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1 Introduction

The problem of searching the geometrical origin of a given physical theory is of great

interest, because its solution gives a better understanding, and perhaps an exact solution

of the underlying model. In the present paper we study the geometry of two physically

relevant partial di�erential equations : the Liouville and the sine{Gordon ones. Both the

equations has been obtained in he previous century by studying the di�erential geome-

try of surfaces in R
3 [1, 2]. The geometrical meaning of these equations is similar: the

Liouville equation describes minimal surfaces, i.e. surfaces with vanishing mean curva-

ture, while the sine{Gordon equation is related to surfaces of constant negative scalar

curvature. The Liouville equation appears also in the uniformization theory of the Rie-

mann surfaces. Many{valued surface transformations between surfaces of constant scalar

negative curvature has been studied by Bianchi, Lie, B�acklund and Darboux [3] (for a

more recent review on the subject, see [4, 5, 6]). The transformation originally discussed

by B�acklund in 1880 which maps the sine{Gordon into itself, is a particular example of

what nowadays is called a B�acklund transformation. The latter play important role in

the theory of the partial di�erential equations solvable by Inverse Scattering Method [5].

In physical applications, the interest to the quantum Liouville model is motivated by

its relation to the string theory, conformal �eld theory in two dimensions and 2D gravity

(for a review see [7]). The classical equations of motion of a string in a at target space

describe a surface with vanishing mean curvatures. In contrast to the classical equations

of motion, within the quantum theory, the Liouville action arises as a (Weyl) anomaly

of Polyakov's path integral after integration over the world sheet metric in the conformal

gauge.

On the other hand, both Liouville and sine{Gordon are examples of completely inte-

grable (in the sense of Liouville ) �eld theories. In particular, the �eld equations admit

a zero curvature representation. An important property of the sine{Gordon equation is

that it has soliton solutions [5, 8] which describe elastic collision of localizable waves. The

latter can be interpreted as new particles of nonperturbative nature which appear in the

spectrum of the theory. Due to the quantum integrability, the scattering between the
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quantum sine{Gordon solitons remains elastic. Exact S matrix which factorizes into two

soliton interactions has been proposed in [9].

The idea to construct integrable models in two dimensions by studying embeddings of

surfaces in varieties of higher dimensions has a huge history. In its whole generality it was

formulated by Saveliev [10] who considered embeddings in spaces with a �xed (simple)

group of motions. The proposal advanced in [10] is to consider the equations of Gauss,

Codazzi and Ricci [11, 12] which describe embeddings of some �xed two dimensional

manifold into a space of higher dimension and to select "integrable" embeddings. By

integrability one understands the embedding equations are equivalent to the zero curvature

condition of a certain (Lax) connection. The classi�cation of the integrable embeddings

is a rather involved problem since in general, the equations of Gauss, Codazzi and Ricci,

in general are very complicated, and thus, too di�cult to solve. Some special embeddings

into the three dimensional a�ne space has been considered in [13] in relation to the

W3 generalization of the Polyakov's gravity [7]. The canonical Lax pair of the An Toda

theories was derived by studying the extrinsic geometry of surfaces which are "chirally"

embedded in CP
n [14].

In the present paper we consider the internal Riemannian geometry of surfaces of

constant negative scalar curvature R = �2. It is well known that �xing conformal coor-

dinates on the surface, one derives the Liouville equation (2.9a), whereas in the gener-

alized Tschebysche� coordinates, the sine{Gordon (2.9b) equation appears. This simple

observation yields to the conclusion that there should a (locally) invertible transforma-

tion which maps the Liouville equation into the sine{Gordon one. The latter relation

can be in principle derived by solving the Laplace{Beltrami equation associated to the

Tschebysche� metric (2.8a). To get explicit expressions, we consider isometric immer-

sions in the Lobachevskian plane�. These immersions produce naturally solutions of the

Liouville and sine{Gordon equations. In conformal coordinates, we recover the famous

Liouville formula ( see for example [15, 16]). Using the zero curvature representation, we

show that the above mentioned isometric immersions are expressed in terms of the entries

�there is a standard theorem [2] which guarantees that such immersion always exits locally and it is

�xed up an isometry transformation of the Lobachevskian plane
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of special matrix solutions of the underlying linear problems. We further study the isom-

etry maps in the Lobachevskian plane by �xing conformal and Tschebysche� coordinates

on a given surface of constant negative scalar curvature. This gives us a �eld dependent

and nonlocal (that is, depending on the derivatives of arbitrary order) change of the local

coordinates which produces a Lie{B�acklund transformation between the Liouville and the

sine{Gordon equation. Finally, we study the image of the sine{Gordon solitons in the

Lobachevskian plane.

This paper is organized as follows. In section 2 we review some basic facts con-

cerning the geometry of the surfaces of constant negative scalar curvature. Solutions of

Liouville and sine{Gordon equations are obtained by local isometric immersions in the

Lobachevskian plane. In section 3, by using the zero curvature representation, we show

that these are the general solutions of both the equations. In section 4 we construct a

Lie{B�acklund transformation which interpolates between Liouville and sine{Gordon. In

section 5 we study isometric immersions in the Lobachevskian plane which correspond to

N{soliton solution of the sine{Gordon equation.

2 Geometric Origin of Liouville and sine{Gordon

The aim of this section is to review the geometric interpretation of the Liouville and the

sine{Gordon equations. It is well known that both the equations appear in studying the

Riemannian geometry of surfaces of constant negative scalar curvature. The latter are

also known as pseudospherical surfaces. Within the classical di�erential geometry, surfaces

of constant negative scalar curvature are usually considered as varieties embedded (with

the induced natural Riemannian metric) into the three dimensional Euclidean space R3.

The underlying Riemannian structure on the surface is determined by the equations of

Gauss, Codazzi and Ricci [6, 12]. Here, in contrast to the classical treatment, we shall

focus our attention on the internal Riemannian geometry of the pseudospherical surfaces.

The latter admit (locally) an isometric immersion in the Lobachevskian plain H. The

study of these immersions, allows to construct explicit solutions of the Liouville and the
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sine{Gordon equations.

