ISSN 0029-3865

CBPF-NF-046/88

QUANTITATIVE ANALYSIS OF COSMOLOGICAL MODELS
IN A BRANS-DICKE THEORY

by

C. ROMERO®, H.P. OLIVEIRA®* and J.R.T. de MELLO NETO?®*

‘Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr, Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil

*Departamento de Fisica
Universidade Federal da Paraiba
58050 - Joao Pessoca, PB - Brasil

§Instituto de Fisica
Universidade do Estado do Rio de Janeiro
20271 - Rio de Janeiro, RJ - Brasil

*Work partially suppoft by CNBq (Brazil).



CBPF-NF-046/88

ABSTRACT

_ Isotropic and homogeneous cosmological models with a
perfect fluid source in Brans-Dicke theory are investigated from
the point of view of dynamical system theory.
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Introduction
The attempts of incorporating Mach's principle into a
relativistic theory of gravity .as well as the introduction of a

time dependence for the Newtonian gravitation constant .have made

Brans-Dicke theory (BDTD quite appealing to a wide class of

cosmologists since it appeared in 1961[“. The fact that present

cbservational data still do not make a conclusive choice between
this theory and general relativity seems to give BDT a privileged
status among other alternative theories of gravitation[al.AL the

same time,a growing thecoretical research in the direction of the

so called scalar-tensor theories (of which BDT is ,certainly,the

most interesting cased is being carried out in recent years. As an
example of this renewed interest,we can quote the important role

BDT begins to play in the context of inflationary universe program

and supergravi ty[ 3.4 .

In this paper we investigate homogeneocus and jisotropic

cosmological models in Brans-Dicke theory from the point of view

of dynamical syst.em.kestricting.ourselves to line elements of

Friedmann—-Robertson-Walker type with zero-spatial curvature Ck=0D
and considering as sources perfect fluids with an equation of

state of the form p=Ap (OSAS1D,we can reduce the field eguations

to a two-dimensional autonomous dynamical system .Projecting the

phase portraits of this system on the Poincaré’s sph';erelszl » We are

left with a general picture of the solutions which permit us to

study their behavior at infinity,the existence of cosmological

singularities,.stability of Minkowski's spacetime ,etc.Our approach

consists basically of taking arbitrary values for the coupling

constant w and regarding fluids obeying different equations of
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state according to the value chosen for A\

In order to get a complete knowledge of the evolution
of the dynamical system as a function of the coupling constant,we
have made computations for several values of w. As a matter of
fact,the correct value of w which should appear in Brans-Dicke
equations is not known yet.Nevertheless,theoretical arguments and
experimental results put some restrictions on its domain of
validity or even predict specific numbers to be assigned to it.

For example,if we consider ,as in Dickes’'s revised varsionts] s AR

energy-momentum tensor Tpvc ¢ containing the scalar field ¢ of
BDT.then the strong energy condition THpV”Vu 2 T2 constrains the
value of w to be greater than —3/2‘7'8' ) .To account for the

perihelium motion of Mercury.on the other hand, w has to be set
B{!9.10]

greater than .Furthemore,to avoid a possible violation of

the gravitational weak equivalence principle some authors reguire
a lower limit on the coupling constant of w = 29““.AL Lthis
peint,it is worth mentioning that as w becomes larger ., Brans-Dicke
theory turns out to be observationally indistinguishable from
general relativity. This conclusion is not unexpected since in the
-1

l1imit w -+ o and ¢ = & Brans-Dicke field equations become

identical to the Einstein equations of general relativity theory.

1. The field equations

The general Brans-Dicke equations may be written as

f - Wl _ W _ 1
R}JD (8n- ¢ H T}JU C--é-;:;—a-)'l‘guv ?;H¢;‘U ? ¢;p-’p C1.ad

8nT
O¢ = =55 1.1
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where TW and T denote the energy-momentum tensor and |its
trace, respectively . which represent the matter content of the
universe. For perfect flulds Tw- "vau"phuv' hpv being the
projection tensor in the subspace orthogonal to the 4-velocity
vector field Vp .« £ the energy density and p the thermodynamic
pressure.

HNow,let us consider a Friedmann~Robertson-Walker metric
with euclidean spatial sections written in the standard form

ds®e atZ-R¥udtdx®+ yicde®+sen’ede®).

