A Simple Proof of the Banach-Stone Theorem

Luiz C.L. Botelho
Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290-180 - Rio de Janeiro, RJ, Brasil
Departamento de Física
Universidade Federal Rural do Rio de Janeiro 23851-180 - Itaguaí, RJ, Brasil

Abstract

We present a simple proof of the famous theorem of Banach-Stone.

1 Introduction

One of the most important result in functional analysis is the content of the celebrated theorem of Banach-Stone ([1]): My aim in this mathematical short note is to present a simple new proof of mine for the above mentioned theorem.

2 The Banach-Stone Theorem

Let X and Y denote compact topological spaces. Let me assume an isometric isomorphism between the associated space of continuous functions

$$
\begin{align*}
& I: C(X, R) \rightarrow C(Y, R) \\
& f \longmapsto I(f) \tag{1}
\end{align*}
$$

I have, thus, the following statement: The topological spaces X and Y are topologically homeomorphs.

Proof: Let me consider the following linear and multiplicative functional on $C(Y, R)$ for each $x \in X$ fixed

$$
\begin{equation*}
I^{-1}(g)(x) \tag{2}
\end{equation*}
$$

Here I^{-1} is the inverse isometric isomorphism defined by eq. (1).
By a direct application of the Radon Theorem ([2]), there is a Dirac measure supported at a point $y \in Y$ such that for each $g \in C(Y, R)$ we have the following result as a consequence of the multiplicative property of eq. (2)

$$
\begin{equation*}
I^{-1}(g)(x)=\int_{Y} g(y) d \mu^{\text {Dirac }}(y-\bar{y})=g(\bar{y}) \tag{3}
\end{equation*}
$$

Let me define the following relation on the cartesian set $X \times Y$

$$
\begin{align*}
h: X & \rightarrow Y \\
& x \longmapsto \bar{y} \tag{4}
\end{align*}
$$

Since given two arbitrary points y_{1} and y_{2} belonging to X there is a function $\tilde{g} \in$ $C(Y, R)$ such that $\tilde{g}\left(y_{1}\right) \neq \tilde{g}\left(y_{2}\right)$, we obtain that h is a function with domain X and image on Y.

The function $h: X \rightarrow Y$ given by eq. (4) is injective, since there is two different points $x_{1} \in X ; x_{2} \in X$ and $x_{1} \neq x_{2}$ and applied by the function h on the same point $y \in Y$, then we have that

$$
\begin{equation*}
I^{-1}(g)\left(x_{1}\right)=I^{-1}(g)\left(x_{2}\right) \tag{5}
\end{equation*}
$$

for every $I^{-1}(g) \in C(X, R)$. Again, we have a contradiction with the fact that there is always a function $m \in C(X, R)$ such that $m\left(x_{1}\right) \neq m\left(x_{2}\right)$.

At this point we obtain that h is a continuos function and sobrejective since X and Y are compact tological spaces.

I have, thus, that $h: X \rightarrow Y$ provides a homeomophism between this two topological compact spaces.

Acknowledgments: The author is grateful to C.B.P.F. by the warm hospitality.

References

[1] G.F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill (1977).
[2] N. Dumford and J. Schwartz, "Linear Operators (part I), Interscience, N.Y. (1958).