We recall some basic de�nitions and notions of the di�erential geometry of surfaces

[1, 2, 6, 12]. Let S be a two dimensional smooth manifold. We �x local coordinates xi,

i = 1; 2 on S and denote by @i =
@
@xi

the tangent vectors related to the corresponding

coordinate frame. The 1{forms dxi form a basis of the cotangent space which is dual to

f@ig: dxi(@j) = �ij. Any vector �eld X and any 1{form � can be written as X = X i@i

and � = �idx
i respectively. A Riemannian structure on S is induced by a symmetric

positive de�nite metric ds2 = gijdx
idxj , gij = gji

�. The metric on S allows to introduce

a symmetric inner product on the tangent bundle TS: < X;Y >= gijX
iY j . Let r :

TS �TS ! TS be an a�ne connection [2, 12] on TS. The curvature and the torsion are

given by the standard expressions

R(X;Y )Z = rXrYZ �rYrXZ �r[X;Y ]Z

T (X;Y ) = rXY �rYX � [X;Y ] (2.1a)

where X; Y; Z are vector �elds and

[X;Y ] =
�
Xj@jY

i � Y j@jX
i
�
@i

is the Lie bracket between X and Y . In view of the standard properties of the a�ne

connection r, it is not di�cult to establish the tensorial nature of the curvature and the

torsion. The components of the curvature and the torsion tensor are given by

Rijkl =< R(@k; @l)@j; @i >

T kij = dxk (T (@i; @j)) (2.1b)

respectively. The scalar curvature

R = gikgjlRijkl (2.2)

where gij is the inverse of the metric tensor gijgjl = �il , is invariant under changes of the

local coordinates.

�Here we perform a slight abuse of terminology, since by de�nition, the Riemannian structure, is

introduced as a class of isometric Riemann manifolds
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A Riemannian manifold of arbitrary dimension admits an unique torsionless connec-

tion

T (X;Y ) = 0 (2.3a)

such that

X < Y;Z >=< rXY;Z > + < Y;rXZ > (2.3b)

for arbitrary vector �elds X, Y and Z on S. This connection is known in the literature

[2, 12] as the Levi{Civita connection.

Now we are in a position to study surfaces of constant negative scalar curvature. In

the present paper we will be interested on Riemann structures induced by a metric of the

following form

ds2 = g11(dx
1)2 + 2g12dx

1dx2 + g22(dx
2)2

@igjj = 0; i; j = 1; 2 (2.4)

where the local coordinates xi are not necessarily real. In view of (2.3a), one gets the

identity

r1@2 = r2@1; ri = r@i (2.5a)

On the other hand, the diagonal components of the metric (2.4) gii =< @i; @i > are

constants. Thus, taking into account (2.3b), one concludes that

ri@j = rj@i = 0 i 6= j (2.5b)

The above identities admit a clear geometrical interpretation: the coordinate vector �eld

@2 (@1) is parallel transported along the vector �eld @1 (@2) with respect to the Levi{Civita

connection r. Taking into account (2.3b), (2.4) and the above identities, it is not di�cult

to get the expressions [2]

r1@1 =
1

g
(�g12@1g12 @1 + g11@1g12 @2)

r2@2 =
1

g
(g22@2g12 @1 � g12@2g12 @2)

g = det (gij) = g11g22 � g212 (2.5c)
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Due to (2.1a), (2.1b), (2.5b) and the above identities, one gets

R1212 = @1@2g12 +
g12

g
@1g12@2g12 (2.6a)

We recall the symmetries of the Riemann tensor (2.1b) associated to the Levi{Civita

connection: Rijkl = �Rjikl = �Rijlk, Rijkl = Rklij [2, 12]. Therefore, in two dimensions,

the Riemann tensor has only one independent component: R1212. In particular, the scalar

curvature (2.2) can be written as

R =
2

g
R1212 (2.6b)

Let us �rst �x conformal coordinates on the surface S. Setting x1 = z, x2 = �z where

z and �z are complex coordinates, the metric is the following

ds2 = e'(z;�z)dzd�z (2.7a)

It is a well known fact in the theory of surfaces [1, 2] that any Riemannian metric on S

is conformally at, i. e. by a suitable change of the local coordinates, it reduces to the

above expression. Since a conformally at metric is a particular case of (2.4), one can use

(2.6a) to calculate the scalar curvature (2.6b). The result is [2]

R = �4e�'(z;�z)@ �@'(z; �z)

@ =
@

@z
; �@ =

@

@�z
(2.7b)

Another possible choice is to consider generalized Tschebysche� coordinates on S

ds2 = �2(dx+)2 + ��2(dx�)2 + 2 cos  dx+dx� (2.8a)

where x� are real local coordinates,  =  (x+; x�) is a real function and � is real constant.

Inserting again the general expressions (2.6a) and (2.6b) into (2.8a) one concludes that

the scalar curvature of the generalized Tschebysche� metric is

R = �2
@+@� 

sin 
; @� =

@

@x�
(2.8b)
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Imposing the condition that S is a surface of constant negative scalar curvature R = �2,

one deduces from (2.7b) the Liouville equation

@ �@' =
1

2
e' (2.9a)

whereas (2.8b) yields the sine{Gordon equation

@+@� = sin (2.9b)

Therefore the two above equations admit a clear geometrical interpretation. More pre-

cisely, they appear by �xing special local coordinate frames on pseudospherical surfaces.