The assumption of homogeneity and isotropy requires the scalar
field to be time-dependent only ,i.e. ,¢ = gtd>.Thus, in a
co-moving coordinate system cvM= 64> ,Brans-Dicke equations (1.ad

O
and C1.b) for a perfect fluid satisfying an equation of state p=hp

are:

6+ Za - Oefi L ¥l iian] - W & ¢ 2. ad
3 ® Zw+3 e 9 :

. . .

e e _ _8mp w+l _ 6 ¢ cz2.bd

5% 3 i i" * Zest S %

(X3 * - Bﬂp _

¢ + 6¢ a—w-;‘éci 3 . c2.cd

where 6 = E3_E is the expansion factor of the universe and dot
means differentiation with respect to tLime.

Defining v = gi and eliminpating p from (2.c) we readily
obtain the following set of first-order differential eguations:

6 = F‘M’CB.¢) 3. ad
= kaceo¢)n Ca. b

wher e Fku and wa are given by
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1 - 2 3w S 3 -
che.w - m[ C(2+wehwd 8 + —ECMt w-1dy + w1 37\)6\;!]

i C1-3A) _2 (B+DSw-3Awd 2
et | e——— - —_—-—-—-*)‘ - .
H, (6.¥) = 3 +3[ 3 e 5 cawa-&ax)ev]

The variable y defined above deserves some comments.
Recalling that in Brans-Dicke theory ¢ is taken equal to the

rm:iprocall of G(¢ = 6, we verify that ¢ = - ?—5 and,thus,it is a

mesure of the negative variation of the gravitational constant

with timel .

1.Qualitative Analysis of the dynamical system

The system of differential equations expressed by (3.ad
and €3.b) is a kind of system usually referred to as a homogeneous
auvtonomous planar system of second degree. Many of the generic
features of the integral solutions of this system may be studied
without working out explicit ‘solutions € = &C(tL) and y = yWitd.In
fact,what really matters here is the global behaviour of classes
of solutions and the stability of the equilibrium points.

The funcitions kace.p) and kace.vb.which are quadratic
homogeneous polynomials in the pair of variables (8,y,),coontain A
and w as parameters which may vary according to the equation of
state of the fluid and to the value chosen for the coupling
constant.

To find the equilibrium points of the dynamical system
€3.a)-C3.b) amounts to set simultanecusly kace.w) and Hhmce.w

equal to zero.The origin of the phase plane (8 = O,y = 0O turns
1

AW far as variations of the gravitational constlont are
concerned, 1 is the naturat variable Lo be congidered.
of the preseni value of 1’4 are found tn the
example,ref. 112), '

Eslimalions
ltiterature. Sees.for
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out to be an equilibrium point for all values of A and v ,and, in
fact.the only significant finite equilibrium point of the
system . This point corresponds to a solution which represents

Minkowski's spacetime.naturally- satisfying Brans-Dicke equations

provided we take ¢ = G 's constant.a

Homogeneous system of the type we are dealing with are
much better understood if we perform the well-known transformation
of the phase plane intc the Poincaré sphere.(For a compl ete

treatment of the subject we refer the reader to fef[lﬂ.

2.Regions of negative energy density and unphysical solutions

Restrictions on the integral curves filling up the
phase diagrams (to be exhibited in the next section) may be
imposed by reasonable physical assumptions. One of these limes on
the fact that solutions located in regions where p < 0 should not
be regarded as physically admissible,at least classically.

From the system of eguationsC2.ad ,(2.bd and (2.c) it

is possible to derive the following equation:

Bnp ww: e*

_¢-ev-_a+§ c4>
This eguation provides a way of detecting the sign of

the energy density and,thus,allow us to rule out regions of the

2

wYhen v =z -4/9 there eoxisle an entire line of muliiple
squilibrium points  in the phase plane. Each point (Bo.woi of this
line lies on the wsiroight line Yy = -6 and constitutes a  solulion
of the dynamical aystem % B = ©0, Y = 0> which representis de
Sitter ULV erses with a varying gravitational conttm;t’. Theas
special solutions wore found firmt by O'Hanlon and Tupper and ’
are in fazi,the orly de Sitter-Type solulions of Brans-Dicke
equalicns with metric of the form ve ore considering. We do not

cormiructi heore the phane diagram for this value of w. Also, in wvhat
follows, ve exclude of our discussion the coss v = -B/2.
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diagrams in which p is negative. Here, we should remark two
points: the first is that the existence and shape of forbidden
regions do not depend upon the equation of state of the fluid;the
second point is expressed by the fact that Lhere exists a certain
value v, -372, such that for values of the coupling constant
less than v, we have no region with negative energy density. When
w >-3s2 there appear regions in which p < O,and ,in fact, these
regions are delimited by the invariant rays which lie on the lines
BB' and CC'. As the value of w increases,the classically admissible

solutions tend to be confined into a narrow region containing the

6-axis (see figs.1.2,3).

