 232] and df � lnNb= ln b; Nb
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being the number of bonds (Nb = (d � 1)bd�2(b � 1)2 + bd for the d-dimensional

hypercubic-like hierarchical lattices generated by the two-rooted graphs indicated

in Fig. 11; notice that limb!1 df = d). Some arguments which are consistent with

Eq. (273) can be found in Refs. [128],[233{236]. Eq. (273) has been numerically

veri�ed for the Potts ferromagnet on the d = b = 2 Wheatstone bridge hierarchical

lattice (for q = 2 see [229], for a general value of q see [237]), on diamond-type

(Fig. 12f), in the left, contains the simplest one) hierarchical lattices (q = 2 [238],

for any q [237]) and on Sierpinski Gasket-type three-rooted hierarchical lattices

(q = 2 [239]). Furthermore, it has been proved analytically [152] for the three-state

antiferromagnetic Potts model on a diamond-type hierarchical lattice family.

(ii) For the Potts ferromagnet on Wheatstone-bridge-like hierarchical lattices we can

verify (see note added in Ref. [229]) that

lim
q!1

�(q) =
1

df
(274)

which implies, through Eq. (273), limq!1 �(q) = 1 (thermodynamical upper limit).

This property is illustrated in all the examples of the type �b1 appearing in Table

VI. It is however violated for other types of hierarchical lattices (see, for instance,

Table VII): the full comprehension of this point is presently missing.

q-state anisotropic Potts ferromagnet on the square-lattice:

In this case, the dimensioless Hamiltonian is given by

��H = q
X
<i;j>

Kij��i;�j (�i = 1; 2; � � � ; q;8i) (275)

where Kij equals Kx(Ky) if < i; j > are �rst-neighbour sites along the x-axis (y-axis)

of a square lattice, and vanishes otherwise; Kx; Ky � 0. This problem generalizes that

presented in Eq.(256); it also contains, as a particular case, the d = 1 case.

To treat this problem, it should be convenient to work with a family of graphs satisfying

(i) the self-duality of the square lattice (to ensure the exactness of the critical line), and

(ii) the one-dimensional topology of the linear chain in the special cases Kx = 0 or Ky = 0

(to ensure the correct d = 1$ d = 2 crossover). Such family does exist (see Fig. 27): it
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has been introduced for the isotropic bond percolation in Ref. [240], then extended to the

anisotropic bond percolation in Ref. [241] (where it was �rst noticed that it conveniently

reproduces the d = 1 limit), and �nally generalized [136] to the anisotropic Potts model.

It is this last work the one we follow here. We shall work with transmissivities tx and ty

(respectively related to Kx and Ky). We note T12(tx; ty; Gb) the equivalent transmissivity

between the roots 1 and 2 associated with the b-sized graph of the family indicated in

Fig. 27. Then the RGbb0 is constructed through:

T12(t
0
x; t

0
y; Gb0) = T12(tx; ty; Gb) (276.a)

T12(t
0
y; t

0
x; Gb0) = T12(ty; tx; Gb) (276.b)

with b = 3; 5; 7; � � � and b0 = 1; 3; � � � ; b � 2, and where we have used the tx 
 ty

invariance of the lattice. The expression of T12(tx; ty; G3) can be found in eq. (12) of ref.

[136]. The RG 
ow for all (b; b0) is indicated in Fig. 28, and yields the exact critical line

tx = (1 � ty)=[1 + (q � 1)ty] for all q. The RG 
ow is consistent with universality, in

the sense that the anisotropic Potts ferromagnet on the square-lattice has the same set of

critical exponents of the isotropic case, presenting a crossover phenomenon at the d = 1

limit ((tx; ty) = (1; 0) or (0; 1)).

The � exponent for the anisotropic case is given by

�bb0 =
ln(b=b0)
ln(�b=�b0 )

(277)

with

�b � dT12(t; t;Gb)

dt
jt=1=(pq+1) (278)

where we have implicitely used the fact that tx = ty is an invariant subspace of the present

RG (i..e., tx = ty implies t0x = t0y). The results are presented in Fig. 4 and Table VII.

In the d = 1 limit, say ty = 0, Eqs. (276.a) and (276.b) respectively become (t0x)
b0 =

(tx)b and 0 = 0, hence

�bb0 =
ln(b=b0)

ln(dt
0
x

dtx
)tx=1

=
ln(b=b0)
ln(b=b0)

= 1 (279)

which is the exact result.

Before closing the discussion of the present model, let us mention that:
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i) The RGb1 results are exact for the corresponding hierarchical lattice (the RG31 case

is illustrated in Fig. 29 for ty 6= tx). The intrinsic fractal dimensionality of these

lattices is given, for tx = ty, by df = 2, 8b.

ii) The present RG framework uses graphs with odd valus for b and b0, and can therefore

describe antiferromagnetic situations (negative Kx and/or Ky) considerably well.

In particular, for the q = 2 model, it exactly preserves the square-lattice equiva-

lence between the Kx > 0 and Ky > 0 ferromagnet and the Kx < 0 and Ky < 0

antiferromagnet (for instance, it is perfectly consistent with the T = 0 fully anti-

ferromagnetic order associated with the Kx < 0 and Ky < 0 model). For arbitrary

values of q, see refs [3, 4, 101] for further information.

q-state anisotropic Potts ferromagnet on the simple cubic lattice

The dimensionless Hamiltonian is given by Eq. (275), where Kij equals now Kx, Ky

or Kz if < i; j > are �rst-neighbour sites along the x�, y� or z-axis of a simple cubic

lattice, and vanishes otherwise; Kx;Ky;Kz � 0. This problem generalizes the anisotropic

square-lattice Potts model just discussed. It is therefore convenient to use graphs which

themselves generalize those used for the d = 2 case. This generalization has been achieved

in Ref. [104] which we now follow.

We only consider the RG31 framework, the corresponding b = 3 graph being indicated

in Fig. 30; its equivalent transmissivity will be noted T12(tx; ty; tz; G3) (its numerator

and denominator are polynomials with thousands of terms, which have been calculated

through computer implementation of the BCM). The RG31 relations are the following

ones:

t0x = T12(tx; ty; tz; G3) (280.a)

t0y = T12(ty; tz; tx; G3) (280.b)

t0z = T12(tz; tx; ty; G3) (280.c)

These equations reproduces Eqs. (276) for tz = 0 (or equivalently ty = 0, or tx = 0).

Before presenting the results, let us de�ne a convenient variable s(d)� introduced in ref.

[93] which extends the s-variable de�ned for plane graphs in eq. (134) to d-dimensional
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lattices, namely:

s(d)� � s(d)(t�) � ln[1 + (q � 1)h(d)t�]

ln[1 + (q � 1)h(d)]
2 [0; 1] (� = x; y; z) (281)

where the dimensionless number h(d) depends sensibly on d and very slightly on the

particular d-dimensional lattice; h(2) = 1 for the square lattice and h(3) = 0:377 � 0:044

for the simple cubic lattice [93].

The results for the critical surface are indicated in Figs. 31 and 32 as well as in Table

VIII. The table includes the direct RG results as well as high precision extrapolated ones

(the extrapolation method consists essentially in \pushing" the RG value of the point

for the isotropic simple cubic lattice Potts model up to the best available value for that

particular value of q); the quality of the extrapolation can be checked on Fig. 33 where,

whenever possible, comparison with other high precision methods is done.

The calculation of the eigenvalues of the Jacobian associated with Eqs. (280) (eval-

uated on the relevant �xed points) provides various critical exponents. The d = 1 �xed

point (e.g., (sx; sy; sz) = (1; 0; 0), where we use for convenience the s-variable de�ned in

Eq. (134)) yields �12 = �13 = 1 (�12 and �13 are respectively the d = 1 $ d = 2 and

d = 1 $ d = 3 crossover exponents), which are the exact results. The d = 2 �xed

point (e.g, s
(2)
x ; s

(2)
y ; s

(2)
z ) = (1=2; 1=2; 0)) yields, besides the previously presented d = 2

value for �, the d = 2 $ d = 3 crossover �23 (see Fig. 34b). The d = 3 �xed point

PI (sx; sy; sz) = (s(3)c ; s
(3)
c ; s

(3)
c ), where s(3)c is the critical point, expressed in the variable

de�ned in eq. (134), corresponding to a given value of q, yields the d = 3 critical exponent

�3 = ln 3= ln � (� � eigenvalue along the (1; 1; 1) axis): see Fig. 34a.

Isotropic quenched bond-mixed q-state Potts ferromagnet on the square-lattice

In this case, the dimensionless Hamiltonian is given by eq. (275) where the pair

coupling constants Kij has the following probability distribution:

P (Kij) = (1� p)�(Kij �K1) + p�(Kij �K2) (282)

where K1;K2 � 0, 0 � p � 1 and < i; j > run over all pairs of �rts-neighbour sites on a

square-lattice. Eq. (282) can be rewritten in terms of transmissivities as follows:

P (t) = (1� p)�(t� t1) + p�(t� t2) (283)
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with 0 � t1; t2 � 1.

Particular cases of the present problem (e.g., q = 2, diluted model, i.e., K1 = 0)

have been treated [242, 157, 159, 160, 135, 243] on their own right. We present here

the quite general approach followed in Ref. [107], in which the b = 2 Wheatstone-bridge

(Fig. 11(b)) graph is renormalized into a single edge. The transmissivity T12(frig; G) of
this graph G for arbitrary elementary transmissivities r1; r2; � � � ; r5 (see Fig. 35) is given
[135, 107] by eq. (151). This expression deserves a quick comment before going on: if we

take r1 = r4 = txty; r2 = r3 = [tx+ ty+(q�2)txty]=[1+(q�1)txty] and r5 = tx, Eq. (151)

reproduces T12(tx; ty; G3) of Eq. (276a).

Let us continue now. If we associate the 2 delta distributions (283) with each one of

the 5 edges of the graph, we obtain the distribution PG(t1; t2) given by

PG(t1; t2) =
X

r1=t1;t2

X
r2=t1 ;t2

� � �
X

r5=t1;t2

(1� p)mp5�m�[t� T12(frig; G)] (284)

where m equals the number of bonds with transmissivity t1 which appears in a particular

con�guration of frig (among the 25 possible ones) we are considering. PG has 25 = 32

terms; however, some of them being repeated, it �nally comes out to be a 14 delta

distribution whose explicit form is:

PG(t1; t2) =

14X
`=1

M`(1� p)m`p5�m`�(t� t`(t1; t2)) (285)

where the multiplicity factors fM`g, the exponents fm`g and equivalent transmissivities

ft`g are presented in Table I of ref. [107]. If we were to iterate once more, we would

obtain a distribution with a number of deltas comparable to 145 = 537824. Even followed

through computer, the problem quickly becomes untractable. We must therefore make

and approximation. Two (at least) di�erent schemes can be followed. The �rst one

(introduced by Young and Stinchcombe [244] for random-resistor problems) consists in

replacing the successively renormalized distribution by histograms (with a partition of the

interval [1; 0] for t in, say, 100 smaller intervals) which are followed through the iterations

until they arrive to �xed forms, characterizing the para- and ferro-magnetic phases as well

as the critical frontier separating them. The preliminary tests [245] of this procedure for

the present problem have been succesful; it has been used [246] to discuss the relevance

of randomness, on which we will come back later on.
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The second approximative scheme (herein followed) consists in arti�cially holding the

renormalized distribution within its original parameter space. This means, in the present

case, a 2 delta distribution P 0(t) given by

P 0(t) = (1� p0)�(t� t01) + p0�(t� t02) (286)

where (p0; t01; t
0
2) are functions of (p; t1; t2) to be determined. A simple and natural way

for determining these functions is to impose that the lower momenta (�rst, second and

third momenta in the present case where we have 3 free parameters) of the distribution

are preserved. To be more precise, we impose

< g(t) >P 0 = < g(t) >PG (287.a)

< [g(t)]2 >P 0 = < [g(t)]2 >PG (287.b)

< [g(t)]3 >P 0 = < [g(t)]3 >PG (287.c)

where g(t) is a function to be chosen quite arbitrarily (thus yielding to di�erent approx-

imations). If g(t) is conveniently chosen the present scheme can provide high-precision

results for the critical surface, while being, on the same foot, computationally much sim-

pler than the �rst scheme. let us write explicitly Eqs. (287):

(1� p0)g01 + p0g02 =
X

r1=t1;t2

� � �
X

r5=t1;t2

(1 � p)mp5�mg(T12(frig; G))

� F (p; g1; g2) (288.a)

(1� p0)[g01]
2 + p0[g02]

2

=
X

r1=t1;t2

� � �
X

r5=t1;t2

(1� p)mp5�m[g(T12(frig; G))]2

� G(p; g1; g2) (288.b)

(1� p0)[g01]
3 + p0[g02]

3

=
X

r1=t1;t2

� � �
X

r5=t1;t2

(1� p)mp5�m[g(T12(frig; G))]3

� H(p; g1; g2) (288.c)

where gj � g(tj) (j = 1; 2).