At this stage the question of existence of a "privileged" surface H of scalar curvature

R = �2 arises. By "privileged" we understand that any other surface S of the same

scalar curvature admits, at least locally, an isometric immersion S !i H. In particular,

the metric on S is a pull-back of the metric on H. The answer of the above question is

positive [2]: as H one can choose the Lobachevskian plane H = fu 2 C jImu > 0g equipped

with the metric

ds2 = �4
du d�u

(u� �u)2
(2.10a)

In view of (2.7b), H is a variety of constant negative scalar curvature R = �2. Moreover

the expression

e'(u;�u) = �
4

(u� �u)2
(2.10b)

satis�es the Liouville equation (2.9a) with respect to the complex variables u and �u

(Imu > 0). Suppose now that S is a pseudospherical surface and (z; �z) are conformal

coordinates on it. From (2.10a) it is seen that u has to be holomorphic or antiholomorphic

function on z. Since the Lobachevskian metric is invariant under the exchange u$ �u, we

shall assume in what follows that u = u(z), �u = �u(�z). Therefore, from (2.10a) it follows

that the induced metric on S is given by

ds2 = e'(z;�z)dzd�z;

e'(z;�z) = �4
@u �@�u

(u� �u)2
; �@u = @�u = 0 (2.11)
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The above expression for the Liouville �eld is the famous Liouville formula [15]. It implies

in particular that e' is a (1; 1) form with respect to holomorphic (or conformal) changes

of the local coordinates. As a consequence, one recovers the conformal invariance of the

Liouville equation

z! z0 = z0(z); �z ! �z0 = �z0(�z)

'(z; �z)! '0(z0; �z0) = '(z; �z) + ln
dz

dz0
+ ln

d�z

d�z0
(2.12)

Let us now consider the sine{Gordon case. Suppose that the generalized Tschebysche�

metric (2.8a) on a surface S of constant negative scalar curvature is a pull-back of the

Lobachevskian metric on H (2.10a). In particular, this wants to say that the map S !i H

satis�es the equations

e�i = �4
@�u@��u

(u� �u)2
;

@�u@��u = �
��2

4
(u� �u)2; u = u(x+; x�; �); �u = �u(x+; x�; �) (2.13)

which are the sine{Gordon counterpart of the Liouville formula (2.11). It is instructive to

check directly that the above expressions provide a solution of the sine{Gordon equation.

To do that we �rst observe that the equations

r+@� = r�@+ =

�
@+@�u� 2

@+u@�u

u� �u

�
@

@u
+

�
@+@��u+ 2

@+�u@��u

u� �u

�
@

@�u
(2.14a)

r�@� =

�
@2�u� 2

(@�u)2

u� �u

�
@

@u
+

�
@2��u+ 2

(@��u)2

u� �u

�
@

@u
(2.14b)

are valid. In deriving these identities we have used (2.13) as well as the covariant

derivatives

ru

@

@u
= �

2

u� �u

@

@u
; r�u

@

@�u
=

2

u� �u

@

@�u

ru

@

@�u
= 0; r�u

@

@u
= 0; (2.15)

which according to (2.5c) de�ne the Levi{Civita connection on the Lobachevskian plane.

Due to (2.5b), the covariant derivatives (2.14a) vanish identically. Taking into account

this observation and and using (2.13) we get

i@+ =
@2+u

@+u
� 2

@+u

u� �u
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i@� =
@2��u

@��u
+ 2

@��u

u� �u
(2.16)

Using again (2.13) and the fact that (2.14a) are vanishing, we conclude that the above

system is integrable and  satis�es the sine{Gordon equation (2.9b).

To close this section we shall make the following remark: as it is seen from (2.11) and

(2.13), an isometric immersion of a given pseudospherical surface ( with scalar curvature

R = �2) yields to solutions of the Liouville and the sine{Gordon equations. On the

other hand, an isometric immersion S !i H is �xed up to an isometry transformation of

H. It is well known that the group of the isometries of the metric (2.10a) coincides with

PSL(2;R). It acts on the upper half plane by projective (or M�obius) transformations

u!
�u+ �

u+ �

�; �; ; � 2 R; �� � � = 1 (2.17)

A straightforward calculation shows that the equations (2.11) and (2.13) are invariant

with respect to the above transformation.

3 General Solutions of Liouville and sine{Gordon

The present section is devoted to the study of the general solutions of the Liouville (2.9a)

and of the sine{Gordon (2.9b) equations. Our goal will be to show that the expressions

(2.11) and (2.13) exhaust, at least locally , the space of solutions of (2.9a) and (2.9b)

respectively. In view of the analysis presented before, it turns out that any solution of the

Liouville and the sine{Gordon equations can be described as an isometric immersion of

a surface of constant negative scalar into the Lobachevskian plane H. Within this section

we shall adopt a terminology borrowed from the string theory: u and �u (Imu> 0) will be

called "target space" variables; the local coordinates (z; �z) which appear in the Liouville

equation (2.9a), as well as x� related to the sine{Gordon equation (2.9b) will be referred

to as "world{sheet" variables.

To show that (2.11) and (2.13) provide (at least locally) general solutions of the cor-

responding partial di�erential equations, we shall use the zero curvature representation.
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The Liouville equation admits a zero curvature representation Fz �z = [Dz ; D�z] = 0 for a

connection which is in the Lie algebra sl(2)

Dz = @ +Az; D�z = �@ +A�z

Az = @� +
1

2
ead�E+; A�z = ��@� +

1

2
e�ad�E�; � =

1

4
': (3.1a)

In the above expressions H and E� are the generators of sl(2)

�
H;E�

�
= �2E�;

�
E+; E�

�
= H:

Similar representation is also valid for the sine{Gordon equation F+� = [D+;D�] = 0.

The covariant derivatives D� are given by

D� = @� +A�; A� = �i@�	+
1

2
e�iad	E�

	 =
1

4
H; E� = ��1(E+ + E�): (3.1b)

Due to the zero curvature condition, there exists a solution of the parallel transport

equations

D�� = (@� +A�) � = 0 (3.2a)

where � = z; �z for (3.1a) and � = � for (3.1b). Within the Inverse Scattering Method

[5, 8], the above equation is known as the auxiliary linear problem. We shall also refer to

it as to the linear system related to the corresponding integrable di�erential equation. In

this section we deal with the de�ning representation of sl(2)

H =

0
@ 1 0

0 �1

1
A ; E+ =

0
@ 0 1

0 0

1
A ; E� =

0
@ 0 0

1 0

1
A :

Therefore, the solution of the linear system (3.2a) � is a 2� 2 matrix whose components

depend on the spectral parameter � in the sine{Gordon case (3.1b). Since A� (3.1a),

(3.1b) are traceless, it is clear that the determinant of � does not depend on the "world{

sheet" coordinates

@�det� = 0: (3.2b)
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In what follows we shall need the notations

A(�) =
�12

�11
; B(�) =

�22

�21
(3.3)

where �ij; i; j = 1; 2 are the entries of the matrix ��.