Fig. 1. There is ne region vith Fig. 2. Regions with o tdotted:,

PO when w(-3.-2, Coae (-B/2<(W(O).
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Fig. 5. Regions vith X0 rdotted> vhen v is posilive

3. The Invariant rays of the dynamical system

Throughout the analysis of the diagrams to be presented

further we will be faced with some solutions in which the ratio

y 76 is constant .Solutions of this form are special because ,in

most theories where one does have a varying © +Lthis wvariation

occurs at a rate G/G = -fH , H being the Hubble parameter and f a

dimensionless number of the order of the [2'9?

unity These

solutions will be referred to as the invariant
[14)

rays of the
dynamical system (3O In the phase plane 8y the invariant rays
lie on straight lines and begin or end at the origin MCO,00.1It
turns out that when w <-3/2 we have two invariant rays . and when
w >-3/2 there are six invariant rays (see appendi>. The angles
the invariant rays make with the 6-axis depend on w and two of

them depend on A also. If we assign a fixed value of A to the
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equations (3> , then as w varies things happen as though we had
rotations of the invariant rays in the phase plane (or,on the
Poincaré sphere). The four invariant rays which are independent of
A will lie on the lines BB' and CC'(see figs.4,5,8) and they do
not exist if w ¢ -3/2. When w = -3,2 ,AA’,BB’ and CC’ all coincide
making an angle with the &-axis of -33,88°. As w increases BB’
rotates in a conterclockwise sense , approaching the &-axis. CC°,
in turn ,rotates in clockwise sense, tending to make an angle of
-380° with the positive direction of the 8-axis. Finally, when w »

+® , then the three lines AA', BB'and CC' tend to align with the

©-axis , AA’ lying always between BB®' and CC'.

Fig. 7. Oharn and w¢

1 .
s Fig. 8. O<Ai/3 and V=L
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. i . 1
Fig. ©. 03 and W rig. 10. 1/3¢\<a ond v,

A-1

. 1 . 3
Fig. 11. $73\ and var s Fig. 12. L/9A A and A
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The two invariant rays .which depend on A and which are present
for any value of w , lie on the line AA' and rotates in clockwise
sense if A <(=3/2, or in countercleckwise sense if 173 < A € 1.For

A = 1,3 it is fixed ,making an angle of -33,80° with the positive

direction of the O6-axis (see figs.7-12).

4.Representation of Brans-Dicke cosmological solutions on the

Poincare' sphere (The phase diagrams).

In this section we present the phase diagrams drawn on
the Poincaré sphere corresponding to fluids with the egquation of
state p = Ap,with A varying through the following intervals:

ad)A=0 C(dustd, b OAC1/3, cOA=1,/3 <(radiation), dd1/-xKx<12,

ed1./2582¢1 and > A=1 ('stiff matter’).
ad) The dust case.

We begin by considering a pressureless fluid, i.e., A =
0. Essentially,we have three topologically distinct diagranms,
which must be analysed separately, according to wh.ether w =32,

=3/2 <w { -4-3 or w >-4/3. The case w = O is also analysed since

it possesses some special fealures.

The first diagram of the dust case to be analysed
refers to values of w less than -3/2. So, let us examine the
fig.13.

The curves appearing {in this diagram are, naiurally.
sclutions of the dynamical system (3) with A=0. They describe the
evolution of cosmological models as the cosmic time goes by. Any
solution of (3> for A=Q and w <-3/2 must be represented by one of
these trajectories. The points lying exactly on the circunference

represents the infinity of the phase plane €y .through the well
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known Poincaré mapping (see.for example,ref(S)). The origin M,

¢

Fig.13. Dust case when w <(-3.2.

which is an isoclated equilibrium point of the system, is

identified to Minkowski spacetime with static gravitational

constant. The line AA’ contains the invariant rays AM and MA°®

discussed earlier. Looking into the diagram of fig.13 we may
classify the solutions basically in three distinct groups:

i) Solutions lying on the invariant ray AM.