Note that, for the pure model (p = 1, 8t1, or p = 0, 8t2, or t1 = t2; 8p) eqs. (288)

become one and the same equation, namely

t0 = T12(t; t; t; t; t;G) (289)
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where the right hand site of eq. (289) is equal to that of eq. (128), thus conveniently re-

producing the RG recurrence of the pure model. There is another particular case, namely

that of pure percolation (T = 0), in which we would like to recover the corresponding

one-parameter case. This can be done by choosing for g(t) a monotonous function of t

such that g(0) = 0 and g(1) = 1. Then, the percolation limit (e.g., t1 = 1 and t2 = 1)

makes Eqs. (288) to become one and the same equation, namely

p0 = P12(p;G) (290)

(where P12(p;G) is given by eq. (84)), which is the bond percolation RG recurrence (q = 1

particular case of Eq. (289)).

The solution of Eqs. (288) is given by

p0 =
L2

1 + L2
(291.a)

g01 = F � L
p
K (291.b)

g02 = F � 1

L

p
K (291.c)

where

K � G � F 2 > 0 (292)

and

L �
p
(H � 3FK � F 3)2 + 4K3 � (H � 3KF � F 3)

2K3=2
(293)

The upper (lower) signs in Eqs. (291.b) and (291.c) are to be used in the region t1 >

t2(t1 < t2) hence J1 > J2(J1 < J2). Eqs. (291) are explicit RG recursive relations, and

therefore completely close the operational problem once the function g(t) is chosen. The

simplest choice is g(t) = t, and already is an extremely satisfactory one (for instance, the

estimated error, in the t-variables, for the critical line of the diluted model is nowhere

larger than 0:5%). However, even better results can be obtained with g(t) = s(t) given

by Eq. (134).

The critical surface evolves very slowly with q if represented in the (p; s1; s2) space

(as also happened in ref. [100]); see the q = 2 result in Fig. 36. The present RG yields

the following exact results: (i) pure ferromagnet critical point for all q (Eq. (35)); (ii)

pure bond percolation critical point pc = 1=2 for any q; (iii) equal concentration model
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(p = 1=2) critical line for all q (Eq. (54)); (iv) ds=dp slope at the pc = 1=2 limit of the

dilute model critical line for all q easily derivable from Eqs. (53) and (134)); (v) critical

surface for q = 1 given by eq. (6) of ref. [107] (i.e., a generalized form of the Kasteleyn

and Fortuin theorem [16] is recovered). The ds=dp slope at the p = 1 limit of the dilute

model critical line (whose exact result is derivable from eq. (52)) exhibits an error which

increases from 0% to 1:5% while q varies from q = 1 to q = 4. For arbitrary points of the

(still unknown) critical surface, this RG yields results whose precision certainly is very

high (see Fig. 37 and, for numerical values, Ref. [107]).

The RG 
ow presents, for all q, two equivalent fully unstable �xed points at p = 1=2

((s1; s2) = (1; 0) and (0; 1)) characterizing the percolation universality class. The rest of

the critical surface belongs to the pure ferromagnet universality class if q � q�, where q�

is a value which depends on the particular graph under consideration (see Fig. 36 for the

RG 
ow corresponding to q = 2 < q�). For q > q�, a new universality class, namely the

random one, appears through a pitchfork bifurcation of the p = s1 = s2 = 1=2 �xed point

which becomes fully unstable while generating two semi-stable �xed points. The two new

�xed points are equivalent, remain on the equal concentration critical line (p = 1=2),

and symmetrically become further and further apart while q increases above q�; they are

located at (p; s1; s2) = (1
2 ; sr; 1 � sr) and (12 ; 1 � sr; sr) (see Fig. 38).

The calculation of the Jacobian @(p0; s01; s
0
2)=@(p; s1; s2) at the relevant �xed points

enables, through its eigenvalues �1, �2 and �3, the knowledge of various critical exponents.

At the pure percolation �xed point one has that �1 = �2 = �3 � �p > 1 for all values

of q. Consequently, the percolation crossover exponent �p = 1 (exact result), and the

correlation length critical exponent �p = ln b= ln�p reproduces the q = 1 values of Table

VI. At the p = s1 = s2 = 1=2 pure Potts ferromagnet �xed point, �1 �= 0:5 for q 2 [1; 10];

�2 � �t > 1 for all q, consequently �t = ln b= ln �t (see Fig. 39); �3
�
< 1 if q

�
< q�,

consequently we can calculate the pure ferromagnet crossover exponent �t = ln�3= ln �t

for q � q� (see Fig. 40). Finally, at the random �xed point, �1 < 1 for all q > q�, �2 = 1

for q = q� and decreases for q > q�, and �3 � �r > 1 for all q > q�, which enables the

calculation of �r = ln b= ln �r (see Fig. 39).

Let us now turn our attention into an interesting related problem, namely the Harris
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criterion [247], which essentially states that, for a random ferromagnet on a Bravais lattice,

randomness is relevant (irrelevant) in the sense that it determines (does not determine) a

new universality class { di�erent from the pure model one { if the pure ferromagnet speci�c

heat critical exponent �t is positive (negative). Does this criterion hold for hierarchical

lattices? The answer is [248] that not necessarily. More explicitely, �t > 0 implies rele-

vance of the randomness, but relevance of the randomness does not imply �t > 0. In what

follows we illustrate this point through the quenched bond-random Potts ferromagnet we

are interested in. We know [229] that, for an hierarchical lattice, 2��t(q) = df�t(q). We

denote by qc the value of q which satis�es �t(qc) = 0, hence

�t(qc) = 2=df (294)

For the generalized Wheatstone-bridge graphs we are dealing with we obtain qc ' 5:911,

5:218 and 4:829 for b = 2; 3 and 4 respectively. On the other hand, we recall that q� is,

by de�nition, the threshold above which randomness is relevant. The value q� satis�es

NbX
i=1

�
@T12(t1; � � � ; tNb

; Gb)

@ti

�
t1=���=tNb=tc

= 1 (295)

where T12(t1; � � � ; tNb
; Gb) is the equivalent transmissivity of the graph Gb (with Nb bonds)

we are working with, and tc is the �xed point, i.e. tc = T12(tc; � � � ; tc; Gb). Eq. (295) follows

immediately from condition (7) of Ref. [248]. We obtain q� = 5:3 and 4:9 for b = 2 and

3 respectively (see Fig. 41). We see that 3 regions can be distinguished, namely q < q�

(�t < 0 and randomness is irrelevant), q� < q < qc (�t < 0 and randomness is relevant)

and q > qc (�t > 0 and randomness is relevant). Finally it is worth noting that our binary-

approximated RG yields the exact q� as given by Eq. (295) (this is a consequence from the

obvious fact that for in�nitely small randomness, the error involved in our approximation

is in�nitely small as well).

Isotropic Directed bond percolation on the square lattice

We consider a square lattice of double opposite-directed bonds, and note p(q) the

independent occupancy probability of the \up"-and \right"-directed (\down"-and \left"-

directed) bonds: see Fig. 42. To study its criticality we shall renormalize the graph of
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Fig. 17(a) into a single double opposite-directed bond [28]. The RG recursive relations

are [28]:

p0 = P12(p; q;G) � f(p; q) (296.a)

and

q0 = f(q; p) (296.b)

where P12(p; q;G) is given by eq. (195).

The 
ow diagram is represented in Fig. 43. Four phases are observed, namely the double-

way percolating (P+�), two single-way percolating (P+ and P�) and the non-percolating

(NP) ones. At p = q = 1=2 we have a a multicritical point whose universality class

is that of the isotropic bond percolation (with � = ln 2= ln(13=8) ' 1:43); to be more

precise, this is correct for all directions except along the p + q = 1 direction, for which

� = ln 2= ln(3=2) ' 1:71 (see [28] for further discussion). The rest of the critical lines

belong to the universality class of the directed bond percolation (with � ' 1:54); four

critical (semi-stable) �xed points are present, namely at (p; q) = (pc; 0); (0; pc); (1; 1� pc)

and (1 � pc; 1) with pc ' 0:555.

T = 0 spin-glass on the square lattice:

We consider a quenched bond-random spin 1=2 Ising model on a square lattice, the

probability law for the coupling constant being given by

P (Jij) = p�(Jij � J) + q�(Jij + J) + r�(Jij) (297)

with J > 0; 0 � p; q; r � 1 and p + q + r = 1. We want to study, through RG, its (still

unknown, to the best of our knowledge) phase diagram at vanishing temperature.

It is intuitive that this parameter space (characterized by (p; q; r)) is not invariant

under renormalization: for instance, the point p = q = 1=2 (hence r = 0) clearly will

introduce frustration. This frustration is essentially di�erent from dilution, and therefore

it cannot be taken into account just by allowing for r = 1�p�q 6= 0: the renormalization

of most points of the p+ q + r = 1 space will produce p+ q + r < 1. We shall then work

in a larger space, by phenomenologically introducing a frustration variable �, allowed to

take the values � = 1 (fully frustrated bond) and � = 0 (non frustrated bond). The



{ 91 { CBPF-NF-046/95

probability law (297) will consistently be enlarged into the following one:

P (Jij ; �ij) = p�(Jij � J)�(�ij) + q�(Jij + J)�(�ij)

+ r�(Jij)�(�ij) + s�(Jij)�(�ij � 1) (298)

with 0 � p; q; r; s � 1 and p + q + r + s = 1. Our �nal aim is the s = 0 model: it just

happens that it is not a RG invariant subspace.

We shall adopt the composition laws described in subsection 3.3.3, and choose the

graph of Fig. 19 to be renormalized into a single bond (characterized by (p0; q0; r0; s0)).

This choice, besides its convenient respect of self-duality, exactly preserves the well known

isomorphism between pure ferromagnetic and pure antiferromagnetic spin 1=2 Ising model

on the square lattice (this isomorphism is violated by the b = 2 Wheatstone bridge graph,

as can be immediately seen from a ground state analysis; e.g., see the all-ferromagnetic

and the all-antiferromagnetic con�gurations of Table II). The RG recursive relations are

those of Eqs. (209). We present the results [195] on Fig. 44 (r = 0 invariant subspace),

Fig. 45 (full (p; q; r) space) and Fig. 46 (s = 0 cut of Fig. 45, i.e., the p + q + r = 1

plane, non-invariant subspace). The RG presents four trivial (fully stable) �xed points,

namely at p = 1; q = 1; r = 1 and s = 1, (the remaining components being zero in all

the 4 points) respectively characterizing the ferromagnetic (F), antiferromagnetic (AF),

paramagnetic (P) and spin-glass (SG) phases. In addition to the pure percolation and

pure Ising model universality classes, we observe a new one associated with the critical

(semi-stable) �xed point on the F-SG frontier (or equivalently on the AF-SG frontier).