Let us �rst consider the Liouville Lax connection

Az =
1

2

0
@ @'

2
e
'

2

0 �@'

2

1
A ; A�z =

1

2

0
@ �

�@'
2

0

e
'

2
�@'
2

1
A : (3.4)

Inserting the it into (3.2a) and taking into account the notations (3.3), we get the system

@A = � e
'
2 det�
2�211

�@A = 0

@B = 0

�@B = e
'
2 det�
2�221

(3.5a)

From the above equations it is seen that the Liouville �eld is expressed as follows

e'(z;�z) = �4
@A(z) �@B(�z)

(A(z)�B(�z))2
(3.5b)

which resembles the Liouville formula (2.11).

To treat the sine{Gordon equation, we recall that the underlying connection (3.1b) in

the de�ning representation of sl(2) is given by the matrices

A+ =
1

2

0
@ i

@+ 

2 �ei
 
2

�e�i
 

2 �i@+ 2

1
A ; A� =

1

2

0
@ �i@� 2 ��1e�i

 
2

��1ei
 

2 i@� 2

1
A (3.6)

In view of (3.2a) and (3.6), we conclude that the quantities (3.3) satisfy the equations

@�A = ���1
e�i

 
2 det�

2�211
; @�B = ��1

e�i
 
2 det�

2�221
: (3.7a)

In the above equations the dependence on the "world{sheet" coordinates x� and on the

spectral parameter � was skipped. Using (3.7a) it is easy to reconstruct the sine{Gordon

�eld

e�i = �4
@�A@�B

(A�B)2

@�A@�B = �
��2

4
(A�B)2 (3.7b)

�The dependence of the quantities A and B on � will be skipped whenever there is no rick of confusion
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The above expressions seem to be a generalization of the geometrical solution (2.13).

Comparing (3.5b) with (3.7b), we see that there is an uniform expression for the

general solution of the Liouville and the sine{Gordon equations. In particular, both the

equations are solved in terms of the functions A and B (3.3). However, the latter are

restricted by di�erent conditions. In the Liouville case A is a holomorphic function on z,

while B is antiholomorphic. When the sine{Gordon model is considered, these conditions

should be changed by (3.7b). Note also that starting from the equations (3.5a) and (3.7a)

and taking into account (3.3) as well as the algebraic relation

A�B = �
det�

�11�21
: (3.8)

it turns out that the 2 � 2 matrix � is a solution of the corresponding linear problem.

We postpone the proof of this statement to the next section where it will shown that

there is Lie{B�acklund transformation which maps the solutions of the Liouville equation

to solutions of the sine{Gordon equation and vice versa. It is easy to check that (3.7b)

are su�cient to show that  is a solution of the sine{Gordon equation. To prove this,

one �rst observes that the identities

@+@�A = 2
@+A@�A

A�B
; @+@�B = �2

@+B@�B

A�B
(3.9)

follow from (3.7b). We stress that the above identities are analogous to (2.14a). However,

in deriving (3.9) we have used the zero curvature representation. The underlying sine{

Gordon solution depends on additional variable �. It should not be mixed with the

spectral parameter which appears in the connection (3.1b), (3.6). In fact, (3.7b) are not

su�cient to prove that  does not depend on �.

We proceed by discussing the symmetries of the equations (3.5a) and (3.7a). It is

clear that left translations � ! �g = g� acting on the solutions of (3.2a) induce gauge

transformations A� ! Ag
� = �@�gg

�1 + gA�g
�1. The functions A and B (3.3) remain

invariant under left shifts by diagonal elements g 2 SL(2). On the other hand, it is

obvious that a right multiplication �! �g by an element g which does not depend on the
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"world{sheet" variablesy, leaves the linear system (3.2a) invariant. Setting

g =

0
@ � �

 �

1
A ; �� � � 6= 0;

it is seen that right shifts induce M�obius transformations

A!
�A+ �

A+ �
B !

�B + �

B + �

det�! det� detg (3.10)

which obviously preserve the equations (3.5a) and (3.7a).

Up to now we have not imposed the condition of reality on the �elds ' and  . To do

that we �rst observe that the Lie algebra sl(2) has an involutive automorphism

�H = �H; �E� = E� (3.11a)

which in the de�ning representation is implemented by the element �

�X = �X �; � =

0
@ 0 1

1 0

1
A ; X 2 sl(2) (3.11b)

Therefore, from (3.1a) and (3.4) it follows that the Liouville �eld ' is real i� the following

equations are satis�ed

�Az = �A�z; �A�z = �Az (3.12a)

where the bar stands for the complex conjugation. In the above identities we skipped the

dependence of Az and A�z on the "world{sheet" coordinates z and �z; the generators of the

sl(2) algebra are assumed to be real: �H = H; �E� = E�. In view of (3.11b) and (3.12a),

one obtains the following complex conjugation rules in the de�ning representation

�Az = �A�z�; �A�z = �Az� (3.12b)

Similar involution holds for the sine{Gordon connection (3.1b) for real values of  

�A�(�) = �A�(�); � 2 R: (3.13a)

yg 2 GL(2) for the Liouville model and g is in corresponding loop group ~GL(2) for the sine{Gordon

case
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In the de�ning representation one gets

�A�(�) = �A�(�)� (3.13b)

Taking into account (3.12a) and the above equation, we observe that whenever the matrix

� satis�es (3.2a) with A� given by (3.4) or (3.6), the element �� � is always a solution of

the same linear system. In view of this observation, we get the complex conjugation rules

�� = � �C; C �C = 1 (3.14)

where C is independent on the "world{sheet" coordinates. It is clear that the element C

is uniquely �xed by the initial data imposed on �. For example, let us �rst suppose that

at certain point P of the "world{sheet" �(P ) = 1. Therefore, from (3.14) it follows that

C = � and hence

�A =
1

B
(3.15a)

Due to (3.2b) and the initial condition imposed on �, one concludes that det� = 1.