This type of solution describes a universe starting
from an initial *big bang' (8 =+w,y =+®,p =+ad and approaching, as
the cosmic time goes by, Minkowski spacetime M. An essential

feature of the models represented by this éurve is that, during

their whole evol ution the gravitaticnal “constant” G
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increases ¢ w ¢ O ). So, these models do not satisfy Dirac’s
hypothesis, which asserts that G must decrease as the universe
expands,

i1) Spolutions which go from M to A’

These solutions represent cosmological models starting
from Minkowski spacetime at the infinitely distant past (t=-ad
goling Lhrougl:\ a contraction regime until reaching final collapse,
Although constant at the beginning of the cosmos, the
gravitational constant decreases continuocusly further. Among all
solutions of the diagram. this is the only one which does not end
in the Minkowski spacetime M.

ii1i1dNon-singular sclutions.

The closed curves appearing in the diagram represent
non-singular cosmological moedels starting at  the infinitely
distant past (te-ad from Minkowski spacetime and returning to it
later, in the infinitely distant future. The energy density p (see
eq.4> remains finite all the time, al-though it is not constant
during the evolution of these universes. A typical closed
trajectory under takes initially a contraction phase with

decreasing gravitational constant , followed by an expansion era

(still with decreasing G) ,afterwhat the gravitational constant
begins to increase , approaching a constant value as the universe
tends to a Minkowskian world. Since w <-3-2 there is no sclution
in the diagram of fig.13 with o < 0O,

Let us examine the next diagram, which holds for the

interval -3,2 < w (=43 (fig.14).
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Fig. 14. Dusl case with -3/2 ¢ v (-4/3.
Polled regions represent unphysical solutions with £XO.

In the above diagram .we are left with six invariant

rays : AM, MA°, BM, MB', CM and MC’'. As we have pointed earlier,

the subdivision of twoe invariant rays (AM and MA') in six takes
place when w reaches the value -3/2. The dotted regions in the
diagram stand for solutions with p<0O. At least classically, curves

lying on these regions cannot describe physical models (the curves

AM and MA'belong to this set) .0On the other hand, solutions lying

on the lines BB' and CC' (i.e., BM, MB', CM, MC') are vacuum

solutions Cp=0) and present singularities in their geometries,

constituting ‘big bang * models (BM,CM or collapsing models (MB’,

MC*). It is interesting to notice that all solutions with p < O

necessarilly converges to or diverges from Minkowski spacetime.
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Solutions lying on Lthe sectors BMC' and CMB', which startfrom an

initial explosion (€ = +ad, have an expansion phase followed by

contraction and collapse in the end. They do not approach

Minkowski spacetime C(nor in the future, nor in the past), even

though they tend asymptotically to the vacuum solutions MB' and
MC*.

Let us consider the diagram corresponding to

-4/3 <w <-1 Cfig.1%).

Fig. 13. Dust case with -4/8 <v ¢ =1,
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After passing the value w = =-4,/3 , the picture changes

drastically. First, the curve CM reverses tLhe dirsction of time,

giving rise to an interesting consequence : Minkowski spacetime,
as well as the vacuum solutions, are absolutely unstable with

respect to negative perturbations of the energy density p ¢ p » p

+ Sp, with &p < O D.(Instabllity properties of Minkowski spacetime

will be discussed later 2. Also, when w 2>=4/3, AA' now llies

outside the negative energy density sectors (dotteds regiond

while +the arrcw of time reverses i(ts direction. Thus., MA

represents a model coming from a Minkowskian primordial era

beginning tc expand indefinitely. Since MA 1lies in a region where

P20 , we have energy-matter being ctreated continuously in this

case. A'™, in turn, represents a contracting model which
approaches Minkowski spacetime with an energy-matter annihilation

process taking place. Solutions lying on sector BMA® are of ‘big

bang’' type and go over to Minkowskian geometry C all have p>0 ,

increasing G at the beginning and decreasing G at the final stage

of their evolution.?. Sector AMB' contains solutions which evol ve

exactly the opposite way. Solutions leaving M and terminating at C

differ from MA in that they tend to the vacuum scolution MC in the

infinitely distant future (L + +m D A similar comment is wvalid

with respect to the difference between the set of curves lying on

sector A'MC' and the curve A'M. When w >—-4-3 , two cases deserve a

separate analysis: w= -1 and w = 0 { see figs. 18 and 17 below ),

If we compare fig.18 with fig.15 , we observe that the

topology of the curves in these phase portraits has not been

modifiedts.]\’et.. from Lthe point of view of Cosmoclogy the position

of line AA'" in fig. 18 ¢ w = -1 D> PbBrings something anew. Observing
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that AA®' ceincides with the y-axis, we conclude that the models