Finally, we obtain pc ' 0:93 (de�ned on Figs. 44-46), which compare well with the results

yielded by other methods [249, 250].

The present approach could possibly be improved or generalized (to �nite temperature,

for instance) by allowing � to take values between 0 and 1 as well. For example, the rules

(208) could be replaced, in the EF = FAF case, by less rigid ones, in the sense that �

could be a continuous function of gF and gAF such that � = 1 if gF = gAF and � ' 0

if gF >> gA or gF << gAF (e.g., � = 1 � jgF � gAF j=(gF + gAF ), or similar ones).

Such attempts, if successful, could enlighten the present view of d-dimensional spin-glass

systems.
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Isotropic Z(4) ferromagnet on the square lattice

Let us consider the Z(4) model with �rst neighbour interactions on a square lattice.

The pair Hamiltonian is given by eq. (67) where J1 � 0 and J1 + 2J2 � 0 (ferromagnetic

case). We shall work with the convenient variables t1 and t2(t� 2 [0; 1]; � = 1; 2) de�ned

in eqs. (224).

This problem has some interesting particular cases, namely, the 4-state Potts fer-

romagnet (t1 = t2) and three equivalent versions of the spin 1=2 Ising ferromagnet

(t2 = t21; t1 = 0 and t2 = 1). We shall treat it within a RG where the b = 2 Wheatstone-

bridge graph is renormalized into a single bond [121]. The RG recursive relations are

quickly obtained from Eqs. (237) by considering that all �ve transmissivities are one and

the same. Hence

t01 =
2(1 + t22)t

2
1 + 2(1 + t2)2t31 + 4t21t

2
2

1 + t42 + 2t41 + 4(1 + t22)t
3
1 + 2t2(t22 + t41)

(299.a)

and

t02 =
2(t22 + t41) + 8t31t2 + 2t2(t

2
2 + t41)

1 + t42 + 2t41 + 4(1 + t22)t
3
1 + 2t2(t22 + t41)

(299.b)

The corresponding phase diagram is presented in Fig. 10 (in both t2 vs. t1 and kBT=J1

vs. (J1 + 2J2)=J1 representations). Three phases are observed, namely the paramagnetic

(P ;Z(4) symmetry), the intermediate (I; Z(2) symmetry) and the ferromagnetic (F; fully

broken symmetry) ones. The Potts ( ~P ) as well as the three equivalent Ising critical points

I� (� = 1; 2; 3) are exactly located; the same happens with the P �F critical line (which

coincides with eq. (68)). The P �I critical line (and its dual, the F �I critical line) is yet
unknown: the present RG approximation could well be an excellent approximation. The

main asymptotic behaviours in the neighborhood of the respective T2; I3 and ~p points are

the following ones:

t2 � (
p
2 � 1)� ct31 [(c = 2(3

p
2� 2)=7 ' 0:64] (300)

t2 � 1� d[(
p
2� 1)� t1]� e[(

p
2� 1)� t1]

3 (301)

[d = 2=(
p
2 � 1) ' 4:83 ; e = c=

p
2 (
p
2 � 1)4 ' 15:4]

and

t2 � 1 � 2t1 � f(1=3 � t1)
� (302)

[f ' 982;� = ln(27=13)= ln(17=13) ' 2:7245]
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With respect to the t31 correction in Eq. (300), Zittartz [251] argues it should be, for the

square lattice, a t41 one. With respect to the thermal critical exponent �, the results are as

follows: (i) at all three Ising points � = ln 2= ln(2
p
2 � 1) ' 1:149 [� (exact) = 1]; (ii) at

the Potts point, � = ln 2= ln(27=13) ' 0:948 [� (exact) = 2=3]; (iii) the I � F and I � P

lines belong to the Ising universality class as expected; (iv) the P �F line belongs to the

Ising universality class in disagreement with the known result [122] given by eq. (69) (this

error could possibly disappear in the increasingly large-cluster limit). It is clear, however,

that all the present results are exact for the associated hierarchical lattice.

For the present or other Z(q) systems, various similar RG approaches are available in

the literature [252{255], [125, 199]

Isotropic discrete cubic ferromagnet on the square lattice

We consider the N-component cubic model with �rst neighbor interactions on a square

lattice. Its dimensionless pair Hamiltonian is given by eq. (244) whereK > 0 and L � �K
(ferromagnetic case). This model contains some interesting particular cases, namely the

2N-state Potts ferromagnet (t1 = t2), the N-state Potts ferromagnet (t1 = 0), the spin

1=2 Ising ferromagnet (N = 1 8t1; t2; t2 = 1 8N), the Z(4) ferromagnet (N = 2 8t1; t2)
and the self-avoiding walk (L = 0 and N ! 0).

We shall treat this problem in a RG framework where the b = 2 Wheatstone bridge

graph is renormalized into a single edge [46]. Associating the vector transmissivity ~t �
(t1; t2) de�ned in eqs. (248) to each edge of this graph G one obtains the following

recursive relations:

t01 =
N1(1; 2;G)

D(G)
(303.a)

and

t02 =
N2(1; 2;G)

D(G)
(303.b)

where N�(1; 2;G) (� = 1; 2) and D(G) are de�ned in eqs. (254). These equations, when

expressed in the variable K and L, coincide with the expression (14)-(18) of ref. [46]. The

corresponding phase diagrams for typical values of N are shown in Figs. 47 represented

in both t2 vs. t1 and kBT=J1 vs. (J1 + J2)=J1 variables. Similarly to the Z(4) model

(which corresponds to N = 2 in our model), there are three phases for any given value of
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N , namely the paramagnetic (P , characterized by the fully stable �xed point t1 = t2 = 0),

the ferromagnetic (F; characterized by the attractor t1 = t2 = 1) and the intermediate

(I; whose attractor is (t1; t2) = (0; 1)) ones. The appearence of the non physical P � I

critical frontier for N = 1 (Ising model) should be considered as spurious; as expected the

physically meaninful critical temperature for N = 1 does not depend on J2=J1 (see the

\horizontal" line in Fig. 47b). For any �xed value of N , the Ising, the N-state and the

2N-state critical points are exactly located. Besides these ones, there is a fourth critical

point corresponding to the cubic one ((t1; t2) = (tc1; t
c
2) whose transmissivities can be seen

in Fig. 3a of ref. [46]) which governs the transition P �F for N < N� ' 6:9 and becomes

completely unstable for N > N�. At N = N� a special multicritical point emerges as

the 2N-state Potts and the cubic �xed points collapse; at this value of N these two �xed

points interchange stability (a quite common phenomenon in fact).

Concerning the critical exponents, the thermal one �T (N) and the crossover exponent

�(N) are shown in �gs. 48(a) and 48(b) for the 2N-state Potts and cubic ferromagnets

respectively. In particular, �T (N) of Fig. 48(a) reproduces the values �21 of Table VI for

the Wheatstone-bridge hierarchical lattice Potts model with q = 2N states.

Although neither the critical frontier nor the critical exponents of the cubic model are

known analitically, there have been many approximate calculations (see for example [46],

[256] and references therein) indicating that the cubic phase transition (P � F ) becomes

a �rst order one above a certain value Nc of N (for example, Nienhuis et al [44] found

Nc = 2 using variational renormalization group techniques). As the present RG led to only

continuous transitions, we expect that the present results are good approximations, for

N � 2, for the square lattice and are, surely, exact for the Wheatstone-bridge hierarchical

lattice.

Similar RG techniques have been used [257, 48, 258, 50] for the discrete cubic model

in more general situations.

4.1.2 Other real space RG approaches

Several other real space RG approaches are available in the literature, e.g, the Monte

Carlo RG (MCRG), the Mean Field RG (MFRG), the E�ective Field RG (EFRG), the
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Finite Size Scaling RG (FSSRG) and the phenomenological RG.

The MCRG combines Monte Carlo computer simulations with RG techniques. Since

the �rst suggestion of Ma [259] in 1976 for combining these two methods, di�erent ap-

proaches to the MCRG have been developed and applied with success to a variety of

systems. For discussion and illustration of these approaches the reader is referred to

the excellent review by Swendsen [260], as well as the subsequent references [261{264].

The MFRG combines the standard Mean Field Approximation with RG techniques. The

results obtained up to now are frequently not very accurate and it does not fully satisfac-

torily describe crossovers from one universality class to another. But on the other hand,

the procedure is operationally simple, and can therefore be useful for a �rst analysis of

complex systems. For a critical discussion of this method and list of references before

1987, the reader is referred to [265], see also [266{276] for more recent applications. The

EFRG [277{280] consists on a further improvement along the same line. Finally, the use

of now standard ideas on �nite size scaling has enabled recently the formulation of an

interesting real space RG, the FSSRG, which presents various advantages (see [281] for

details) and that has been tested on a variety of models [282{284], [230].

We address now with some detail the phenomenological RG ([285] and references

therein). It enables high accuracy calculations of critical points, exponents (also equations

of states) of a variety of d = 2 physical systems. It can be also used for d > 2, but, similarly

to any other real space RG, the precision decreases when d increases.

The system to be considered is a long strip in d = 2 (a long bar in d = 3) whose length

equals that of L unitary cells and whose width equals that of N unitary cells. (typical

values are L ' 100 � 10000 and N up to 10 � 20). Several boundary conditions can be

used, the periodic ones being the most usual. The partition function Z =
X

configurations

e��H

of such system can be written ([30] and references therein) as follows

Z =
X
conf:

L�1Y
i=1

h�ijT j�i+1i (304)

where i refers to the i� th column (i� th plane in d = 3), j�ii denotes its con�guration,
and T is the transfer-matrix given by T = e��Hi where Hi is the Hamiltonian which

contains all the bonds of the i� th column as well as those which connect the i� th and
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(i+ 1) � th columns. Using the property

X
config:i

j�iih�ij = 11 (305)

we obtain

Z = h�1jTL�1j�Li (306)

In what follows let us assume periodic boundary conditions, hence

Z = Tr TL (307)

For the Potts model T is a qN � qN matrix whose structure can be considerably simpli�ed

by using various symmetry properties. We note �1 and �2 the largest and the second

largest eigenvalue of T . Then, in the L!1 limit, it can be shown that

Z = �L1 (308)

and

�N =
1

ln(�1=�2)
(309)

�N being the correlation length characterizing the spin-spin correlation function at long

distances within the strip with width N . Within the �nite size scaling picture [286] it is

assumed, for su�ciently large N , that at Tc

�N / N (310)

hence, by using two di�erent widths,

�N (Tc)

�N 0(Tc)
=

N

N 0 (311)

This equation determines an approximate value for Tc. The corresponding approximation

for � is given by

��1 =
ln[(d�N=dT )Tc=(d�N 0=dt)Tc]

ln(N=N 0)
� 1 (312)

Many alternative phenomenological procedures have been deviced (see [287{294] and ref-

erences therein) but they all follow along the lines of what has been exposed herein. Also,

in general, N >> 1 extrapolations enable re�ned accuracy. We present in Fig. 49 the
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result obtained [295, 296] for the square lattice Potts ferromagnet. We notice that the

results for the q-evolution of � are very precise for q < 4; however, nothing is detected

which could reveal that the phase transition becomes of the �rst-order for q > 4. This is

to be attributed to the loss of validity, for such transitions, of Eq. (310).

4.1.3 Connection between the correlation function preserving RG and the

phenomenological one

As stressed in the previous sections, the correlation function preserving RG is exact for

hierarchical lattices, while it is expected to be a more or less performant approximation

for systems on Bravais lattices. Here we reproduce recent arguments [46] which clarify the

nature of this approximation by making explicit the connection between the correlation

function preserving RG and the phenomenological one.

