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ABSTRACT

A method is furnished for constructing isotropic and
homogeneous solutions in Brans-Dicke theory based on the ana-
lysis of the dynamical system formed by the field equations.
Large classes of solutions found in the 1iteréture are recover
ed and shown to be special cases.of those generated by this me

thod.
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Introduction

~Dynamical system theory has been applied with great

success in cosmology and astrophysics within the context of general

relativityll].

Recently, its range of applicability has been enlarged
by considering alternative theories of gravity, such as those
which do not obey the principle of minimal coupling[zl, Kaluza-

(3]

=-Klein and scalar-tensor theories[4].

In this paper we are concerned with Brans-Dicke theory[sl '
and look for cosmological solutions presenting homogeneous, isotro
pic aﬁd spatially flat geometry having a perfect fluid as source.
The starting point of our work is to reduce the field equa
tions to a planar autonomous dynamical system (the phase space of
this system is given iﬁ ref.[6])). From the knowledge of some mathe
matical features of the system (without having to solve any
differential equation) we have developed a simple method for gene-
rating exact solutions of Brans-Dicke equations. Some of these so
lutions are valid for fluids satisfying a rather general equation
of state and for arbitrary values of w. The restrictions which
should be imposed on the solutions if Brans-Dicke theory is to be
reduced to Einstein's general relativity in the limit w+ <« and

¢=G-1 are discussed at the end of the article.

1. Brans-Dicke field equations

The field equations in Brans-Dicke theory are given{7] by

=-8r -+l R _1
Ru\) - ¢ [Tu\, (2w+3)Tg}J\}] e ¢'?'U¢'?V“ P ¢FUFU (1.a)
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= 87
¢ =5333 T+ (1.b)

where ¢ is the scalar field, Tuv is the energy-momentum tensor

and T its trace.

For perfect fluids Tw = (;:-+p)\3'u\if\J “PY,yr P denoting
the energy density, p the pressure and v" is the 4-velocity of the
fluid. 1Isg@tropic, homogeneous and spatially flat geometries may

be described by the Friedmann-Robertson-Walker line element

written in the standard form
ds?2 = d¢2 - R2{t)[AY2 + X3(d92 + senzd d¢2)]. {2)

Naturally, homogeneity and isotropy of spacetime also implies
$ = ¢(t). Choosing a co-moving coordinate system and adopting as

the equation of state p = Ap{0£A£1), the equations (l.a) and
(1.b) become:

8 . 082 _ _8Tp ._ w+ 1 o Y L

e + 3 = ) [1 3073 (1-3X))] w%; % ' (3.a)
o 2 : :

% + -g— = 8_¢9. [A + —mﬁ {1 *31)] “‘"% % r (3-b)
- - _ aﬂp -

¢ + 6¢ = 5o 33 [1-3A] . {(3.¢c)

where & = 3R/R is the expansion factor..

2. The dvynamical system

Eliminating p from equation (3.c), we arrive at a pair

of equations which give rise to an autonomous dynamical system in
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-3

two dimensions:
é = Flm(a"p, ’ (4.2)
Vo= H, (0,¥) , (4.b)

where we have defined the new variable y = -% , and

F, (8,9) = -2N1T3[-(2+w+m)ea +%‘i’(m-w-1w=+m(1-3x)ew1
My 00,0) = gt (A5 yea o (B2BU 300, el a0y 24 30)6y),

As it has been pointed out previously, the phase portraits
of the system (4) were analysed in ref.{6]. To carry out a general
qualitative analysis of dynamical systems of this type, i.e.,
homogeneous in the variables (6,y¥) it is useful to work with the
polar coordinates r and o (6 =r cosa, ¥=r sena), defined in the

phase plane. 1In these new variables (4) is transformed into

r = r2 Z,,(0) (5.a)

a = rN, (o) , (5.b)

where le(o.) = ka(cos a,sen a)cos o - Flw(cos c,sena)senca and
zkm(a) = H’m(cos a,sen¢)sena + Flm(cos a,sen a)cos o,

The roots of the equation

N,pfe) =0 (6)

are referred to as the invariant rays of the phase plane and con-
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sist of straight lines o =const., passing through the origin of
the plane (8=0, y=0). It turns out that the invariant rays
are solutions of the dynamical system (see, for example, ref.
[8)). Therefore, the knowledge of the invariant rays auto-
matically lead us to find out classes of solutions of the system
without needing to solve analytically any differential equation.
Thus, let us apply these ideas to our case. Here, the function

wa(a) will be given by

1«3

N, () = 2m1+3 [(=— A Ycos?a + (Aw- 32 -w)cosia sena +
( 2w -i.m- 6 Ycos o sensa +§22 {1 +w=- Aw)sen?c} . (7)

If k=_—§— (radiation case), then we see that sena=0 is a root of

eq.[6]. Conversely, if sena=0 is a root of {6], then )\=% .
Initially we take A =-:.1,‘- and assume also w=® -% . Thus,
to solve eguation [6] is equivalent to solving

(A2 )4 o= -wygr s (ROSTEZ8,54 30 140 -2w) =0

(8)

where we have put £ =6/y=cotga.