AY

Fig.18. ‘Dust’ case with w = -t.

represented by the curves MA and A'M are static models (& = 0).
So, we have static spacetimes (¢ Minkowskian gecometry 2 with a
varying gravitational constant and positive energy density.
Models represented by the curve AM CA'M in fig.18 leaves (tends
tod Minkowski spacetime (where we have 8 = 0 ,¢y = 0 and p = 0 D,
so, we have creation ¢ annihilation 2 of matter in these models.
Let us examine the case w = 0 (fig.17). Here, the static
sclutions lying on CC’' are vacuum solutions with varying G. Thus,
we are {n presence of a varying scalar field ¢ which is not
generated by any external matter field. This fact violates the

usual formulation of Mach's prlnc.lpl.“.l On the other hand, in
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Fig.17. *“Dust’ solutions for w = O,

£fig.18 and fig. 17 there appear what could be claimed to be the
“best"” soluticons of Brans-Dicke theory: those which represent 'big
bang’ expanding models ( 6 > O 3 having positive energy density
and a gravitational constant that satisfies Dirac’s hypothesis. We
are refering to the class of solutions described by the curve
A'M. As we shall see further, except for radiation ( A = 13 > and
stiff matter cases, this kind of solution is available for all
values of A in a certain definite range of wvariation of w. That

is, for dust models this happens when w >-1

kti . Solutjions lying on

s for O < A < 173,
when w >-iéf_;f°r 173 <C A< 1, when w <

MA are just the ‘counter-part’ of those on A'M and do not have so
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much physical interest since they have opposite properties of A'M.
At this point, we call attention also for solutions of sector
C'MA' : these are all non-static solutions having positive energy
density . decreasing gravitational constant and approaching
Minkowski spacetime as t + o .Curves on sector MAC,in turn, do not
describe physically appealing cosmclogical models .

When w > O ( see fig.18 2 the only significant fact we
should comment on is that the vacuum solutions represented by C'M

and MC are not static solutions anymore Cas in fig.17).

Fig.18.Dust case with w > 0.

Finally., as w becomes large , the "forbidden" regions,

i.e., regions where the energy density is negative (sectors MB'C’
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and NBC D, become wider, as we have pictured in figs.2 and 3.
However, the line A'A still remains in the positive region. ¥hen
we + @ the soclutions with p > O go over the Friedmann
dust solution represented in fig.19 as lying on ihe line AA', which
i{s in accordance with the known fact that Brans-Dicke theory iend

to general relativity when w becomes large.

Fig.19. Dust solutions when w + +m.

b) The radiation case

It is a2 well known fact that in Brans-Dicke Lheory when

the fluid obeys the equation of state p = (1/30p, the scalar field
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¢ is sourceless ( which is readily seen from q.C(1.b3 since T=0>.
This means that Einstein's radiation solutions will satisfy
Brans-Dicke field equations (1.ad and C1.® if we take ¢ = G e
const. It is interesting to see that this result may be deduced
simply by looking into the phase portraits for A = 1,3 (see
figs.20,21 and 23 D>. Indeed, in this case the line AA® which
contains the two invariant rays AM and MA® is fixed ¢ it does not
depend upon the value of the coupling constant w and, thus, does

not rotate in the phase plane as w varies D> and coincides with the

@~axis. Friedmann's radiation solution
1,2
R =Rot . @=G' , p= 222

l1ies on the curve AM,

Fig. 20. Radialion caase with v ¢ -B3/2.
There is no region wilh O,
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Fig. 21. Rodiation case vith -3/2 ¢ v ¢ =473.

The comments we made on the dust case hold aiso for the
majority of solutions of the phase diagrams in the radi ation case.
Nevertiheless, let us examine some new characteristics oceurring in
figs.20.21 and 22:

If w< -3/2 , fig.20 shows that we have almost the same
pattern of fig.13., the only difference being the existence of
singular solutions with non-varying G.