To avoid unnecessary complications, let us focus on the particular case of the d = 2

Ising model. We can omit vector notations and represent simply by Si = �1 the spin at

site i.

Successive clusters of the Wheatstone-bridge family are reported in Figs. 11(a)-(d)

(the corresponding b = 1, 2 and 5 clusters on the square lattice are shown in Fig. 50). On

each of these clusters (with b(b� 1) internal spins), the summation procedure leading to

the renormalized coupling constant K 0 can be interpreted as the calculation of an interface

free energy for blocks of the type indicated in Fig. 50. The spins on the upper and bottom

horizontal sides of the block are left out of the summation. Indeed, if we indicate by fSg
the con�gurations of the internal spins of the cluster (i.e., other than S1 and S2) we have:

eK
0S1S2+g = Tr

fSg
e��H(fSg;S1;S2) � ZS1S2(K) (313)

where g is an appropriate spin-independent term. From Eq. (313) we obtain that

K 0 � K 0(K; b) =
1

2
[lnZ++ � lnZ+�] (314)

This means that K 0 is nothing but the dimensionless excess free energy produced by �xing

the horizontal sides to (+) and (�), compared to the case in which both sides are �xed,

say, to (+). By de�nition of the (dimensionless) surface tension �, we thus have

K 0(K; b) = (b� 1)�(K; b) (315)
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where �(K; b) is expected to become independent of b in the b ! 1 (thermodynamic

limit).

From �nite size scaling [286, 297] we expect, for K � Kc and b!1,

�(K; b) � b�1�0(b=�1(K)) � 1=�(K; b) (316)

where �1(K) is the correlation length of the in�nite system, �0 is a scaling function with

�0(0) 6= 0, and �(K; b) is the correlation length in the �nite block.

If we now de�ne, as often done [68], [135{138], [141{147], [159{167], a renormalized

coupling constant Kren corresponding to a linear rescaling factor b=b0(b0 < b), through the

following cell recurrence relation

K 0(Kren; b
0) = K 0(K; b) (317)

it follows, from Eqs. (315) and (316) and for large b and b0, that

�(Kren; b
0) =

b0

b
�(K; b) ; (318)

This is nothing but the de�nition of renormalized coupling constant in a phenomeno-

logical approach [285]. It is clear that various choices can be done for cells to be used.

In particular, the standard choice in the phenomenological approach is �nite � in�nite

strips, whereas here we are using �nite � �nite self-dual clusters. In view of the nice con-

vergence of results generally obtained with phenomenological renormalization methods,

the preceding arguments justify the usual strategy of improvement of the results herein

obtained (as well as in similar treatments) as that of considering cell to cell transforma-

tions K ! Kren, like in Eq. (317), with both b and b0 becoming increasingly large (as is

usually done in the phenomenological RG).

The above derivation can of course be generalized to the case of dimensionality d 6= 2,

and to models di�erent from the Ising one.

Summarizing, we see that the procedure we have used here should not be interpreted

as another type of decimation RG approximation. Indeed, although we impose the cor-

relation function to be preserved, we do so between the roots of the graphs, which corre-

sponds to imposing the surface free energy to be preserved in the Bravais blocks, whereas
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in the decimation procedures what is imposed is the preservation of the correlation func-

tion between two sites of the Bravais lattice. This makes a substancial di�erence since

the decimation procedures, unless conveniently handled, bring along intrinsic di�culties

related to the spin rescaling [223]. This di�culties do not exist in the present approach.

The present analysis makes clear that the well known limitations of the Migdal-

Kadano�-like approaches are not due to the fact that correlation functions are preserved,

but rather to the fact that diamond (or tress) choices for the graphs lead, even for large

clusters, to topologies which are not at all those of the Bravais lattices which are supposed

to be approached.

4.2 Equation of states and other thermodynamical quantities

We address here the RG calculation of quantities which are de�ned on the space of the

external parameters of the problem. Niemeijer an van Leeuwen [223] have shown how

quantities like speci�c heat, order parameter and susceptibity can be calculated with

success in Bravais lattices. However, within their procedure, poliferation of coupling

constants is normally observed, which in turn implies in a certain degree of arbitrariness

on the choice of those to be taken into account. We shall discuss here RG procedures

which frequently avoid this di�culty, but which on the other hand describe hierarchical

lattices rather than the Bravais lattices we might be interested in. In practice, we shall see

that this restriction is often unimportant, as both types of lattices behave very similarly

in many respects. Also, the lower-order approximations of the RG procedures which we

intend to describe here are, operationally speaking, as simple as Mean Field calculations,

though yielding results which are, both qualitatively and quantitatively, largely superior.

To illustrate this type of approach we shall calculate, for the Potts ferromagnet at

all temperatures, the free and internal energies, speci�c heat, spontaneous magnetization,

longitudinal surface tension and correlation length. In all cases, to the RG recursive

relations in the parameter space (obtained, for instance, through the correlation function

preserving procedures), we add recursive equation (s) corresponding to the quantity (ies)

we want to calculate.
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4.2.1 Free energy, internal energy and speci�c heat

We follows along the lines of Res. [298, 229], where more details can be found than given

here. The dimensionless free energy per site of the d-dimensional Bravais lattice scales,

within the RG, as follows:

f(K) = b�df(K 0) + g(K) (319)

where K and K 0 are, respectively, the original and renormalized dimensionless coupling

constant of the model, and g(K) is the standard background term (see [223, 227, 298] and

references therein). On the other, at the graph level, the preservation of the correlation

function imposes (see Eq. (258))

eH12(K0)+K0
0 = Tr

3;���;Ns
eH12���Ns(K) (320)

where by the H12 and H12���NS
we respectively denote here the dimensionless Hamiltonians

of a single bond and that of the two-rooted graph that has been chosen to approximate

the Bravais lattice. K 0 is the additive term that has to be included in order to allow

for the zero-energy renormalization. This equation completely determines K 0 = K 0(K)

and K 0
0 = K 0

0(K). We introduce now a proportionality factor D(K) (to be determined)

through the relation

g(K) = D(K)K 0
0(K) (321)

If we shift the zero-energy point by adding an arbitrary value �K to the (dimensionless)

energy associated with each bond (� is an arbitrary constant), f transforms according to

f(K)! f(K) + �Kd and consequently the preservation of equation (319) implies

g(K)! g(K) + �d[K � b�dK 0(K)] (322)

At the graph level, the preservation of Eq. (320) implies

K 0
0(K)! K 0

0(K) + �[bdfK �K 0(K)] (323)

If we impose now that Eq. (321) remains form-invariant under uniform translation of

the energy scale (i.e., D(K) does not change with �) in a similar manner to the Maxwell

equations which are form-invariant under the Lorentz transformation, it immediately
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follows that

D(K) =
d[bdK �K 0(K)]

bd[ddfK �K 0(K)]
(324)

This equation formally closes the operational procedure as (together with Eq. (321)) it

provides g(K), which (combined with Eq. (319)) enables us to calculate the free energy

and consequently the internal energy and speci�c heat.

If we are studying the hierarchical lattice generated by the chosen two-rooted graph,

then d is replaced by df (see [229] for a detailed discussion of this point), henceD = dfb
�df

becomes a purely topological number, thus yielding

f(K) = b�df [f(K 0) + dfK
0
0(K)] (325)

Note that df plays in this expression the same role that d (which is equal to the number

of bonds per site) plays in the standard recursive relation associated with a d-dimensional

Bravais lattice (see also Refs. [65, 66]).

If we are interested instead in a hopefully closer approximation to the d-dimensional

Bravais lattice, then D(K) contains both topological and thermal information; typically

D(K) smoothly and monotonously varies from D(0) = db�df to D(1) = db�df (1 �
1=b)=(1 � b�1+d�df ) when K increases from zero to ini�nity [298]. If the family of hierar-

chical lattices is appropriately chosen, one should expect lim
b!1

df = d, hence D(K) � db�d

for all values of K in the b!1 limit.

The consequences of the appararently innocuous form-invariance hypothesis for Eq.

(321) are quite interesting. Indeed, speci�c heats which present (within RG frameworks

that are similar but that do not allow for proper dependence ofD onK) negative values for

large regions of K become automatically (without introducing any adjustable parameter)

positive for all �nite temperatures when recalculated within the present scheme.

The Potts ferromagnet has been studied [298, 229, 221] with the generalizedWheatstone-

bridge graphs. The results obtained are indicated in Figs. 51-53. In particular, Fig. 53

has been obtained by performing C=kB(q�1) = Cp in the q ! 1 limit (see Kasteleyn and

Fortuin results [16]).

The analytic discussion of the present equations shows that the high-temperature

expansion for the speci�c heat recovers, for increasing b, more and more terms of the

expansion which is exact for the corresponding Bravais lattice.
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4.2.2 Equations of states

We calculate here the magnetization as a function of temperature at vanishing external

�eld (the extension to arbitrary values of the �eld is feasible along the same lines [299]).

The present procedure follows along the lines of [228] and enables the calculation of the

magnetization directly, without going through that of the Gibbs energy.

We consider a d-dimensional hypercubic lattice of linear size L with Potts interaction

between �rst-neighbouring sites. In the L ! 1 limit, the order parameter M can be

de�ned as M = NL(K)=Ld, where NL(K) is the thermal canonical avarage number of

sites whose spin is pointing along the easy magnetization direction (say, the �i = 0

axis, arbitrarily chosen among the q equivalent states along which the symmetry is to be

broken) minus the number of sites whose spins are pointing in any other direction (i.e.

�i 6= 0). Furthermore, we associated an elementary dimensionless magneton � with each

site of the lattice; we could in principle chose � = 1, but we will instead leave it as a

variable since it will change under renormalization. Within a Kadano� philosophy, we

divide the system of Ld sites into a system of L0d cells of linear size B � L=L0 > 1. We

then associate with each cell the renormalized variable K 0 and �0 which will depend on

K and �. The total magnetic momentum (extensive quantity) is to be preserved through

renormalization, i.e.,

NL0(K
0)�0 = NL(K)� (326)

Dividing both terms by Ld we obtain

M(K 0)�0 = M(K)�Bd (327)

with M(K 0) = NL0(K 0)=L0d. If we start with K and �(0) and perform n iterations in Eq.

(327) we obtain

M(K(n))�(n) = BndM(K)�(0) (328)

Hence

M(K) = lim
b!1

M(K(1))�(n)

Bnd�(0)
(329)

By arbitrarily choosing �(0) = 1 we obtain

M(K) = lim
n!1

M(K(1))�(n)=Bnd (330)
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This formula, together with the RG equation for K, enables the calculation which are

looking for. If K < Kc (Kc � critical �xed point) then K(1) = 0, hence M(K(1)) = 0

which implies (through Eq. (330)) that M(K) = 0 as expected. If K > Kc then K(1) =

1, henceM(K(1)) = 1 (conventional value for T = 0), which yields (through Eq. (330)).

M(K) = lim
n!1

�(n)=Bnd (331)

This is the formula which provides the thermal dependence of the order parameter in the

entire non trivial region, i.e., for T < Tc.

To close the procedure we have to specify how the RG recursive relations for K and

� are determined. For K we use the recurrence provided by the correlation function

procedure (Section (4.1.1)). With respect to �, let us anticipate that its RG equation will

be of the form

�0 = a(K)� (332)

a(K) being a function to be determined which satis�es a(1) = Bd > a(Kc) > a(0) > 0

(see [228] for more details). The particular form Eq. (332) comes from the fact that it has

to be form invariant if we expand the � scale (i.e., if we make �! �� and �0 ! ��0 with

arbitrary �). To determine a(K) we proceed as follows. In order to break the symmetry

we impose the spin of, say, root 1 (of both small and large graphs) to be in the � = 0 state,

the rest of the spins (that on root 2 included) being free to take all possible orientations

(q con�gurations for each spin). Each graph con�guration (there will be qNs�1 of them)

will be weighed with the corresponding Boltzmann factor, and will be associated with a

value for the cluster magnetic momentum m where each spin contributes proportionally

to its coordination number (see [238, 300] for further discussion of this point). We then

impose

hmiG0 = hmiG (333)

where h� � �i denotes thermal canonical average, and G0 and G respectively denote the

small and large graphs. The whole procedure is indicate in Table IX for the b = 2 planar

Wheatstone bridge graph renormalized into a single edge b0 = 1 (in this case Bd = 5).