It is possible to factorize eq. (8] in the following way:

(253 evaw-w-11082 438 - 3 = 0. (9)

Thus, if w< - 3/2, only one real root exists, namely,

_ 3l +w=-dw)

3
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On the other hand, when w > - 3/2 we must include the two real

roots:

£ o=-32a+/1+2 (11)

and

g, =30 -/ 142, (12)

3. Generating solutions from the invariant rays

The generate solutions from the invariant rays we must
recall‘that, as it has been pointed out before, the invariant
rays themselves are integral curves of the phase plane, i.e.,
solutions of the dynamical system. This clearly provides a
means for obtaining solutions of Brans-Dicke equations, as we
shall illustrate with the following examples.

Consider, for instance, the well known Brans-Dicke

{9}

solution corresponding to a pressureless fluid and to zero

spatial curvature:

2

() = o 304, (13.a)
2w+ 2

R(t) = RS, (13.b)

where ¢o and R, are constants. After evaluating 6 and % in

this case, we get

_ R _3(w+2) 1
6 = 3R =301 1 ' (14.a)

6 2 1 . _
V=g o= 3 (14.b)



CBPF-NF-045/88

But, noticing that % = const. = 3(1 +w), we conclude that (l4.a)
and {14.b) refer necessarily to a solution of the dynamical
system {4) lying just on one of the invariant rays. In fact,
settint A =0 lead us to identify this invariant ray with
a, =arc cotg £, (see eg. (10)).

Another example is provided by Nariai's solutions (10,
11,12), which constitute a class of solutions valid for spatially
flat Friedmann-Robertson-Walker metrics and perfect fluids with

equation of state p=Ap:

R{t) = Rotp‘ , (15.a)
(L) = ¢otp‘
with p, = 22200=0 o 201-3))

4+ 3W(1 - A2) 4+ 3w(l-23) -

Here, again, a simple calculation of 6 and ¥ immediately shows

that (15.a) e {15.b) define curves located on the invariant ray «;.
A brief analysis of these two examples suggests us to do

an almost obvious generalization. Let us consider the following

class of solutions lying on the invariant ray a,:

l1+w-2\o

R(t) = R t £(2,w) (16.a)
1-3)

p(t) = g t T0)

where f(A,w) is an arbitrary function of X and w. Each solution
of the above class is a solution of the dynamical system (4) and
satisfies Brans-Dicke equations. In the preceeding example,

Nariai's solutions correpond to the particular choice f(i,w) =
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= 2+-§-29(1-J\3).

Analogously, egquations (11) and (12) suggest further

generalizations:
1:4/1+ %;3
R(t) = Rt 9 , (17.a)
2

o (¢) =0 t 900 (17.1)

with g(w) arbitrary.

3. Vacuum solutions and the energy density equation

From equations (3.a) e (3.b) we can deduce the follow-

ing expression for p(t):

Thus, for ¢(t) and R{t) as given by the class of solutions

(16.a) and {16.b) we have

8 - f‘(l}w)t‘ [(3(1+w-Aw)2~ % (1-30)2+ (1-3M).

. (1+w=2w)) (19)

For the classes of solutions given by equations {(17.a)

and (17.b), lying respectively on the invariant rays o, =

= arc cotg &, and o = arccotg £,, we conclude from eq. (18)
that they represent vacuum solutions (p=0). In reality, these

classes contain as particular cases the vacuum solutions first

obtained by O'Hanlon and Tupper[13] given by
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R(t) = notFi , (20.a)

o(t) = o t" (20.b)

where -i:= -%[1 + /3(2w+3) and q = %— (1-r).
Also, it is interesting to notice that the special solution
w==4/3 found by these authors, which corresponds to de Sitter

model in Brans-Dicke theory without cosmological constant

R(t)

R, explt] , (21.a)

¢ (t)

¢, expl- 3t] ' (21.b)

lies exactly on the invariant ray a¢,. Indeed, if w=-4/3 then

£,= -1, which means that 6 =-¢. Now, if we look at equations

(4.a2) and (4.b) we see that for w=-4/3 and 6 =-y, we have

The phase plane (¢,y) has a line (p=-y) of multiple equilibrium
poeints (see ref,[14]), each one representing the de Sitter-type

solutions of eq. (21.a) and (21.b).