In fig.21 C -3/2 < w < -4/3 D we identify closed curves
representing non-singular solutions lying on the regicn where
0. This does not viclate Hawking's theorems on singularities
since the strong energy condition Tppv“v”z T/2 is not fulfilled by

Lthese solutions in the interval -3/2 < w £ -43, where here ?W
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Fig. 22. Radiation case wilh w > ©.

denctes the enhergy-momenhtum tLensor in the revised Dicke
versi on[ 71 . Actually ’ this expl ains the occurrence of
non-singular solutions for w =-43 found out by O'Hanlon and

Tupperuaj.

When w 2 -4-3 we do not have non-singular solutions
anymore. Incidentally, this result holds for all cases we will
analy=e later. The curve C'M which appear in fig. 22 (w > 0D is
essentially the same of the dust case when w > O (see fig 18),
except that, here, scolutions represented by this curve tend

asymptotically to Friedmann solution lying on AM.
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c) The case O < A < 173,

This case 4is an intermediary between dust and
radiation. The rotation of the invariant ray AA' is depicted In
figs.7-9 and is identical to the dust case. Almost the totallitiy
of the diagrams when O < A < 1/3 look like the dust diagrafns.
However, besides the values w = -3/2 and w = -4/3 , there are also
topological changes i the phase plane when w takes Lthe values w =

woCAD -% and w = wen = 4-32%-1>. These new critical

points w'C)u) and w CAY are present too in the case 173 < A < 1.
When O < A < 13 the following ineguality holds:-3.2 < wheAd <
W'PCA) ¢ -4-3 .It is worthwhile noticing that §f X = O ., then
> = wTCA) = -4-3 and when A = 1.3, then w (Ad= w  CAD=-3/2.
The diagrams for 13 < A < 1 and w < ~3/2 are identical
to fig.13. Also, when -3/2 < w < w CA) we have the same diagram as
infig.14. The analysis of thes two cases has been carried out

before. Now, when w.(h) < w £ w“()\) we obtain the following

configuration:

Locking at the diagram of fig.23 we see Lhat the curve
AM lies on a region of positive energy density representing ‘big
bang’' models with increasing gravitational constant. We do not
have a model with such characteristic in the cases anal ysed
previously. A similar comments can be made o©on the solutions
contained in MA’ which describe collapsing universes with
decreasing G starting from a Minkowski era. Solutions which come
from B and go to A’ are also new : asymptotically they begin as
vacuum solutions undergoing an expansion phase , followed by
contraction and finally entering into a process of collapse

towards the singularity with an infinite energy density. AP’
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nodels behaves the reverse of BA' models.

- -k
Fig. 23. Case 0 < A ¢ /3 and. v A} ¢ w < W 8

Let us consider w“du < w<€ -4 73 (see fig.24)D.

Here, we find closed solutions which are not similar to those appearir

in the radiation case when =-3/2 <w < -4/3 (see fig.21>. The
non-singular solutions of fig.24 are always contracting or always
expanding C(non-singular solutions disappear when w > -4-3 3, We
must observe alsc that A'M and MA have changed their orientation
in time if we compare this configuration with the former diagram

(see fig. 23D.

Static soclutions ¢ analogous to the dust case) are

obtained when we set w = k—l-l- This value of w is greater than

0> whem O < A < 1-3. The phase diagram corresponding to w =



~-26~ CBPF-NF~046/88

=1 is identical to that of ffig.18. ¥When w = 0 and w > O we

e
Fig.24. Case O ¢ X ¢ 1/9 and v A3 ¢ w ¢ -&8,

obtain phase diagrams identical to those obtained in the dust case
for the same values of W see figs.17 and 18, respectivelyd. We
should point out once more that in both cases ¢ w = O and w > O D
the most significant curves are, as for dust models, those lying
on the invariant ray A'M or those lying on the sector A'MC'. As we
have seen before, these curves represent °*‘big bang’ models with
decreasing gravitational constant and positive energy density. The

evolution of the phase diagrams as w +» +® is the same as in the

dust case ; hence, all we have stated in section 4.a is valid also

for the case O ¢ XA < 1,
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d) The case /73 < A < 1,

Let us take up the case when the fluid obeys an
equation of state p = Ap with A in the interval 1,3 ¢ A (1, which
is an intermediary between radiation and stiff matter. As the the
sense of rotation of the line AA’ is concerned, we notice now that
it is counterclockwise (see figs. 10-12). On the other hand, in
this case, w CAD < -3/2; and ~3/2 ¢ wCA> < -4-3 if A < 1,2 or
w.CJ\) 2 -4/73 4f A 2 172, So, in a certain range of varjation of w,
we have to distinguish tLhe phase diagrams according to whether
MNirs2 or A 2 12 |