We obtain, for Eq. (332),

2eqK
0
+ (q � 2)

eqK0 + (q � 1)
�0 = [10e5qK + 10(q � 2)e3qK + 8(3q � 5)e2qK + (334.a)
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+ (16q2 � 68q + 90)eqK + (2q3 � 16q2 + 44q � 40)]�=D�

where

D� = e5qK + 2(q � 1)e3qK + 4(q � 1)e2qK + (334.b)

+ (q � 1)(5q � 9)eqK + (q � 1)(q � 2)2

The results obtained for successive approximations for the magnetization on the square-

lattice are indicated in Figs. 54 and 55. In the T ! Tc � 0 limit, we may de�ne the

following asymptotic behaviour

M � A(1� T=Tc)
� (335)

The present RG's recover, for all q, the exact Tc of the square lattice. The respective

q-evolutions of � (the exact result for the square lattice is given by eq. (37) [92]) and A

(the exact result for the square-lattice is not available, excepting for q = 2) is indicated in

Figs. 5 and 56. It is interesting to compare the present results with the recently obtained

[237] exact ones for hierarchical lattices: both procedures yield the same value � = 0:180

for the q = 2 standard Wheatstone-bridge lattice, but present discrepancies (typically

below 15%) for q 6= 2.

4.2.3 Surface tension

We address here the thermal dependence of the longitudinal surface tension 
 of a d-

dimensional hypercubic lattice (see [301]). The procedure follows along the lines of Ref.

[226, 161]: the RG equation for 
 is given by

(b0)d�1K 0
0 = bd�1K
 (336)

This equation, together with the RG equation for K, enables the calculation which we

are looking for. We present in Fig. 57 the q = 2 results obtained for the square lattice by

using the generalized Wheatstone-bridge graphs. Within the RGbb0 framework we obtain


(T )


(0)
� 1� ln(b=b0)

2(b� b0)
kBT

J
�
�
b� 1

b

�2
kBT

J
e�2J=KBT (T=Tc ! 0) (337)

which, in the b!1 limit, yields [161]:


(T )


(T )
� 1 � kBT

J
e�2J=kBT (T=Tc ! 0) (338)
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which is the exact result for the surface tension on the square lattice [6].

We also obtain

(T )


(0)
� Abb0

�
1 � T

Tc

��bb0

(T ! Tc � 0) (339)

where Tc is exactly recovered for all (b; b0), �bb0 is given in Table VI, and Abb0 is represented

in Fig. 58.

The present calculation can be straightforwardly extended to arbitrary values of q and

d.

4.2.4 Correlation length

We address here the thermal dependence of the correlation length � of a d-dimensional

hypercubic lattice. The procedure is completely similar to that used for the surface

tension, and follows along the lines of Ref. [302, 195]. Eq. (336) is replaced by

�0

b0
=

�

b
(340)

and the rest of the procedure remains exactly the same. The results obtained [302] for

the square lattice are represented in Figs. 59 and 60. Also

��1 � � ln(b=b
0)

b� b0
+ ln

�
kBT

J

�
�
"
q � 2

2
+ 2

�
b� 1

b

�2
#

J

kBT

�
kBT

J
!1

�
(341)

and

��1 � a(q)J

kBT

"
1� ln(b=b0)

b� b0
kBT

qJ
� 2

�
b� 1

b

�2
kBT

qJ
e�qJ=kBT

# �
kBT

J
! 0

�
(342)

where a(q) cannot be calculated within the present RG framework. In the b!1 (b0 < b)

these respective expressions yield

��1 � ln

�
kBT

J

�
�
�
q + 2

2

�
J

kBT

�
kBT

J
!1

�
(343)

and

��1 � a(q)
J

kBT

�
1 � 2kBT

qJ
e�qJ=kBT

� �
kBT

J
! 0

�
(344)

These expressions recover (with a(2) = 2) the exact results [6, 303, 5] for q = 2, namely

��1 = ln coth

�
J

kBT

�
� 2J

kBT
(T > Tc) (345)

� ln

�
kBT

J

�
� 2J

kBT

�
kBT

J
!1

�
(346)
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and

��1 =
2J

kBT
� ln coth

�
J

kBT

�
(T < Tc) (347)

� 2J

kBT

�
1� kBT

J
e�2J=kBT

� �
kBT

J
! 0

�
(348)

Eqs. (343) and (344) might well be exact for all q (possibly with a(q) = q).

For d > 2, the following asymptotic behaviours are obtained in the b ! 1 limit

(b0 < b):

��1 � ln

�
kBT

J

�
�
�
q � 2

2
+ 2(d � 1)

�
J

kBT

�
kBT

J
!1

�
(349)

��1 � a(q; d)

�
J

kBT

� 1
d�1
�
1 � q2(d�1)

d � 1

�
kBT

qJ

�
e�2q(d�1)J=kBT

� �
kBT

J
! 0

�
(350)

where a(q; d) cannot be calculated within the present framework. For q = 2 and d = 3

Eq. (349) exactly recovers the asymptotic behaviour for the simple cubic lattice [303].

Eqs. (349) and (350) might well be exact for all q and all d > 2. It is interesting to notice

that the d = 2 and the d = 2 + 0 T ! 0 results do not coincide (see [144]).

4.3 Interface e�ects

Many interesting critical phenomena occur in magnetic systems which are not fully trans-

lationaly invariant because along at least one direction (say the z-axis) the system is not

homogeneous. A typical such system is a d = 3 semi-in�nite bulk (surface problem);

another typical situation (which in fact generalizes the previous one) is a d = 3 system

which is translationally invariant within the xy plane but which along the z-axis changes

at z = 0 in the sense that two di�erent semi-in�nite homogeneous bulks join there (inter-

face problem). For a general introduction on both theoretical and experimental aspects

of this problem, the reader can refer to the reviews by Binder [297] and Kaneyoshi [304];

reciprocal-space and real space RG approaches have been respectively reviewed by Diehl

[305] and one of us [306] (see also [307], [308]). The references appearing in these reviews

practically cover the present status of the subject, and will not be reproduced herein.

Our aim in this Subsection is to illustrate how the correlation function preserving

RG techniques can be used to study the criticality associated with surface magnetism.
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This type of approach has been systematically used by the Rio de Janeiro/CBPF group

and collaborators [138, 141, 142, 166, 167, 146, 147] [309{315]. As a prototype system

we shall study here the semi-in�nite simple cubic ferromagnetic Potts bulk: the �rst-

neighbour coupling constant Jij equals JS(JS � 0) if both i and j sites belong to the

(0; 0; 1) surface (z = 0 plane), equals JB(JB � 0) if at least one of the sites belongs to the

bulk (z < 0), and vanishes otherwise (z > 0). A typical phase diagram is shown in Fig.

61 (q = 2). It is convenient to introduce the variable

� � JS
JB
� 1 =

lnf[1 + (q � 1)ts]=(1 � ts)g
lnf1 + (q � 1)tB]=(1� tB)g � 1 (351)

where we have introduced the transmissivities tS and tB respectively associated with JS

and JB. We note �c the value of � where all three critical lines of Fig. 61 join. The

surface-ferromagnetic phase (SF; �nite surface magnetic order in the absence of bulk

magnetic order) only exists for � > �c. The paramagnetic (P; vanishing surface and bulk

orders) and bulk-ferromagnetic (BF; both surface and bulk orders are non-null) phases

exist for varying values of �. At � = �c a special transition occurs which corresponds

to a multicritical point (with its own universality class).

The RG recursive relations for this problem can be written as follows [138].

t0B = f(tB) (352)

and

t0S = g(tS; tB) (353)

where f(tB) is the equivalent transmissivity associated with the two-rooted graph of Fig.

30b (Fig. 62); f(tB) equals T12(tB; tB; tB; G3) of Eq. (280). g(ts; tB) is the equivalent

transmissivity of the two-rooted graph obtaied from the free-surface RG cell shown in

Fig. 62 by collapsing the entry nodes (forming one root) and the exit nodes (generating

the other root). These equations yield, for all values of q, the type of RG 
ow diagram

indicated in Fig. 63. We present in Fig. 64 the q-dependence of �c obtained within

the present RG as well as within an extrapolated version of it (see [138] for details). In

the neighbourhood of the multicritical point we may introduce the following asymptotic

behaviour
T surface
c (�)

T surface
c (�c)

� 1 � A

�
�

�c
� 1

�1=�

(354)
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We have presented in Fig. 65 the q-dependences of A (as well as its extrapolated value

A� [138]) and �. See �nally Fig. 66 for the q-evolution of the entire phase diagram. For

the discusion of the various universality classes present in this problem see [138] as well

as the reviews previously mentioned [297, 305, 306].
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5 FINAL REMARKS

We have seen that the Potts model and a great number of related systems can be studied,

quite satisfactorily in some cases and only roughly in others, with real space renormal-

ization group techniques. Let us present here some open problems whose study would be

natural extensions of the content of this review.

(i) No RG techniques (nor any other, as far as we know) have been used to study the

general q-state classical model described by the interaction matrix (10a) without

restriction (10b). In particular, it may be possible to device a BCM for such a

model.

(ii) Continuously varying critical exponents (e.g., the para-ferromagnetic critical line

of the Z(4) ferromagnet on the square-lattice) and transitions like the Kosterlitz-

Thouless one remain hard problems within real space RG techniques. Although

hard, these problems cannot be considered unsolvable. Indeed, lines of �xed points

have already been exhibited in the literature [168, 316] within RG frameworks like

the ones discussed herein.

(iii) The analysis of systems presenting commensurate/incommensuratemodulated struc-

tures (e.g., the chiral Potts model and frustrated systems like the ANNNI one) is,

with very few exceptions, to be done.

(iv) Some of the approaches presented herein are exact for hierarchical lattices. They

could further enlighten the criticality and the scaling laws of fractals as compared to

translationally invariant systems. For example: what are the topological ingredients

which determine lim
q!1

�q and for what classes of hierarchical lattices we have that

lim
q!1

�q = 1?

(v) The establishment of a BCM for dealing with probability laws as those presented in

Subsection 3.2.4 (quenched-bond random Potts model) would be very elegant and

useful.

(iv) Very recently [317], the correlation function preserving procedures described in this



{ 110 { CBPF-NF-046/95

review have been satisfactorily applied to construct RG's for approaching the clas-

sical n-vector model. This fact opens an area to be explored.
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APPENDIX

Potts ferromagnet on Migdal-Kadano�-like hierarchical lattices

Among the simplest available real space RG's we have those which follow along the

lines of Migdal and Kadano� [318] approaches (di�erential RG's, bond moving procedures,

etc; see [319] for an analysis and review of these approaches). Their general tendency,

when compared to available results for d-dimensional Bravais lattices, is to be qualita-

tively correct though quantitatively quite rough (although non trivial): later on we shall

illustrate this point. In any case, all the results are exact for the associated hierarchi-

cal lattices, namely the d-dimensional generalized diamond-like and tress-like ones: see

Fig. 67. In the former case, the generators are equal to the two-rooted graphs result-

ing from the Migdal-Kadano� approximations for the considered model on d-dimensional

hypercubic lattices. The above hierarchical lattices are completely determined by the

dimensionality d and the linear expansion factor b. The diamond (tress) generator graph

is a parallel (series) array of bd�1(b) branches, each of which is constituted by b(bd�1)

bonds in series (parallel). Two topological properties can be veri�ed: (i) For all b and

d, and for both diamond and tress types, the intrinsic fractal dimensionality is given by

df = ln bd= ln b = d; (ii) For arbitrary �xed b and d = 2, and only then, the diamond and

tress hierarchical lattices are dual of each other.

