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Introduction

The topologicaly theory like Chern-Simons in D =
2 + 1 dimensions has been studied in various di�erent
approaches in quantum Field theory, in particularly in
perturbative quantum gravity [6].

In general, topological action such as "���A�@�A�

where A� means the abelian potential vector, or the ac-
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with ���� being

the connection, that do not contribute to the entropy of
black holes in D = 2 + 1. Furthermore these terms do
not contribute dynamically in a quantum �eld theory
[6]. Rich physics can be explored in quantum �eld the-
ory [6, 2] when Chern-Simons terms is combined with
Maxwell or Einstein Hilbert Lagrangian. The extension
of Chern-Simons theory including highest derivative in

at space time or in curved space time is carried out
by Jackiw and Deser [2]. The higher derivative Chern-
Simons extensions has a strong dependence on the local
�eld strengh, F��, and not on the vector potential, thus
the gauge information can be lost [2].

On the other hand \extensions" such as the usual
Chern-Simons term do not contribute to any change in
the original value of entropy for black holes inD = 2+1
dimensions [3, 4]. In contrast to that, with the ex-
tension of Chern-Simons term in a gravitational back-
ground [2] some interesting things happen. We intend
to �nd contributions to entropy of black holes in D = 3

dimensions.
Introducing the IECS (extension for Chern-Simons

with Higher Derivative in a gravitational background)
and applying the same procedure as in [3] we compute
contributions to entropy of black holes in D = 3 and
we �nd the inverse e Hawking evaporation tempera-
ture, partition function and stress energy-momentum
tensor. Although the IECS is not globally topological
[2] due to its energy-momentum tensor T��

ECS being dif-
ferent from zero the contribution from IECS to entropy
of black holes can be computed.

The non Abelian case will be treated in the next let-
ter again without any linkage with topology associated,
with metric in accordance with [5].

Let us begin by writing the funcional integral

Z =

Z
Dg e�(I+IECS) (1)

where I and IECS are respectively the action for the
three dimensional gravity with a negative cosmologi-

cal constant � = � 2

`2
and action for higher derivative

Chern-Simons extension in a curved space time given
by

I =
1

16�G

Z �
R+

2

`2

�
dx3 and (2)

IECS = �(2m)�1
Z

"��
f�@�f
dx
3 (3)
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with f� written as

f� =
1p
g
g��"

���@�A� : (4)

In according with [2] f� is a covariant vector and f�

being contravariant vector. The metric dependence in
IECS is completely contained in f�.

The equations of motion derived from this action
(2) are solved [1, 3] for the three-dimensional black hole
whose metric is

c

ds2 = �
�
�8MG+

r2

`2

�
dt2 +

�
�8MG+

r2

`2

��1
dr2 + r2d'2 (5)

d

where the quantities R; "��
 ; A�(x) are the scalar cur-
vature, the Levi-Civita tensor "012 = +1 and the vector
potential respectively.

The three components of f� are

f0 =
g00p�g "012 (@1A2 � @2A1)

f1 =
g11p�g "102 (@0A2 � @2A0) (6)

f2 =
g22p�g "201 (@0A2 � @1A0)

On considering the antisymmetry of the Levi-Civita
tensor, the action IECS , can be written as

c

IECS �
Z

d3x [f0 (@1f2 � @2f1)� f1 (@0f2 � @2f0) + f2 (@0f1 � @1f0)] : (7)

d

We recall that in D = 3 we have

A� = A�(x
�) = (A0; Ai) = (';Ai) i = 1; 2

and
x� = (x0; x1; x2) = (t; r; ')

and that the electric and magnetic �eld are pseudo vec-
tor and scalar respectively.

Thus, we introduce de�nitions for magnetic and
electric �elds as

~E = �~r' +
@ ~A

@t
~B = ~r� ~A : (8)

Then f� are given as

f0 =
g00p�g B ;

f1 = � g11p�g E' and (9)

f2 =
g22p�g Er

where E' and Er are components of the electric �eld
and B is the magnetic �eld in a gravitational back-
ground.

Then the \Chern-Simons action" as a function of
the metric, electric and magnetic �elds is

c

g00p�g B

�
Er + r

�
@Er

@r

�
+

g11p�g
�
@E'

@'

��
; (10.a)

�
� g11p�g E'
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r

�
@Er

@t

�
� g00p�g

�
@B

@'

��
; (10.b)

� g11p�g
�
@E'

@t

�
�
�
g00
r2

� 2

`2

�
B � g00p�g

�
@B

@t

�
: (10.c)
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These equation give the three terms in the expression
for IECS .