Moreover, taking into account (3.8) and the above equation, we see that A belongs to the

unit disk D = fA 2 C ;A �A < 1g. Note also that inserting back (3.15a) into the general

solution of the Liouville equation (3.5b), one recovers the Poincar�e metric on D [2]

d s2 = e'(z;�z)dz d�z = 4
dAd �A

(1�A �A)2
; jAj2 < 1 (3.15b)

Another possible choice of initial conditions is �̂(P ) = � where

� =
1

2i

0
@ �1 �i

1 �i

1
A (3.16a)

Taking into account (3.11b), one easily veri�es that the matrix � satis�es the commutation

relation

��1 � �� = 1 (3.16b)

and hence

�̂
� = ��̂: (3.17a)
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Therefore, the quantities Â and B̂ are complex conjugated each to the other

�̂
A = B̂ (3.17b)

Combining the above identity with (3.10), (3.15a) and setting u = Â, �u = B̂ we get the

relation

u = �i
A+ 1

A� 1
; jAj2 < 1 (3.18)

which provides an analytic isomorphism between the unit disk D and the upper half plane

H [17]. In particular, from (3.5b) and (3.7b) it follows that the expressions (2.11) and

(2.13) provide general (locval) solutions of the Liouville and the sine{Gordon equations

respectively.

4 Derivation of the Lie{B�acklund Transformation

Transformations which involve local coordinates, �elds and their derivatives has been ex-

tensively studied in the literature [4, 5, 6] in relation to the Lie's approach to di�erential

equations. As simplest example, one can quote the Lie tangent transformations of �nite

order�. Under the assumption of invertibility, a classical result due to B�acklund states

that any kth order tangent transformation is a prolongation of a Lie (�rst) order tangent

transformation. Therefore, the Lie tangent transformations are only useful in the analysis

of �rst order partial di�erential equations. There are two alternative, but related each to

other, approaches to study transformations between di�erential equations of order higher

than one. The �rst relies on the theory of the group of Lie{B�acklund transformations

which are in�nite dimensional generalization (derivatives of arbitrary order are included)

of the Lie tangent transformations. On the other hand, it is possible to consider many{

valued transformations. The Bianchi{Lie transformation and its generalization due to

B�acklund and Darboux [1, 3, 4, 6] is a particular example of such many{valued (surface)

transformation. The map considered by B�acklund has a nice geometrical interpretation:

it transforms a given surface S in R
3 into another surface S 0 in R

3. It is a remarkable

�here we follow the de�nitions adopted in [4]
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property of the above mentioned transformation S ! S 0 is such that to ensure the inte-

grability, both the surfaces S and S 0 has to have the same constant negative curvature.

This procedure enables, starting from a given solution of a �xed partial di�erential equa-

tion ,(which in this particular example is the sine{Gordon equation) to construct a family

of solutions of the same partial di�erential equation. The generalization of the previous

geometrical construction yields to the general notion of B�acklund transformation.

The aim of the present section is to construct a Lie{B�acklund transformation which

relates the Liouville equation to the sine{Gordon one. To introduce the notion of a Lie{

B�acklund transformation in this special case, we consider two in�nite sets of variables

L = fz; �z; '@'; �@'; : : :g and S = fx+; x�;  ; @+ ; @� ; : : :g (the dots mean higher order

derivatives of arbitrary order). L and S are related to the Liouville and the sine{Gordon

equations respectively. Then according to [4] a Lie{B�acklund transformatoin is an invert-

ible map L$ S which preserves the tangency condition of arbitrary order and such that

 (') satis�es the sine{Gordon (Liouville ) equation if and only if ' ( ) is a solution of

the Liouville (sine{Gordon ) equation.

We start by introducing some notations. First, let �(z; �z) and T (x+; x�; �) be special

solutions of the Liouville and the sine{Gordon linear systems (3.2a) respectively. The

components of the corresponding Lax connections are given by (3.4) and (3.6). It is

assumed that both the Liouville and the sine{Gordon �elds are real. The 2� 2 matrices

� and T are �xed by imposing the initial condition

�(0; 0) = T (0; 0; �) = � (4.1)

where the matrix � is given by (3.16a). From (3.17b) it follows that the quantities A

and B (3.3) are complex conjugated each to other. Moreover, it has been shown in the

previous section that (4.1) implies that u(�) = A(�) (�u(�) = B(�) ) as well as u(T ) = A(T )

(�u(T ) = B(T )) belong to the upper half plane H. We shall further suppose that ' and  

are such that

u(�) = u(T ) (4.2a)

The above restriction can be removed by the weaker requirement that u(�) and u(T ) are
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related trough a PSL(2;R) (or M�obius) transformation

u(�) =
�u(T ) + �

u(T ) + �
; �� � � = 1 (4.2b)

The reason for this freedom is that the solutions � and T (without �xing the initial

conditions (4.1)) are determined up to right multiplication by an element of the group

SL(2;R). In view of (3.10), it acts by M�obius transformations on the variables u and �u.

As it was commented previously, the geometric interpretation of the ambiguity (4.2b) is

based on the fact that an isometric immersion is determined up to an isometry of the

"target space", which in our case is the Lobachevskian plane H. Due to the invariance of

(3.5a) and (3.7a) under M�obius transformations (3.10), we can restrict our attention on

(4.2a) only.

Comparing (3.3) and (3.17b) with (4.2a) together with the identities det� =

= detT = � i

2 which are consequence from the initial conditions (4.1) imposed on � and

T , one obtains the relations

�11�21 = t11t21 =
i

2(u� �u)
(4.3a)

which are compatible with the identities ��1i = �2i; �t1i = t2i; i = 1; 2. These identities

follow from (3.16a) and (3.16b). As an output from the above relations we also deduce

that the ratios �11
t11

and �21
t21

are pure phases being complex conjugated each to other

ei! =
�11

t11
; e�i! =

�21

t21
; ! 2 R (4.3b)

Inserting back (4.2a) into (3.5a) and (3.7a) we obtain

D(z; �z)

D(x+; x�)
= e�

'

2

0
BBB@

�ei
 
2+2i! ��1e�i

 
2+2i!