When w < w €A € and 143 < A < 1) we have three
diagrams corresponding to: 1dw < L (fig. a5, w-——-!':-Cfig. 282 and

-1 A-1
i

Fig.23. 1/9 ¢ A ¢t and v «

1
A-g ~
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Al

Fig.26. 179 < A ¢t and w =

A=t

In the first of these diagrams Cfig.25) we have closed
¢ non-singular ) solutions and also singular solutions Clying on

AA'D. As we have discussed earlier, AM represents cosmological

models exhibiting physical properties quite desirable to anymodel

intending to fit obser vational data. Nevertheless, Lthis solution

1

exists only for w < -1 i.e.. for negative w, thus contradicting

arguments which restrict w to be ;-:«:::-.i.t.i\av'le[a;|
in the diagram of fig.20 AM and MA* are static
solutions with p > O

., already discussed in section 4.a. The

closed solutions here are of two types: expanding models or
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i "'A
Cw < w A
A-1

Fig.27 13 < A ¢ 3 and

contracting models, both ever)asting univelrses approcaching
Minkowski spacetime. The gravitational constant in these models
increases during a pericd of Lime and,then, start decreasing. In
fig.27 we have the same solutions of the dust case, but now with
direction of time reversed ( see fig.13 D.

Let us investigate the diagram corresponding to the
case w¥ead < w < -3.2 (fig.28) . The solutions lying on AA®
change their original direction of time and the closed solutions
become singular ‘big bang’ models collapsing in the future. Ve
have already found solutions somewhat similar to these in the

investigation of the dust case Cfig.14) and also when O < A< 13

C fig.23 > . although there the solutions either originated from
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or tended asymptotically to vacuum solutions ¢ see fig.23 D.

i 7
Fig.28. Cose £/% < A < 1 and v (A < w < =-3/2.

To continue, at this point we have to divide our

analysis according to whether 1,3 <A < 172 or 172 £ A < 1. In the

first possibility. there are three topologically distinct cases:

“3/2 < w € WEAY , WwECA) < w < -4-3 and w > -4-3. In the second

possibility, the distinct cases to be examined next are:

32 ¢ Ww<-4-3 4,3 < w wCr) and w > w CAD.

So, let us assume initially that 1.3 < A < 1,2 and

consider fig. 29, which corresponds to -372 { w < w‘(h):
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]
Fig.29. Case 18 ¢ A ¢ 1/2 and -3/2 < ¥ < w (A,

In the figure above there appear the vacuum spolutions
gM, MB', CM and MC’. Solutions lying on the regions BCM and B°'C'M’
have negative energy density and lock like those of fig.14. lying
on the same regions, although they do not apprcocach vacuum
solutions near the singularity. Only the closed solutions in this
diagram have positive energy density.

When WCA) < w < -4-3 (see fi1g.30) the curve A'M
emerges in the region where where p > O, representing expanding
*big bang® models with increasing gravitational constant. This

type of solution has been already alnalysed before when we
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considered the dust case (see fig. 13).

=
Fig. %0.Case /8 ¢ A ¢ /2 ard v (M) C v  -4/%,

If w lies in the interval -4.3 < w < O , we have the

diagram of fig. 31.

At the value w = O the line CC' coincides with the

py-axis and then we obtain the static vacuum solutions already

discussed ( see, for instance, fig.17 J.

For w > O the corresponding phase diagram is depicted
in fig. 32. '
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Fig.51.Cose 1/3 ( A < 1/2 and -4/% ¢ v C D,
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Fig.3%2.Case 13 < A ¢ 172 and v > O,

It should be ﬁentioned that the later three diagrams
are topologically equivalent in the plane phase.

Now, let us suppose that 1/2 <A < 1. If -3/2 < w < -4/3
we will have exactly the same diagram of fig.29..and for
-4-3 < w < wCAY we will obtain the diagram of fig, 33.

Finally, when w w'(k) and also in the limit w +» +© we
obtain again the same diagrams as in figs.32 and 19 ,respecti vely.
@) The stiff matter case.

