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Abstract

We have studied the hadronic correction from the background pion �elds due to the
chiral symmetry breaking to the Coulomb potential that governs the short-distance behav-
ior of the interactions between the bound quarks. The background �elds are associated
with the constituent quark mass. We �nd a modi�ed potential form which favors the
diquark structure. We also roughly estimate an in
uence of this correction on the phase
shifts in nucleon-nucleon scattering and �nd that it may cause an extra middle range
attraction between nucleons which is expected.
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I. Introduction

When the transferred momentumbetween quarks becomes su�ciently low, the system
reaches the non-perturbative regime which is characterized by two important properties.
The �rst is the con�nement of quarks and gluons inside hadrons and the second is the
chiral symmetry breaking. The earlier studies on the hadronic properties indicate that a
reasonable explanation of the hadronic spectra demands large masses for u and d quarks
[1] and as well as the nucleon magnetic moments [2], the so-called constituent quark mass
is about 330 MeV which is much larger than the current quark mass of about 4 � 10
MeV. It is believed that the constituent quark mass comes from a completely di�erent
source compared to the current mass. The lattice �eld theory calculation also con�rms
the existence of the chiral symmetry breaking [3]. The chiral phase transition is still not
fully understood so far, but many investigations of its signi�cance and consequences have
been carried out. Diakonov, Petrov and Pobylitsa [4,5] showed that in a nucleon, due to
the chiral symmetry breaking the single quark e�ective Lagrangian is described as

Llow momentum
QCD = 	�(i/@ �m�Mei�

a�a
5)	�; (1)

where � is the color index and �a(x) is the pion �eld associated with the nucleon, namely
the quarks submerge in the pion background �eld atmosphere. In this work, we only
discuss the SU(2) case, so � a is the common Pauli matrices. M is the constituent mass
of quarks while m is the current mass which is much smaller compared to M and can be
neglected in our later calculations.

More precisely, the Llow momentum
QCD gives rise to an equation of motion for a single quark,

but the quark moves in a background �eld of pions and therefore not indeed free. It is true
that the background pion �eld �a(x) is caused by a collective e�ect of all quarks inside the
baryon, therefore the description is phenomenological, but correctly manifests the chiral
properties of the bound quarks. Meanwhile in this scenario, the quark wavefunction 	�(x)
is a function of coordinates.

Turning to investigate the interaction between the bound quarks, the underlying theory
is QCD. Generally speaking, the interaction can be described by the potential model where
there are the Coulomb and con�nement terms. It is believed that the Coulomb potential
is due to the one-gluon-exchange interaction and can be derived in the framework of
perturbative QCD, so it governs the short-distance behavior of the potential, while the
con�nement term comes from the non-perturbative QCD and is still not clear nowadays.
Therefore, in this work, we only deal with a correction to the Coulomb part, but not the
whole potential.

The traditional method for deriving such a potential is standard. One �rst writes down
the two-quark scattering amplitude via one-gluon-exchange diagrams [6,7] and carries out
the Breit expansion with the spinor of free quark in the momentum space [8] where the
instantaneous approximation is taken to obtain a potential form in momentum space,
�nally, a Fourier transformation converts it into a potential in the coordinate space. The
procedure is simple and the derived Coulomb potential has a form as

V Coul(r) =< �ai �
a
j >

�s
4r

(i 6= j); (2)

where �s is the QCD coupling constant (�s = g2s=4�) and < �ai �
a
j > is the color average



{ 2 { CBPF-NF-044/97

in a color-singlet hadron as

< �ai �
a
j >=

8><
>:
�16

3
for mesons

�8
3

for baryons
: (3)

Instead, it is obvious that if the quarks are not free, but move in a background pion
�eld �a(x), one cannot write a Dirac equation in momentum space as in the case of free
quark where (i/p�m)u�(p) = 0, because p� does not commute with the Hamiltonian and
is no longer a good quantum number. Therefore we are not able to follow the traditional
procedure for the Breit expansion, but need to carry out all derivations completely in the
coordinate space. Thus one needs to employ the new wavefunction 	�(x).

The equation of motion of quarks which submerge in the background pion �eld can
be reduced to a coupled di�erential equation group [4,5]. It is very complicated and can
only be solved numerically. To gain more understanding of the whole picture, we prefer
an analytic form even though need to invoke some approximations. Therefore later in
this work, we try to achieve a compact form for the modi�ed Coulomb potential under
a reasonable approximation. Furthermore when we consider the spin status of quarks,
the situation becomes more complicated than for free quarks, because the regular spin
projection operator or helicity operator does not apply here, so one has to seek for a
proper expression for the spin projection which is consistent with the Lagrangian (1). We
follow Ternov et al. [9] to de�ne an appropriate spin projection operator.

The basis of this work is that we employ the quark wavefunction which is the solution of
the modi�ed Dirac equation in coordinate space, in the expression
(�igs)2	q

�a

2 
�	q
�i
q2
	q0

�a

2 

�	q0 to replace the free-quark wavefunction in the traditional

approaches. This correction re
ects a hadronic e�ect on the short distance behavior be-
tween quarks inside baryons. Since this e�ect is purely non-perturbative, so far there is
no reliable way to determine the form of the pion �eld and one has to invoke for rea-
sonable ansatz whose validity should be tested by comparing the obtained results with
experimental data. For the pion �eld, there is various ansatz, in the present work we will
apply two popular ansatz to give corresponding modi�ed Coulomb potential.