�e�i
 

2 �2i! ��1ei
 

2 �2i!

1
CCCA

D(x+; x�)

D(z; �z)
=

e
'
2

2i sin 

0
BBB@
��1ei

 
2�2i! ���1e�i

 
2+2i!

�e�i
 

2�2i! �ei
 

2+2i!

1
CCCA (4.4)
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where the quantity ! has been introduced trough (4.3b) and we have used the classical

notion of Jacobian matrix: consider, say a C1 map yi = yi(x1; x2), i = 1; 2. Then the

Jacobian matrix is de�ned by the expression

D(y1; y2)

D(x1; x2)
=

0
@ @y1

@x1
@y1

@x2

@y2

@x1
@y2

@x2

1
A

It obviously obeys the relations D(z1;z2)
D(y1;y2)

D(y1;y2)
D(x1;x2)

= D(z1;z2)
D(x1;x2)

. The change (x1; x2)! (y1; y2)

is locally invertible i� the associated Jacobian J = detD(y
1 ;y2)

D(x1;x2)
is not vanishing. We shall

suppose that the matrices (4.4) are not degenerated. Since

J = det
D(z; �z)

D(x+; x�)
= 2ie�' sin (4.5)

we will assume hereafter that  6= 0(mod�). It is worthwhile to discuss the geometrical

meaning of the transformation (z; �z) $ (x+; x�). A straightforward computation based

on (4.4) tells us that (z; �z) are local conformal coordinates on the surface S (2.7a) if and

only if (x+; x�) are Tchebysche�{like coordinates (2.8a) on the same surface. It has been

shown in [2] that the complex coordinates z and �z considered as functions of x� satisfy

the Laplace{Beltrami equation associated to the Tschebysche� metric. Let us sketch

the proof of this statement. First of all we realize that the phase factors (4.3b) can be

eliminated. In particular, starting from (4.4), one gets

@+z = �2ei @�z (4.6a)

which with the help of the identities

1� icotg = �i
e�i 

sin 

can be rewritten alternatively as

@�z = �i

�
cotg @� �

��2

sin 
@�

�
z (4.6b)

The integrability of this system yields the equations

Lz = L�z = 0

L = ��2@+
1

sin 
@+ + �2@�

1

sin 
@� � @+cotg @� � @� + cotg @� (4.7)
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The operator L is proportional to the Laplace{Beltrami operator � associated to the

generalized Tchebysche� metric (2.8a): � = � 1
sin 

L. Therefore, z and �z are zero modes of

�. In particular, imposing the condition that the scalar curvature of S is R = �2, it turns

out that ' is a solution of the Liouville equation and  satis�es the sine{Gordon equation.

However, within the di�erential geometry, the relation between these two equations is

quite implicit. The reason is that to get conformal coordinates on S starting from the

Tchebysche� ones, one has to solve (4.7) which is a partial di�erential equation of second

order. On the other hand, it is possible to work with the Jacobian matrices (4.4) in order

to obtain a Lie{B�acklund mapping between the Liouville and the sine{Gordon models.

To do that we �rst introduce the vectors

v =

0
@ �11

�21

1
A ; w =

0
@ t11

t21

1
A (4.8)

whose components are restricted by (4.3a) and (4.3b). Our �rst statement is the following:

Suppose that v is a solution of the linear system

@v +Azv = 0 �@v + A�zv = 0 (4.9a)

where Az and A�z has been introduced by (3.4). In particular, the integrability condition

of the above equations is equivalent to the Liouville equation. Consider the change of

variables (z; �z)$ (x+; x�) de�ned by (4.4). Then the vector w (4.8) is a solution of the

system

@�w +A�w = 0 (4.9b)

where A� are given by (3.6). One then concludes that  (4.4) is a solution of the sine{

Gordon equation.

To prove the above assertion we �rst note that the identities

@+z@+�z = �2e�' @�z@��z = ��2e�' (4.10a)

are consequence from (4.4). Di�erentiating the �rst of the above equations with respect

to x� and the second with respect to x+, and assuming that @+@�z = @�@+z we get the
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linear algebraic system

(@+@��z; @+@�z) �
D(z; �z)

D(x+; x�)
= e�'

0
@ �2@�'

��2@+'

1
A (4.10b)

which has unique solution given by

@+@�z =
ie�

'

2�i
 

2 +2i!

2� sin  

�
ei @+'� �2@�'

�

@+@��z = �
ie�

'
2 +i

 
2�2i!

2� sin  

�
e�i @+'� �2@�'

�
(4.10c)

whenever the Jacobian (4.5) is not vanishing. Note that the above expressions has been

derived without imposing any restriction on the phase factors (4.3b), or equivalently, on

the vectors (4.8).

The derivatives @�@�z and @�@��z can be calculated alternatively by using the Jacobian

matrices (4.4), the linear system (4.9a) and the algebraic relations (4.3a) and (4.3b). To

do that we �rst observe that the expressions

@� ln �11 = �
i

4

�
cotg @�'�

��2

sin 
@�'

�
�
��1e�i

 

2 t21

2t11
(4.11)

take place. In view of the identity �21 = ��11, the derivatives @� ln �21 are obtained from

the above equations by complex conjugation. Taking into account (4.11) and derivating

the entries of the Jacobian matrix D(z;�z)
D(x+;x�) (4.4) with respect to x� we get the equations

@�@�z = ��1e�
'
2 �i

 
2+2i!

�
�i

e�i 

2 sin 
@�'� i

��2

2 sin 
@�'� 2

D�t11

t11

�

@�@��z = ��1e�
'

2
�i

 

2
�2i!

�
�i

e�i 

2 sin 
@�'� i

��2

2 sin 
@�'� 2

D�t21

t21

�
(4.12)

where D� are the covariant derivatives associated the sine{Gordon model (3.1b), (3.6):

D�tij = (D�T )ij ; i; j = 1; 2. Due to the identity �D�t11 = D�t21 which follows from

(3.17a) we see that the two above equations are consistent with the complex conjugation.