The aim of the present Appendix is to study [143, 145] the q-state Potts ferromagnet

on these d-dimensional hierarchical lattices and to follow their behaviour in both b!1
and b! 1 limits. Associating with each elementary bond a thermal transmissivity t, we

have (through the algorithms (102) and (108)) for the equivalent transmissivities between

the roots 1 and 2 for the diamond-like (D) and tress-like (T ) graphs:

T12(t;D; b; d; q; ) =
1�

h
1�tb

1+(q�1)tb
ibd�1

1 + (q � 1)
h

1�tb
1+(q�1)tb

ibd�1 (diamond) (A.1)

and

T12(t; T ; b; d; q; ) =

8><
>:

1�
h

1�t
1+(q�1)t

ibd�1

1 + (q � 1)
h

1�t
1+(q�1)t

ibd�1

9>=
>;

b

(tress) (A.2)
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Let us now focus the diamond case (the tress case is strictly analogous). The RGbb0

recursive relation is given by

T12(t
0;D; b0; d; q) = T12(t;D; b; d; q) (A.3)

This equation admits, for all (b; b0; d; q), two trivial (stable) �xed points, namely t = 0

(paramagnetic phase; P) and t = 1 (ferromagnetic phase; F), as well as a critical (unstable)

�xed point noted t?bb0 which satis�es:

T12(t
?
bb0;D; b0; d; q) = T12(t

?
bb0;D; b; d; q) (A.4)

The corresponding thermal critical exponent �bb0 is given by

�bb0 =
ln(b=b0)
ln(�b=�b0 )

(A.5)

with

�b � dT12(t;D; b; d; q)

dt

����
t=t?

bb0

(8b) (A.6)

The results obtained for d � 1; q � 0; b � 2; b0 < b, and for both diamond and tress cases,

are indicated in Figs. 68-70 (the b0 = 1 results correspond to the associated hierarchical

lattices). It is worth noticing that, for all (q; d), both diamond and tress cases and both

t?bb0 and �bb0 , the b!1 limit is approached through a power law (1/b corrections). This is

in contrast with the behaviour expected for lattices with �nite critical temperature (i.e.,

0 < limb!1
b0<b

t?bb0 < 1): in such cases, �nite size scaling arguments [286] usually suggest, in

the b!1 limit, a power law approach for �xed (b� b0), and a logarithmic approach for

�xed b0. It is also worth noting that in no case �rst-order phase transitions appear. This

is in contrast with the case of d-dimensional Bravais lattices (d > 1): for them, the phase

transitions always become of the �rst order for q large enough. We recall however that

the results obtained herein illustrate the common expectation that, for a great variety of

models, the para-ferromagnetic transitions are of the continuous type for all hierarchical

lattices.

Let us now turn our attention onto a di�erent type of limit, namely the di�erential one

(i.e., b0 = 1 and b = 1+� with �! 0+). We generalize here [143] Shapiro's treatment [320]

of the bond percolation case (q = 1). We �rst notice that if we consider the hierarchical
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lattices generated by the d-dimensional generalized Wheatstone-bridge graphs (see Fig.

11) with equivalent transmissivity between the roots 1 and 2 noted T12(W ), we have, for

all (t; b; d; q),

T12(t;D; b; d; q) � T12(t;W ; b; d; q) � T12(t; T ; b; d; q) (A.7)

This is a trivial consequence of the fact that the equivalent transmissivity of any graph is a

monotonous function of the elementary transmissivity of any of its edges, together with the

fact that the breaking (collapsing) of all the \transverse" edges of the Wheatstone-bridge

graph precisely yields the diamond (tress) graph (see Fig. 71). It is then straightforward

to verify that, in the b! 1 limit, the RGb1 recursive relation is one and the same for both

diamond and tress cases (and consequently for the Wheatstone-bridge case as well, since

it is squeezed between them), namely

t0 � t+ �

�
t ln t� (d � 1)

(1� t)[1 + (q � 1)t]

q
ln

�
1 � t

1 + (q � 1)t

��
(A.8)

The corresponding critical �xed point t? satis�es

t? ln t? = (d� 1)
(1 � t?)[1 + (q � 1)t?]

q
ln

�
1� t?

1 + (q � 1)t?

�
(A.9)

This equation yields the results presented in Fig. 72 as well as the following ones:

t? � 1� qe�
1

d�1 (d! 1 + 0 ; q > 1) (A.10)

which recovers the asymptotically exact result for the d-dimensional hypercubic lattice

[25] (see eq. 33);

t? =
1p
q + 1

(d = 2) (A.11)

which is the exact result for the square lattice; and

t? � e�(d�1) (d!1) (A.12)

which di�ers from the exact result for d-dimensional hypercubic lattice.

The fact that the d ! 1 result is asymptotically exact comes from the fact that the

linear chain has an unique topological property, namely to be scale invariant (hierarchical

lattice) and translationally invariant (Bravais lattice) simultaneously. The fact that the

d = 2 result exactly recovers that of the square lattice comes from the con
uence of
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the diamond and tress equivalent transmissivities into the self-dual Wheatstone-bridge

equivalent transmissivity. This is a nice manner for understanding why the di�erential

Migdal-Kadano� approach preserves self-duality.

From Eq. (A.8) we also obtain the thermal critical exponent:

��1 = 1 + ln t? � d� 1

q

�
[q � 2� 2(q � 1)t?] ln

�
1� t?

1 + (q � 1)t?

�
� q

�
(A.13)

This equation yields the results shown in Fig. 73 as well as the following ones:

� � 1

d� 1
(d! 1 + 0) (A.14)

which recovers the exact result for d-dimensional hypercubic lattice (see eq. 34) [25]; and

��1 = 2

�
1 � 1p

q
ln(
p
q + 1)

�
(d = 2) (A.15)

and

� ! 1 (d!1) (A.16)

which do not coincide with the exact results for the hypercubic lattice [91, 321].
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FIGURE CAPTIONS

Fig. 1 - Typical phase diagrams of the site-bond percolation (S \ B) and site-or-bond

percolation (SUB) on d-dimensional lattices (d > 1). P and NP respectively denote

the percolating and non-percolating regions; pc (bond) (pc (site)) corresponds to the

critical probability of the standard bond (site) percolation.

Fig. 2 - Two-site spin con�gurations and its corresponding energy spectrum for the Z(4)

interaction (assuming that 0 < J2 < J1=2) and the Z(5) one (supposing that 0 <

J2 < J1). The spin state ni (ni = 0; 1; 2; � � � ; q � 1) is represented by a vector

pointing into a direction which makes an angle 2�ni=q with the direction shown on

the left (which corresponds to ni = 0). For each pair con�guration, the heavy line

corresponds to its energy while the dashed ones refer to the remaining energy levels

of the considered spectrum.

Fig. 3 - Schematic phase diagram for a quenched bond-and-site diluted ferromagnet on

d-dimensional lattices (d > 1). P and F respectively denote the paramagnetic and

ferromagnetic phases.

Fig. 4 - q-dependence of the correlation length critical exponent � for the Potts fer-

romagnet on the square lattice. The lower curve corresponds to the exact result

(given by eq. 36) while the others were obtained through the correlation function

preserving RGbb0 using the cells shown in Fig. 27.

Fig. 5 - q-dependence of the critical exponent � for the Potts ferromagnet on the square

lattice. The exact result (given by eq. 37) is represented by the lower curve (\square

lattice"); the remaining curves [228] correspond to successive RGbb0 approximations

using the cells shown in Figs. 11(a) { (d). The broken lines are indicative and have

been used when the calculation was available only for integer values of q.

Fig. 6 - Schematic variation of the main features concerning phase transitions for the

q-state Potts ferromagnet on d-dimensional Bravais lattices. The transition is of

�rst order above the full line, otherwise it is continuous whenever it exists (d > 1).
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The broken line at d = 6 for q < 2 separates the region where the critical exponents

are classical (mean-�eld ones) from that with non-trivial ones (notice that for q = 2

this occurs at d = 4).

Fig. 7 - Exact critical temperature (eq. 38) as a function of Jy=Jx for di�erent values of

q for the anisotropic Potts ferromagnet on the square lattice. F and P represents

the ferromagnetic and paramagnetic phases respectively.

Fig. 8 - Exact critical temperature as a function of q for the ferromagnetic (J > 0) and

antiferromagnetic (J < 0) isotropic Potts model on the square lattice (respectively

given by eqs. (38) and (43) at Jx = Jy).

Fig. 9 - Critical temperature as a function of J2-concentration p for di�erent values

of J1=J2 (numbers parametrizing the curves) for the quenched bond mixed Ising

ferromagnet on the square lattice. These curves were obtained [107] through the

correlation function preserving RG21 using the cells shown in Fig. 11(a) and (b). P

and F denotes the paramagnetic and ferromagnetic phases respectively.

Fig. 10 - (a) Phase diagram of the Z(4) ferromagnet on the square lattice in the (t1; t2)

space (de�ned in eq. 224) obtained through the RG21 approximation [121] with the

cells shown in Figs. 11(a) and (b). ~P is the q = 4 Potts �xed point; I1; I2 and

I3 are the Ising �xed points. � denotes the attractors of the paramagnetic (P),

ferromagnetic (F) and intermediate (I) phases. The shaded region is nonphysical.

The t2 = t1 and t2 = t21 dashed lines represent Potts and Ising invariant subspaces

respectively. (b) Same phase diagram in the (kBT=J1; (J1 + 2J2)=J1) space. The

dashed lines are asymptotes.

Fig. 11 - d-dimensional two-rooted graphs of the Wheatstone bridge type with chemical

length b. The roots 1 and 2 (internal vertices) are represented by open (full) small

circles. The fractal dimensions df are also indicated.

Fig. 12 - Pairs of two-rooted dual graphs. To each edge is associated an occupancy

probability pi; pDi refers to its corresponding dual (eq. 77).
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Fig. 13 - Two-rooted graphs which contain at least one irrelevant edge. Open (full)

small circles denote roots (internal vertices).

Fig. 14 - Multi-rooted graphs. Gc and Gb are the respective collapsed and broken graphs

obtained from G by contracting (i.e., collapsing after deleting) and deleting one of

its edges. The polynomials in �gs. (d), (e) and (f) represent the multi-connectedness

function (i.e., the probality of connection of all the roots).

Fig. 15 - Series (a) and parallel (b) array of two edges. To each vertex i is associated

the Potts variable �i = 1; 2; � � � ; q. The coupling constants are denoted by J`(` =

1; 2; s; p).

Fig. 16 - Two-rooted oriented graphs. p` denotes the occupancy probability of the ori-

ented edge `. The arrows near the roots 1 and 2 indicate the sense (from 1 to 2)

on which the graph should be traversed. The graphs obtained in (b) and (c) are,

respectively, the 1-broken and the 1-precollapsed oriented graphs obtained from the

one in (a). The 2 graphs in (b) are equivalent.

Fig. 17 - A two-rooted oriented graph G (Fig. a) and the following graphs obtained

through operating on the horizontal edges: (b) the broken Gbb, (c) the collapsed

Gcc, (d) the precollapsed Gbc and (e) the precollapsed Gcb graphs. The arrows near

the roots 1 and 2 indicate the sense (from 1 to 2) on which the graph should be

traversed.

Fig. 18 - The two-rooted Wheatstone bridge graph whose edges are associated with

the vectors (pi; qi; ri; si) (i = 1; 2; � � � ; 5) whose components respectively represent

the probabilities of the edge being ferromagnetic, antiferromagnetic, absent and

frustrated.