5. The general relativity limit

Brans-Dicke's theory of gravity is formulated in such a
way as to reproduce Einstein equations in the limit when w goes to
infinity and ¢==G-1==const.. This arises the guestion: do Brans-
-Dicke solutions tend to Einstein solutions when the same limit
is required? The answer to this question is no, as it will be

shown in this section.

Friedmann models with spatially flat metric and perfect
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fluid with equation of state p=\p are given by

2
R(t) = R e+ (22.a)
- G 4 1
plt) = g7 - VLR X (22.b)

Hence, reguiring that Brans-Dicke solutions reduce to Einstein
solutions when w~> = and ¢==G-1 amounts to impose restrictions
on the arbitrariness of the functions f(A,w). -Comparison of
eq. (16.a) and (22.a) prescribes the following form for f(A,w):

£0,0) = h() +3 (1-23) +00,0) (23)

where 1lim (Ql%fﬁl = 0, and h(}) is an arbitrary function of X.

w+w

If f()A,w) cannot be put in this form, surely the general reia-
tivistic limit will not be attained by the solutions of
equations (16). Clearly, Nariai’'s solutions are a particular
case of (23). Furthemore, if f(),w) has the form of (23), then
¢-*¢° = const. automatically when w=+ =,

In the same way, we have to impose restrictions on the
functions g(®w) in equations (17.a) and (17.b). Nevertheless,
since we are dealing now with vacuum solutions, we must obtain
a static geometry {(Minkowski spacetime) when the limit w->® is

taken. This condition implies

lim
w+m

Yw
3 (@) = 0. | (24)

It is worth mentioning that O'Hanlon and Tupper vacuum soclutions

referred previously do not satisty the above condition.
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6. The radiation case

Wwhen A =1/3 we have a special case since the invariant
ray a, = arccotg £, does not depend on w. 1In effect, as it can
be inferred from eq. (7), A=1/3 implies that a, =0 or 7, which

is to say y=0 (or, ¢ =const.). Eguation (4.a), then, reduce to

6 =-203 , (25)

which, after immediate integration, yields

R(t) = nolum)”z i (26)

Thus, we conclude that in this case the class of
solutions represented by the invariant ray o, is nothing but
Friedmann's radiation solution with flat spatial sections.
Furthemore, it is interesting to notice that this result is
independent of taking the limit w-+=. The reason for this lies
on the fact that the scalar field is source-free (T =0) for
radiation, and, then, all solutions of general relativity satisfy
Brans-Dicke equations.

Finally, let us make a brief comment on the radiation
solutions found in the literature and which are related to the
invariant rays of the dynamical system (4). It can be shown
that when w=-3/2 the lines BB' and CC' coincide in the phase
plane and satisfy the equation %==-3/2. On the other hand, the
radiation solution for w=-3/2 found out by Singh and Deo[lsl,

given by the equations

R{t)

n
x
ot

(27.a)

¢ (t)

]
-
(e
-

(27.Db)
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plt) = "ﬁT(F:t_)" ' {27.¢)

where F is supposed to be constant, constitutes a case in which
% = -~ 3/2. Thus, Singh and Deo's solution {incidentally it does
not satisfy Dirac's hypothesis since the gravitational constant
G= % increases with the age of the universe) lies just on lines
BE' and CC' containing the invariant rays BM and CM. Further-

more, the constant F (left undetermined in Singh and Deo's

paper) must be necessarily null as a consequence of equation {18).

7. Final comments

We should like to add some final comments on the classes

of solutions represented by equations (16) and (17):

i) As far as singularities are concerned, we should say -
that all solutions constructed from the invariant rays present
singularities in the geometry (i.e., collapse of spacetime).

This may be proved by recalling that, by its own nature, the
invariant rays extend over regions of the phase plane (6,y} where
8 and (or) V¥ are infinite. The only exception is when we have
w=-4/3 for, in this case, we get an entire line of multiple
equilibrium points implying that & and y remain cohstant for all
the time.

ii)} An interesting class of solutions in which the

geometry is static, even though the gravitational constant

changes with time, is obtained if we set w=73 E ) in equations

{16), Then, we have

6 =t (28)
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The static solution reported by Raychaudhuri (see ref. (15))
corresponds to the particular choice f{i,w) =-1-%% » which, in

turn, belongs to the class of Nariai's solutions discussed in

sec, 3.

Conclusion

OLtaininq classes of exact sclutions for a general
equation of state and arbitrary w in Brans-Dicke theory is not
usually an easy task even if one works with homogeneous and
isotropic spacetimes. In this article we have developed a
method of finding solutions whose simplicity is rather surprising.
This fact alone stresses the importance of dynamical system
theory as a powerfull mathematical tool to be used in the

theoretical investigation of cosmology.
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