Comparing (4.10c) with (4.12) we conclude that D+t11 = D�t21 = 0. Therefore the vector

w satis�es the equations (4.9b). This wants to say that  de�ned by (4.4) and (4.5) is a

solution of the sine{Gordon equation.

The converse is also true:
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Suppose that the change of the local coordinates (z; �z) $ (x+; x�) is given by the

Jacobian matrices (4.4). Then, imposing the equations (4.9b) on the components ti1; i =

1; 2 of the vector w (4.8), it turns out that v =

0
@ �11

�21

1
A is a solution of the system (4.9a).

Therefore, ' satis�es the Liouville equation.

Let us sketch the proof. First, as it was mentioned before, the equations (4.10c)

are derived directly from (4.4) without using (4.9a) and (4.9b). On the other hand, the

derivatives @�@�z and their complex conjugates can be calculated from (4.4) by the use of

the linear system (4.9b). As a result one recovers the expressions (4.11) and their complex

conjugates. Exploiting again (4.4) we get the identities

cotg @�'�
��2

sin 
@�' = �i��1e�

'
2

�
e�i

 
2+2i!@'� e�i

 
2�2i! �@'

�
(4.13)

which inserted back into (4.11) produce the expressions

@� ln �11 = �
��1e�

'

2

4

�
e�i

 

2+2i!@'� e�i
 

2 �2i! �@'
�
�
��1e�i

 

2

2

t21

t11

@� ln �21 =
��1e�

'

2

4

�
e�i

 
2+2i!@'� e�i

 
2�2i! �@'

�
�
��1e�i

 

2

2

t11

t21
(4.14)

The above equations allow us to compute Dzv and D�zv where Dz and D�z stand for the

covariant derivatives associated to the Liouville connection (3.1a) (3.4). In view of (4.4),

it is seen that Dzv = D�zv = 0. Therefore the system (4.9a) as well as the Liouville

equation take place. We then conclude that the change of coordinates on S induced by

(4.4) provides a Lie{Backl�und transformation which relates the Liouville and the sine{

Gordon equations. There is a delicate problem which needs a further investigation. To

state it, we recall that the Lie{B�acklund transformations form a Lie group G. In this

section we have constructed a special element  2 G which is induced by (4.4). However,

our analysis does not give an answer to the following question: are  and the identity

element in the same connected component of G?. It is obvious that the existence of a

continuous deformation relating the Liouville to the sine{Gordon equation is reduced to

a positive answer of this question.

Note that the observation that (4.4) generates a Lie{B�acklund transformation between
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(2.9a) and (2.9b) can be derived also from the integrability condition of the system

i@�! = �
i

4
@� �

1

4

�
@�z@'� @�z �@'

�
(4.15)

The above equations follow from the Jacobian matrix (4.4) and (4.10c) which can be

written in the form

@+@�z = �@+z@�z@'

As a result of a straightforward calculation, one deduces that the integrability of the

equations (4.15) is equivalent to the relation

@+@� 

sin 
= 2e�'@ �@'

which according to (2.7b) and (2.8b) agrees with the invariance of the scalar curvature

under the change of the local coordinates (z; �z)$ (x+; x�).

It is interesting to note that there is an alternative way to obtain the Lie{B�acklund

transformation, which we constructed in this section. To �x the idea, let us start by

the Liouville connection (3.1a). Under the the action of an arbitrary di�eomorphism

(z; �z) ! (x+; x�) where x� are real variables, it transforms as a 1-form D� = @� + U�

where U� = @�zAz+@��zA�z. The curvature is a 2{form and therefore F+� = [D+ ; D� ] and

Fz�z = [Dz;D�z] are related by the equation Fz�z = det D(z;�z)
D(x+;x�)

F+�. Denote by g the element

g = ei!H; ! 2 R and consider the gauge transformation D� ! Dg
� = g�1D�g. Then D

g
�

coincides with sine{Gordon connection (3.1b) provided that the Jacobian matrix of the

change (z; �z) ! (x+; x�) is given by (4.4) and ! satis�es (4.15). This approach, which

will be presented in details elsewhere [18], suggests that Lie{B�acklund transformations

between integrable partial di�erential equations are induced by a composition of a changes

of the independent variables and special gauge transformations acting on the underlying

Lax connection.
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5 Soliton Surfaces

The goal of this section is to study a subclass of pseudospherical surfaces which are

related to N{soliton solutions of the sine{Gordon equation. Usually one considers the

soliton surfaces as surfaces embedded in R3. In the literature, there are known few explicit

examples of soliton surfaces. Among them one can quote the pseudospheres of Beltrami

and Dini [2, 3, 19]. The latter are geometric realization of the static and the moving

one{soliton solutions respectively. Generic N{soliton surfaces has been calculated in [19]

by using appropriate Bianchi{Lie transformations [3, 4, 6]. In the present section, as

always within this paper, we shall consider the soliton surfaces as surfaces embedded in

the Lobachevskian plane H instead of surfaces embedded in R
3. According to the analysis

presented in section 3, in order to get a mapping into the upper half plane, one has

to construct special solutions of the underlying linear problem which obey the complex

conjugation rule (3.17a). To get matrix solutions of the linear system (3.2a) related to N{

soliton solutions of the sine{Gordon model, we shall use an approach proposed in [20]. Its

advantage is that it can be generalized to treat quasi{periodic solutions. In what follows,

for the sake of brevity we shall use the notations f(x) = f(x+; x�) and f(0) = f(0; 0) for

any function on the coordinates x�.