The next case to be examinated is of a fluid with

the stiff matter equation of state p = p. Five diagrams are
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&~
Fig.99. Case 172 ¢ A < 1 and -4/89 ¢ w ¢ w (k5

necessary for complete characterizing this case: w < =32
(fig.34> ., =32 < w < 473 (fig.29) , -4/3 <( w O (fig. 3%, w> O
(£fig.38) and w » +o (fig.37D.

Initially, we should mention that if A = 1 the line AA®
does not rotate in the phase plane B8y as w takes different values.

In fact, AA’' is fixed and makes an angle a = -33.698° with the

positive B-axis.
Yhen w < -3/2, in contrast to the previous cases, we

have no closed curves {n the diagram. Instead, we have only

expanding 'big bang' models with a subsequent contraction phase
(see fig. 34D,
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Fig. 34. Stiff matter case vith v ¢ -3.-2,

On the other hand, when -3/2 < w < -4,3 the portrait is equal to
that of fig.28. In the interval -4/3 < w { O we get the diagram of

fig.35.

The next diagrams correspond to w > O (fig. 36> and to
we +m Cfig. 37D,

It should be pointed out that in the stiff matter case
the solutions corresponding to the invariant rays AM and MA' have
positive energy density only when w < -3/2 and that non-singul ar
solutions are permitted only in the interval -3,2 < w < ~4-3. When
w + +m all solutions with p > O tend to the vacuum solutions

represented by BM Cor C'M and MB'Cor MCD.
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rig. 33, Stiff molier case with -4-3 < v < O.
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Fig. 38, 3Sid{ wmatter cose with v > O.

Fig. 97. Sl maller case wilh v =+ +m.



3¢ CBPF-NF-046/88

S.Stability properties of Minkowski spacetime in Brans-Dicke theory
It would be rather tedious to analyse the stability

properties of Minkowski spacetime as well as of some solutions in

Brans-Dicke theory looking into, one by one, all the diagrams

presented in the preceding section. Certainly. there are some

regularities amongst the phase portraits, but these regularities

are not sufficient enocugh to allow us treating the subject in a

general and simplified way. Thus, we shall restrict ourselves to

considering only two diagrams which seems to us to be very
typical ones.

Actually, we are interested in the stability of

Minkowski spacetime which is pictured in all diagrams as the

origin M of the phase plane and which constitutes the only
isclated equilibrium point of the dynamical system €3). The kind
of stabllity we are concerned with here must be understood in the

usual sense of dynamical system theory: we consider solutions with

initial conditions (8o = 8(ted, wo = yw (to) D lying near an

equilibrium point and observe the evolution of these solutions

with time.

We begin by considering fig.13 which represents the

pPhase diagram of dust models when w < -3/2. This pattern is also

present, as we have seen in the case of flulids satisfying the

equation of state p = Ap with O < A < 1,3, So, looking at this
diagram we verify that, except for the line AA', throughout the
entire phase plane Minkowski spacetime M exhibits a curjious type
of stability., The existence of closed curves makes Minkowski
spacetime unstable in a small region near the origin M ¢ local

instabilityd ,though when t++o any perturbation of this solution
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tends Lo disappear since the closed curves return to M C global

stability D.

Now, lel us turn our attention to fig.18, where we have

w > O and O € A < 173, In this diagram we can identify tLhree

distinct regions: sector BMC’, sector B'MC and the region with
negative energy density ¢ dotted areas D. Let us consider sector
BMC', which contains the solution A'M. Finite perturbations of
Minkowski spacetime with respect to e,y and p within this region
tend to vanish as the cosmic time goes by. Thus, .BMC' is a region
of stability for M. Likewise, sector B'MC is a region of
instability: small perturbations in 8.,y and p tend to increase
more and more as the perturbed models evolve in time. If we
perturb Minkowski spacetime with respect to the energy density p

in such a way that 600 ( which is equivalent to going into the

dotted regions 2>, then we fall in a region of instability ‘where

Lhe solutions run away indefinitely from M.

6. Conclusion

As it bas been pointed out by some authors recentlytlSE

the increasing use of the theory of dynamical systems as a

powerful tool in the study of cosmological models lies specially

on the fact that one is not restricted to isolated solutions, but,

rather, there is the possibility of carrying out a general
analysis of entire classes of solutions.

In this paper we have been éoncerned with models of the

universe predicted by a particular scalar -tensor thaoryllo]of

gravitation under assumptions of homogeneity, isotropy and spatial

flatness. The diagrams we have shown cover the essentials of