Fig. 19 - Two-rooted graph whose edges are all associated with the vetor (p; q; r; s)

whose components represent the respective probabilities of the edge being ferro-

magnetic, antiferromagnetic, absent and frustrated.

Fig. 20 - (a) The two-rooted Wheatstone-bridge graph whose edges are associated with

the transmissivities (t
(`)
1 ; t

(`)
2 ) (` = 1; 2; � � � ; 5) de�ned in eqs. (224) for the Z(4)
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model. The graphs obtained from (a) by operating on the edge 5 are: (b) the

broken, (c) the collapsed and (d) the precollapsed graphs.

Fig. 21 - (a) The two-rooted Wheatstone-bridge graph whose edges are associated with

the vector transmissivities (t(`)1 ; t
(`)
2 ; t

(`)
3 ) (` = 1; 2; � � � ; 5) de�ned in eqs. (243) for

the Z(6) model. Operating on the edge 5 we obtain the following graphs: (b) the

broken, (c) the collapsed, (d) the precollapsed Gbcb and (e) the precollapsed Gbbc

one.

Fig. 22 - Rooted mod-6 � 
ows for a �xed external 
ow � (� = 0(a); � = 1(b); � =

2(c) and � = 3(d)) on a terminal graph Gpr with 2 precollapsed edges of type 2

(represented by broken lines) and 3 precollapsed edges of type 3 (represented by

dotted lines). The number on each edge represents the 
ow component along the

considered edge.

Fig. 23 - The non-equivalent terminal graphs Gpr associated with the graph G shown

in Fig. 21a. The broken (dotted) line stands for a precollapsed edge of type 2

(type 3) whose vector transmissivity is (0; 1; 0) ((0; 0; 1)). The equivalent vector

transmissivity (T1; T2; T3) associated with each graph is shown below it.

Fig. 24 - Typical phase diagrams (full lines) and RG 
ows (dashed lines) in the (Y1; Y2)

parameter space. 2 ; � and � respectively denote trivial (fully stable), critical (semi-

stable) and multicritical (fully unstable) �xed points; A, B and C denote statistical

equilibrium phases. (a) The critical line presents 3 universality classes (two critical

and one multicritical), the Y2 = 0 point of the critical line is simultaneously a critical

point and a �xed point, and can be determined by treating the Y2 = 0 particular

case of the system because the Y2 = 0 axis is an invariant subspace under RG; the

Y1 = 0 point of the critical line is a critical point but not a �xed point consequently

its determination demands the treatment of the general (Y1; Y2) problem. (b) The

critical lines present 4 universality classes (three critical and one multicritical); one

of the critical �xed points is at in�nity (\run away" �xed point), and consequently

the B-C critical line might be a �rst-order one.
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Fig. 25 - The correlation length critical expoent � as a function of q for the q-state

Potts ferromagnet on the square lattice. The RGbb0 curves were obtained through

the correlation function preserving RG using cells from the d = 2 Wheatstone-bridge

graph family (see Figs. 11(a) { (d)). The exact result (eq. 36) is also plotted for

comparison.

Fig. 26 - The initial steps (n = 0; 1; 2) of construction of the Wheatstone-bridge hier-

archical lattice. The replacement of each bond by the generator (n = 1) in the nth

step leads to the next step of construction. The hierarchical lattice corresponds to

the n!1 limit whose fractal dimension is df = ln 5= ln 2.

Fig. 27 - b-sized cells and their two-rooted self-dual graph representations; all the en-

trances, and all the exits of the cell, indicated by arrows, are to be respectively

collapsed in order to generate the two roots 1 and 2 (noted by empty small circles)

of the associated graph; the internal sites of the cell become, without any modi�ca-

tion, the internal vertices (noted by full small circles) of the graph. The full (dashed)

line is associated with a transmissivity tx(ty) for the anisotropic Potts model.

Fig. 28 - (a) RG31 
ow diagram and critical frontier in the transmissivity space (tx; ty)

for the anisotropic Ising (q = 2) ferromagnet on the square lattice using the cells

shown in Figs. 27(a) and (b). The critical line coincides with the exact one tx = tDy .

P and F denote the respective paramagnetic and ferromagnetic phases. The fully

stable and unstable �xed points are represented by 2 and �. (b) Critical 
ow lines

associated with various values of q and any value of b-sized cell shown in Fig. 27

(they coincide with the exact ones for the anisotropic Potts ferromagnet on the

square lattice). The q ! 0 limit corresponds to tree-like percolation; the q- and

q�1-frontiers are, for all values of q, symmetric with respect to the straight line

tx + ty = 1.

Fig. 29 - The initial steps (n = 0; 1; 2) of construction of the inhomogeneous hierarchical

lattice corresponding to the RG31 approximation using the cells of Fig. 27.

Fig. 30 - (a) d = 3 extension of the b = 3 sized cell (disregarding the irrelevant bonds)
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of Fig. 27b; (b) the two-rooted graph representation of the cell shown in Fig. 30(a).

tx; ty and tz are the Potts transmissivities along the three crystal axes of the simple

cubic lattice represented by full, dotted and dashed lines.

Fig. 31 - RG31 
ow diagram and critical surface [104] for the anisotropic Potts ferro-

magnet on the simple cubic lattice in the (s(2)x ; s
(2)
y ; s

(2)
z ) space (whose coordinates

are de�ned in eq. (281) taking h = 1). The attractors of the paramagnetic (P) and

ferromagnetic (F) phases are denoted by 2, while the respective d = 1; d = 2 and

d = 3 critical �xed points are represented by �; � and �.

Fig. 32 - q-dependence [104] of the RG critical point (see point PI of Fig. 31) corre-

sponding to the isotropic d = 3 Potts ferromagnet (notice the ordinate scale). The

dots are series results: q = 1 [322], q = 2 [323], q = 3 [324].

Fig. 33 - Extrapolated results [104] (represented by full lines) for the critical point corre-

sponding to the particular anisotropic d = 3 Potts ferromagnet where two coupling

constants are assumed equal (� J?) and the third one (� J==) possibly di�erent.

The isotropic d = 1, d = 2 and d = 3 cases are on the ordinate, abcissa and bisectrix

respectively. (a) q = 1 (the dots correspond to series results [325]); (b) q = 2 (both

dots [326] and circles [327] are series results).

Fig. 34 - q-dependence of critical exponents (full lines) obtained through the RG31 ap-

proximation [104] for the anisotropic cubic lattice Potts ferromagnet. (a) d = 3

correlation length critical exponent �3 (the dots are series results: q = 1 [328] and

q = 2 [329]); (b) d = 2 $ d = 3 crossover exponent �23 (the q = 1 dot is a series

result [325] while the q = 2 dot is an exact one [330, 331].

Fig. 35 - The two-rooted Wheatstone-bridge graph whose edges are associated with the

Potts transmissivities r`(` = 1; 2; � � � ; 4; 5).

Fig. 36 - RG 
ow diagram and critical surface of the quenched bond-mixed q-state Potts

ferromagnet on the square lattice [107] in the (p; s1; s2) space for q = 2. The

attractors of the paramagnetic (P) and ferromagnetic (F) phases are represented

by �. The fully unstable and semi-stable �xed points are denoted by � and �
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respectively. The critical surface is invariant under the (p; s1; s2)! (1�p; s2; s1)!
(p; 1 � s1; 1 � s2) transformations and depends very slightly on q (let us say for

q � 1) and on the RG linear scaling factor b. The twisted H-like region determined

by (s1 = s2 =
1
2
8p), (s1 = 1

2
; p = 0; 8s2) and (s2 =

1
2
; p = 1; 8s1) corresponds to

the pure ferromagnet; the p = 1
2 line constitutes an invariant subspace corresponding

to the equal concentration model.

Fig. 37 - RG21 critical temperature of the quenched bond-mixed q-state Potts ferromag-

net on the square lattice [107] as a function of J2-concentration p for typical values

of q and J1=J2 (numbers parametrizing curves).

Fig. 38 - Position of the �xed points which attract almost every point of the critical

surface as a function of q for the quenched bond mixed Potts ferromagnet on the

square latice [107] using the RG21 (b = 2) and RG31 (b = 3) approximations.

Fig. 39 - q-dependence of the RG21 (b = 2) pure (full line) and random (dot-dashed

line) critical exponents �t and �r for the quenched bond mixed Potts ferromagnet

on the square lattice [107]. q� denotes the bifurcation value of q (see Fig 38); for

b = 2; q� ' 5:3. The dashed line represents the exact result for the pure ferromagnet

(see eq. (36)) where it was assumed that q� = 2.

Fig. 40 - q-dependence of the RGb1 (b = 2 and 3) approximation for the pure to random

crossover critical exponent �t for the quenched bond mixed Potts ferromagnet on

the square lattice [107]. q� denotes the bifurcation value of q.

Fig. 41 - Variations of the bifurcation value q� and of the value qc of q for which �t = 0

as functions of the inverse of the RG linear scaling factor b for the quenched mixed

Potts ferromagnet on the generalized Wheatstone-bridge hierarchical lattices. The

dashed lines are speculative ones assuming the Harris criterion to be recovered (i.e.,

q� = qc = 2) in the b!1 limit.

Fig. 42 - Portion of a square lattice of double opposite-directed bonds which have inde-

pendent occupancy probabilities p (\up" and \right"-directed) and q (\down" and

\left"-directed).
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Fig. 43 - RG21 approximation for the 
ow diagram and critical frontier of the double

opposite-directed bond percolation on the square lattice [28]. The attractors of the

double-way percolating (P+�), two single-way percolating (up-and right- directed

P+; down-and left-directed P�) and non-percolating (NP) phases are represented

by �. The semi-stable and the fully unstable �xed points are denoted by � and �
respectively. The arrows indicated the direction of 
ow under renormalization.

Fig. 44 - RG21 approximation for the 
ow diagram and critical frontier at T = 00K for

the frustrated Ising model (without dilution) on a square lattice [195]. � denote

the attractors of the ferromagnetic (F), antiferromagnetic (AF) and spin-glass (SG)

phases. The semi-stable and the fully unstable �xed points are represented by �
and � respectively. The arrows indicate the direction of 
ow under renormalization.

The 
ows are symmetric under the transformation p ! q.

Fig. 45 - RG21 approximation for the phase diagram at T = 00K for the quenched bond-

random frustrated Ising model on a square lattice [195]. � denote the attractors

of the ferromagnetic (F), antiferromagnetic (AF), paramagnetic (P) and spin-glass

(SG) phases. The semi-stable and fully unstable �xed points are represented by �
and � respectively.

Fig. 46 - The s = 0 cut of Fig. 45 which corresponds to its non-invariant subspace

p + q + r = 1.

Fig. 47 - RG21 approximation for the 
ow and phase diagrams for the isotropic N -

component cubic ferromagnet on the square lattice for di�erent values ofN [46]. P, F

and I denote the paramagnetic, ferromagnetic and intermediate phases respectively.

(a) Flow and phase diagram in the transmissivity (t1; t2) space (de�ned in eq. (248)).

The arrows indicate the RG 
ow; the full squares and the full circles respectively

indicate stable and unstable �xed points. The line t1 = t2 corresponds to the 2N -

state Potts model. (b) Phase diagram in the (kBT=J1; (J1 + J2)=J1) space. The

dashed lines are asymptotes.

Fig. 48 - N-dependences of the thermal correlation length critical exponent �T and of
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the crossover exponent � within the RG21 approximation [46] for the: (a) 2N-state

Potts ferromagnet on the square lattice; (b) N-component cubic ferromagnet on the

square lattice. In the N ! 0 limit, which corresponds to the self-avoiding walk

(SAW), it was found that �T (0) = ln 2= ln(4�p3) ' 0:85.