First of all we observe that in order to get a matrix solution of the linear problem

(3.2a), (3.6), it is enough only to know a vector solution of the corresponding linear

problem. To prove this statement, we �rst observe that the sine{Gordon Lax connection

(3.6) satis�es the relations

A�(x;��) = H A�(x; �)H (5.1)

Therefore, if w(x; �) is a solution of the same linear problem (@� +A�(x; �))w(x; �) = 0,

it turns out that the vector Hw(x;��) is a solution too. From this observation we

conclude that

W (x; �) = (w(x; �); H � w(x;��)) (5.2)

is a matrix solution of the linear problem (3.2a), (3.6) which is related to the sine{Gordon

equation. For generic complex values of the spectral parameter �, w(x; �) and H �w(x;��)
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are independent, and therefore, they can be chosen as fundamental solutions of the linear

system (4.9b). Following [20], let us suppose that for certain values �1; : : : ; �N of �, the

2 � 2 matrix W (5.2) is degenerated. The integer N coincides with the number of the

solitons. The degeneracy conditions, imposed on W (x; �) mean that there are constants

cj ; j = 1 = 1; : : : ; N such that the identities

w(x; �j) = cjH � w(x;��j) (5.3a)

take place. In components (cf. (4.8)) one can write

wk(x; �j) = (�)k�1cjwk(x;��j);

k = 1; 2; j = 1; : : : ; N (5.3b)

The above equations has unique solution provided that one sets

wN(x; �) = e(x;��)ei	(x)

0
@
QN

j=1(�+ �1j(x))QN

j=1(�+ �2j(x))

1
A

e(x; �) = e
1
2 (�x

+ x�

�
) (5.4)

Note that inserting back the above ansatz into (5.3b), one gets the algebraic relations

NY
l=1

�kj(x) + �j

�kj(x)� �j
= (�)k�1e2(x; �j);

k = 1; 2 j = 1; : : : N (5.5)

It has been proven in [20] that wN (x; �) is a solution of the linear system (4.9b) with A�

given by (3.6) provided that�

i@+ =
NX
l=1

(@+�1l � @+�2l)

ei =
NY
l=1

�2l

�1l
(5.6)

Note that a similar procedure applies equally well to the An a�ne Toda solitons [21].

�the consistency of these equations can be proven easily by using (5.5)
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We proceed by imposing reality condition on the sine{Gordon �eld  . In view of

(3.13b) and the ansatz (5.4) we conclude that

w(x; �) = � � �w(x; ��) (5.7a)

where the element � was de�ned by (3.11b). Comparing the above equation with (5.3a)

and (5.4) we conclude that the sine{Gordon �eld is real if and only if

��j = ��(j); �cj = �c�(j)

��1j = �2�0(j); j = 1; : : : ; N (5.7b)

where � and �0 are two (probably di�erent) involutive permutations of the numbers

1; : : : ; N .

Therefore, we can write the matrix (5.2) as follows

WN(x; �) = ei	

0
@
QN

l=1(�l(x) + �)e(��)
QN

l=1(�l(x)� �)e(�)QN

l=1(��l(x) + �)e(��) �
QN

l=1(��l(x)� �)e(�)

1
A

�l(x) = �1l(x) (5.8)

which by construction satis�es the linear problem associated to the sine{Gordon equation.

Starting from the above matrix, it is easy to obtain the normalized solution

TN(x; �) =WN (x; �)W
�1
N (0; �) =

0
@ ei

 N (x)� N (0)
4 XN (�) ei

 N (x)+ N (0)
4 YN (�)

e�i
 N (x)+ N (0)

4 �YN (��) e�i
 N (x)� N (0)

4 �XN (��)

1
A

XN (�) =

QN

l=1(�+ �l(x))(�� ��l(0))e(��) + (�$ ��)

2
QN

l=1(�
2 � �2l )

YN(�)

QN

l=1(�+ �l(x))(�� �l(0))e(��) + (�$ ��)

2
QN

l=1(�
2 � �2l )

(5.9)

of the linear problem associated to the sine{Gordon equation. In view of (3.15a) and

(3.15b), the quantity A(T ) (3.3) is in the unit disk D . Using the analytic isomorphism

(3.18) between D and the upper half plane H we get

uN(x; �) = i
XN (x; �) + ei

 N (0)

4 YN (x; �)

XN (x; �)� ei
 N (0)

4 YN (x; �)
(5.10)

The above expressions gives us (up to an isometry transformation of H) an isometric

immersion of an N{soliton surface SN in the Lobachevskian plane.



{ 26 { CBPF-NF-045/99

To �nish, let us consider some examples. First, suppose that one deals with the

vacuum solution  = 0 of the sine{Gordon equation (2.9b). In this caseX0(�) = ch(�x
+

2
+

x�

2�
); Y0(�) = �sh(�x

+

2
+ x�

2�
) and therefore

u0(x; �) = ie��x
+�x�

� (5.11)

which is a geodesic line in the Lobachevskian plane.y Note that all the other geodesics in

H can be obtained from (5.11) by a suitable PSL(2;R) transformation (2.17).

To get one{soliton surfaces, we �rst observe that, in accordance with the general

expression (5.5), the (one-soliton) dynamics is governed by the equations

�(x) = ��
1 + ce2(�)

1� ce2(�)
;

�� = �; �c = �c (5.12a)

The above equations together with (5.6) yield

e�i
 
2 = �

�

�
=

1 + ce2(�)

1 � ce2(�)
(5.12b)

which agree with the standard expression of the one soliton solution of the sine{Gordon

equation [5, 8]. Substituting back the the above solution into the general formulas (5.9)

and (5.10) we get

u1 = i
� + �

�� �

(� � �)ch(A(�) +A(�) + ln�) + i�(� + �)sh(A(�)�A(�)

(� + �)ch(A(�)�A(�)� ln�)� i�(�� �)sh(A(�) +A(�)

A(�) =
�x+

2
+
x�

2�
(5.13)

where c1 = c = i��, � = jcj and � = �1. Depending on the value of �, the solutions

(5.12a), (5.12b) are called solitons (for � = 1) and antisolitons (for � = �1). Therefore,

we conclude that the surface S0 which corresponds to the sine{Gordon vacuum solution

is mapped into a single geodesic line. This is not strange since the metric on S0 is

degenerated everywhere. On the other hand the isometric immersion S1 !i H (5.13) is

not degenerated except the points at which sin vanishes.

yWe recall that the geodesics in the space of Lobachevski are straight lines parellel to the imaginary

axis or semicircles which end on the real axis
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