Now, following [3] the inverse temperature as the
Euclidean time period is

� =
2�

�
(11)

with � a parameter given by

� =
1

2

df(r)

dr

���
r=r+

; � 6= 0 : (12)

Here the function f(r) is equal to g00, and is given by

f(r) = �8MG+
r2

`2
(13)

where r = r+, the event horizon given by

r = r+ =
p
8MG ` (14)

where M; G; ` are the mass of the black hole, the
gravitational constant and the cosmological constant
respectively. Then the temperature, �, is given as

� =
�`p
8MG

: (15)

In general the temperature T = 1=� de�ned in (9) coin-
cides exactly with the Hawking's temperature for evap-
oration of black holes. In our case, if no consideration to
topology in the Euclidean sector is given and if we put
o� any relation between temperature and the complex
structure of the torus [3, 4, 5] the temperature is

TH �
p
M

2�`
: (16)

The total partition function associated with
Einstein-Hilbert-Chern-Simons action is

ZT ' Z3 �ZChern

Simons
(17)

where Z3 is the three-dimensional partition function in
the saddle point approximation related to the solution
(5) given in [3] by

Z3 ' e�
2`2=2G� (18)

and ZECS is the dimensional partition function associ-
ated with the higher derivative Chern-Simons in a grav-
itational background [2] give as

ZECS ' e
g00p
�g

BEr�( g00
r2
� 2

`2
)B

(19)

For simplicity only two terms from (10) are used. The
total partition function is given as.

ZT � e�
2`2=2G�e

�
�
2
`
2

�2r
� r

`2

�
BEre

�
�
2
`
2

�2r
� 3

`2

�
B
: (20)

Now the thermodynamical formula for the average
energy and the average entropy S is

M = � @

@�
(lnZT )

S = lnZT � �@� lnZT : (21)

The contribution to entropy is calculated from each
term using (10). For instance, for the second term in
(10.a) we may write the partition function ZT as

ZT � e�
2`2=2G�e

��2`2

�2
( @Er@r )B+ r2

`2
( @Er@r )B (22)

Then the average entropy is

S � �2`2

G�
� 3�2`2

�2

�
@Er

@r

�
B +

r2

`2

�
@Er

@r

�
B :(23)

One approaching the event horizon r! r+ the entropy
is

S � �2`2

G�
� 2�2`2

�2

�
@Er

@r

�
r=r+

�B(r = r+) (24)

where the �rst part comes from Einstein-Hilbert ac-
tion, together with eq. (6) and the second part comes
from extension of Chern-Simons action in a gravita-
tional background.

Again for simplicity the contribution to entropy only
for static con�guration, is considered in eq. (10). The
other terms have a non zero contribution for entropy, in
particular a contribution as given by eq. (20) and eq.
(24). The reason why we have a non zero contribution
for entropy in the present case is because in constrast
with the abelian Chern-Simons theory for electromag-
netic theory or Chern-Simons for gravitational theory
where the energy momentumtensor is zero, here we �nd
the energy-momentum tensor is not zero and is given
as

T��
ECS =

2p�g
�IECS
�g��

: (25)

The result is written as [2]

c

T��
ECS = �m�1 ��"���f� + "���f�

�
@�f� � g��"��
f�@�f


�
; (26)
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It's interesting to note that if we take the limit such
that g�� ! ��� ; the equation (4) becomes

f� =
1

2
"���F�� ; (27)

In accordance with [2], this cannot be done here since
our metric (5) is a particular case of the anti de-Sitter
space.

Conclusions and Look out:

In contrast to the abelian Chern-Simons term for the
electromagnetic theory or the Chern-Simons term asso-
ciated with the gravitational theory in D = 2 + 1 di-
mensions there is a contribution to the entropy of black
holes due to higher derivative Chern-Simons extensions
in a gravitational background.

Appropriate vector f� for an extension of a topo-
logically term such as Chern-Simons [2, 6] is de�ned
and we have shown that the source of entropy for black
holes in D = 2+ 1 dimension is the stress tensor which
is not zero (T��

ECS 6= 0).
The entropy using (21) in combination with (17)

is di�erent than S =
A

4
where A = 2�r+, the area of

horizon, since here the \topological contribution" is not
included.

Now, we are considering the contribution to entropy
of black holes in D = 2 + 1 but due to non abelian
Chern-Simons term such as

S =
k

4�

Z
d3x"���

�
1

3
fa�@�f

a
� +

�
1

3!

�
fabcfa�f

b
�f

c
�

�

where
fa� = (�g)1=2g��"��
Aa


 :

This goal will be hopefully realised in the next letter.
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