Fig. 49 - q-dependences of the thermal (a) yT (yT = ��1T ) and magnetic (b) yh(yh =

(d+2��)=2) anomalous dimensions for the q-state Potts ferromagnet on the square

lattice within the phenomenological RG approximation [295, 296]. The error bars

refer to q = 4 only. The full lines represent the exact results for yT [91] and yh

[92]. The scales on the right refer to the critical exponents � = 2(1 � y�1T ) (a) and

� = yh=(2� yh) (b).

Fig. 50 - b = 1; 2 and 5 clusters of spins on the square lattice corresponding to graphs

from the Wheatstone-bridge family with chemical length b (see Fig. 11 (a)-(d)).

Fig. 51 - RGb1 approximations [298] (b = 2 (a), b = 5 (b)) for the speci�c heat as a

function of the inverse reduced temperature K for the d = 2 Ising ferromagnet

(q = 2). The arrows and the dotted curves indicate the exact critical point Kc and

the exact result [6] respectively.

Fig. 52 - RGb1 approximations [298] for the speci�c heat as a function of the inverse

reduced temperature K for the d = 2 q-state Potts ferromagnet (dotted curve:

b = 2 and q = 1:4; full curve: b = 5, 4 and 3 if q = 2; 3 and 4 respectively). The

arrows indicate the exact critical points; the downwards arrow indicates the critical

point associated with the q! 1 limit (C vanishes for all K in this limit).

Fig. 53 - The d = b = 2 RG percolation `speci�c heat' Cp � k�1B (@C=@q)jq=1 [298] as a
function of the bond occupancy probability p � 1 � e�K . The arrow indicates the

exact critical point.

Fig. 54 - Successive RGbb0 approximations [228] for the thermal behavior of the magne-

tization for the Ising (q = 2) ferromagnet on the square lattice. For comparison the

exact result [332] is also shown.
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Fig. 55 - RG21 approximation [228] for the thermal behavior of the magnetization for

the q-state Potts ferromagnet on the square lattice for typical values of q.

Fig. 56 - AmplitudeA (de�ned in eq. (335)) of the critical behavior of the magnetization

for the Potts ferromagnet on the square lattice as functions of q within successive

RGbb0 approximations [228]. The broken lines are indicative and have been used

when the calculation was available only for integer values of q. For comparison, the

exact result [332] for A in the Ising case (q = 2) is also shown.

Fig. 57 - RGb1 approximations [161] for the thermal behavior of the longitudinal reduced

surface tension 
 � 
(T )=
(0) for the Ising (q = 2) ferromagnet on the square lattice.

The dashed line corresponds to the exact result [6]. The curves are out of scale (in

fact, they are all much closer to the exact result).

Fig. 58 - Cluster size dependence of the RGb1 coe�cients Ab1 (de�ned in eq. (339))

of the critical behavior of the longitudinal reduced surface tension for the Ising

ferromagnet on the square lattice [161]. The arrow points to the exact result A = 2

[6].

Fig. 59 - RGb1 approximations [302] for the thermal behavior of the inverse of correlation

length ��1 for the Ising (q = 2) ferromagnet on the square lattice. For comparison,

the exact result [6, 303, 5] is also shown (dashed line).

Fig. 60 - RG41 approximations (b = 4) [302] for the thermal behavior of the inverse of

correlation lenght ��1 for the q-state Potts ferromagnet on the square lattice for

typical values of q.

Fig. 61 - A typical phase diagram of a semi-in�nite ferromagnet with respective bulk and

surface coupling constants JB and JS. BF; SF and P denote the bulk ferromagnetic,

surface ferromagnetic and paramagnetic phases respectively. All three phases join

at the surface-bulk multicritical point (special transition). The non-vertical dashed

line corresponds to the limiting case where the surface is completely disconnected

from the bulk volume.
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Fig. 62 - Free surface RG cell; the respective dashed and full lines are bonds associated

with the surface JS and bulk JB coupling constants. The arrows are located at the

entry and exit nodes (which will generate the two roots of the associated graph).

Fig. 63 - Flow and phase diagrams for the semi-in�nite Ising (q = 2) ferromagnet on

the simple cubic lattice in the transmissivities space (tS; tB) within the extrapolated

RG approximation of ref. [138]. BF; SF and P refer to the bulk ferromagnetic,

surface ferromagnetic and paramagnetic phases respectively. �, � and � denote

trivial (fully stable), multicritical (unstable) and critical (semi-stable) �xed points

respectively. The broken lines are indicative.

Fig. 64 - q-dependences of �c and its extrapolated value ��
c within the RG approxima-

tion of ref. [138]. �, �, �j and 2 represent the q = 2 respective results obtained by

mean �eld approximation (see [297] and references therein), and in refs. [333], [334]

and [335].

Fig. 65 - q-dependences of A (de�ned in eq. (354)), its extrapolated value A� and the

crossover exponent � (de�ned in eq. (354)) within the RG approximation of ref.

[138]. � and � represent the respective results of [336] and [334].

Fig. 66 - Phase diagrams of a semi-in�nite cubic-lattice q-state Potts ferromagnet in

the (Tc(q)=Tc(2); �) space for di�erent values of q within the extrapolated RG ap-

proximation of ref. [138]. BF; SF and P denote the respective bulk ferromagnetic,

surface and paramagnetic phases.

Fig. 67 - The initial steps of construction of di�erent b-sized d-dimensional generalized

diamond-like and tress-like hierarchical lattices. The roots (1 and 2) and internal

sites are represented by empty and full dots respectively.

Fig. 68 - Critical �xed points t�bb0 (a) and critical exponent � (b) as functions of the

linear size b for �xed b0 = 1 and b0 = b � 1 for the Ising ferromagnet on the d = 2

diamond-like and tress-like hierarchical lattices within the RGbb0 approach [143].

The dot-dashed line corresponds to the exact result for the Ising ferromagnet on the

square lattice.
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Fig. 69 - Dependences of the critical �xed point t� on q and d within the RG21 approach

[143] for the q-state Potts ferromagnet on d-dimensional diamond-like ((a), (b)) and

tress-like ((c), (d)) hierarchical lattices. The dot-dashed curves ((a), (c)) refer to

the exact results for the Potts ferromagnet on the square lattice. In (b) and (d)

the results corresponding to the Ising ferromagnet on the d-dimensional hypercubic

lattice have been included for comparison, the dashed line being a guide to the eye.

Fig. 70 - Dependence of the critical exponents � on q and d within the RG21 approach

[143] for the q-state Potts ferromagnet on d-dimensional diamond-like and tress-like

hierarchical lattices (one and the same for both diamond and tress types). (a) �

against q for typical values of d; the dot-dashed curve refers to the exact result for

the square lattice. (b) � against d for typical values of q; the results corresponding

to the Ising ferromagnet on the d-dimensional hypercubic lattice have been included

for comparison, the dashed line being a guide to the eye.

Fig. 71 - Illustration, for the linear size b = 2, of the unequalities among the Potts

equivalent transmissivities between the roots 1 and 2 of the d-dimensional (d = 2; 3)

generalized Wheatstone-bridge, diamond-like and tress-like graphs.

Fig. 72 - Dependence of the critical point t� on q and d within the di�erential RG

approach (b =0 1 and b! 1) [143] for the q-state Potts ferromagnet on d-dimensional

generalized diamond-like, tress-like and Wheatstone-bridge hierarchical lattices (one

and the same for all of these hierarchical lattices). (a) t� as function of q for di�erent

values of d (the d = 2 curve coincides with the exact one for the square lattice). (b)

t� against d for various values of q; the results corresponding to the Ising ferromagnet

on d-dimensional hypercubic lattices have been included for comparison, the dashed

line being a guide to the eye.

Fig. 73 - Dependence of the critical exponent � on q and d within the di�erential RG ap-

proach (b0 = 1 and b! 1) [143] for the q-state Potts ferromagnet on d-dimensional

generalized diamond-like, tress-like and Wheatstone-bridge hierarchical lattices (one

and the same for all of these hierarchical lattices). (a) � as function of q for various

values of d (the exact result for the square lattice is represented by a dot-dashed
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line). (b) � against d for di�erent values of q; the results corresponding to the Ising

ferromagnet on d-dimensional hypercubic lattices have been included for compari-

son, the broken line being a guide to the eye.
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TABLE CAPTIONS

TABLE I - Exact values [111] for the p = 1 slopes of the bond-dilute q-state Potts

ferromagnet on the triangular and honeycomb lattices for di�erent values of q.

TABLE II - All non-equivalent con�gurations of the d = b = 2 Wheatstone-bridge

graph (where each bond is either a ferro-precollapsed (dotted line) or an antiferro-

precollapsed (dashed line) one) and their corresponding ground-state energiesE(`)=jJ j
and degeneracies g`(` = F;AF ) when the rooted spins are in the same state (F con-

�guration) or in di�erent states (AF con�guration). The resulting equivalent bond

according to rule (208) is also given (the wavy line corresponding to a frustrated

bond). The open (full) dots correspond to the roots (internal vertices).

TABLE III - Family of two-rooted graphs with �nite chemical length b and N incident

edges on each root used to treat spin models on the square lattice. The b!1 limit

corresponds to in�nite strips with width N , very common in the phenomenological

RG approach.

TABLE IV - The non-vanishing fni(q); di(q)g coe�cients which appear in the equiv-

alent transmissivities (see eq. 270)) between the roots 1 and 2 of the q-state

Potts model on the generalized d = 2 b-sized Wheatstone-bridge graphs (shown

in Figs. 11(a)-(d)) whose iterations lead to hierarchical lattices with fractal dimen-

sions df = ln[b2 + (b� 1)2]= ln b for di�erent values of b. They satisfy, according to

Eq. (124),
P

i ni(q) = 1 +
P

i di(q) = qc where c = b(b� 1) .

TABLE V - The fai; big coe�cients [107] which appear in the expression of

�b �
h
dT12(t;Gb)

dt

i
t=1=(

p
q+1)

(see eq. (272)) as function of q in the q-state Potts model,

using as cells the generalized d = 2 b-sized Wheatstone-bridge graphs, for di�erent

values of b.

TABLE VI - RGbb0 approximations �bb0 for the critical exponent � of the q-state Potts

model on the square lattice, using as cells the generalized d = 2 b-sized Wheatstone-

bridge graphs, for di�erent values of b; b0 and q(q = 1; 2; 3; 4). The asymptotic be-
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haviors for q ! 0 and q ! 1 (the latter one being equal to

ln(b=b0)= lnf[b2 + (b� 1)2]=[b02 + (b0 � 1)2]g) are also included.

TABLE VII - RGbb0 approximations �bb0 for the critical exponent � of the q-state Potts

model on the square lattice, using as cells those shown in Fig. 27, for di�erent values

of b, b0 and q (q = 1; 2; 3; 4). The asymptotic behaviors for q ! 0 and q ! 1 are

also included.

TABLE VIII - Critical points (kBTc=qJx) for the q-state anisotropic Potts ferromagnet

on the simple cubic lattice [104] for q = 1 (a), 2 (b) and 3(c): RG (top) and

extrapolated (bottom) values. � indicates exact results (see, for example, [3]) for

the isotropic d = 2 case; x [322], & [323] and xx [324] are series results for the

isotropic d = 3 case.

TABLE IX - Non-equivalent con�gurations of the q-state Potts ferromagnet on the

graphs G0 (a single edge) and G (Wheatstone-bridge) with their corresponding total

degeneracies (where the multiplying factor 2 accounts for the equivalent symmetric

con�guration), Boltzmann weigths and cluster magnetic momenta m (where each

spin contributes proportionally to its coordination number) necessary to calculate

eq. (333). The spin at the root 1 (at the top) is �xed in the state � = 0 (noted

"). � represents the (q � 1) con�gurations di�erent from "; � denotes the (q � 2)

con�gurations di�erent from " and �, while N represents the (q� 3) con�gurations

di�erent from ", � and �.
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