Since this correction may have some phenomenological consequences in phenomenol-
ogy, we apply the results to make a rough evaluation on the nucleon-nucleon scattering
phase shifts. The preliminary calculation shows a qualitative improvement for the middle
range behavior (about 0.5 fm) of the nuclear force and furthermore this correction can
modify the baryon spectra by a few tens of MeV, if the potential model is applied [10].

The paper is organized as following. After this introduction, we present our formula-
tion about deriving the modi�ed Coulomb potential where the spin projection operator
is properly de�ned. In Sec.III, we give numerical results graphically corresponding to two
di�erent ansatz for �a(x). In Sec.VI, we analyze and discuss the obtained results in some
detail and �nally in the last section we draw our conclusion.

II. Formulation

From the Lagrangian (1), the equation of motion for a single quark in the background
pion �eld is given as

(i/@ �Mei�
a�a
5)	�(x) = 0; (4)
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where the current quark mass is omitted.
(i) The spin projection operator.
Before going on to derive the potential with the new spinor 	�(x), �rst let us de�ne

the spin projection operator. The Hamiltonian operator corresponding to the Lagrangian
(1) can be written down directly

Ĥ = �i~� � ~r+M�ei�
a(x)�a
5; (5)

where ~� = 
0~
 and � = 
0 as the usual convention. According to ref.[9], an operator can
be decomposed into two parts as

F̂	 = ([F ] + fFg)	; (6)

where

[F ] =
1

2
(F�+ �F )�; (7)

fFg =
1

2
(F�� �F )�; (8)

and � � Ĥ
(H2)1=2

= Ĥ
�
, and the � is an absolute value of the eigen-energy of Ĥ , it is

de�nitely positive and non-zero. So [F ] denotes the part of F̂ which commutes with Ĥ
whereas fFg anticommutes with Ĥ . The authors of ref.[9] pointed out that only the part
[F ] has physical signi�cance. For example, a free fermion has Hamiltonian operator as
(~� � ~p+m�), so its velocity operator is obtained d

dt
~r = c~�, while [ d

dt
~r] = ~p

m
has very clear

meaning [9].
The spin projection operator is de�ned as [P (n; s)] = 1

2(P (n; s)� + �P (n; s))� where
s = �1

2 and P (n; s) = 1
2(1�

2sW �n
M

). The W has a well-known form

W� = �
1

4i
������

��@�:

With the Hamiltonian (5), we have obtained the projection operator as

[P (n; s)] =
1

2
[1 +

s

2
(
1

M
(i
0~� � ~r) + (1 � i
5�

a�a(x))
5/n

+ 
5/n(
i

M

0~� � ~r+ 1 + i
5�

a�a(x))]; (9)

where n� denotes an arbitrary direction with normalization n2 = �1 and s is the de�ned
projection eigen-value (�1=2). For convenience, we choose n� along the z-axis as n� =
(0; 0; 0; 1).

(ii) The potential.
The one-gluon-exchange diagram is depicted in Fig.1, and the amplitude can be written

as

V =< q01q
0
2jg

2
s	(x)


��
a

2
	(x)Dab

��(x� y)	(y)
�
�b

2
	(y)jq1q2 >; (10)



{ 4 { CBPF-NF-044/97

where gs is the QCD coupling constant, �a is the SU(3)c generator, and the gluon propa-
gator Dab

��(x� y) in the unitary gauge is

Dab
�� = �ab

Z
d4q

(2�)4
�i(g�� �

q�q�
q2

)

q2 � i�
e�iq(x�y): (11)

Due to the on-shell condition of quarks, even though this "on-mass-shell" is di�erent from
the free quark mass shell, but given in eq.(4), q�q� term vanishes.

As aforementioned, if we substitute the numerical solutions for 	(x) and 	(y) to
the expression of V , it would be hard to observe the analytic properties of the modi�ed
potential. Therefore we employ the tricks provided by Li, Yan and Liu [11] who studied
the proton spin puzzle in this scenario. In form (10), let us rewrite the expression of the
vertex as

< q01j	(x)

�	(x)jq1 >�!< q01jT	(x)


�	(x0)jq1 > jx0!x; (12)

where the color indices and �a are omitted. In this form, we deliberately add a time-order
operator T to guarantee the limitation order for x0 ! x. Then

< q01jT (	(x)

�	(x0)jq1 > jx0!x =< q01j : 	(x)


�	(x0) : jq1 > +Tr(SF (x; x
0)
�)jx0!x:

(13)
Our goal is to study the correction to the Coulomb potential from the background

pion �eld at the lowest order, so when we deal with the expansion (13), we have to take
approximations. In this treatment we try to single out the correction term at the leading
order, and it is easy to note that the second term in (13) represents a static correction
from the pion �eld (see below). Obviously, it does not vanish only due to existence of a
non-trivial pion �eld �a(x). In fact if �a(x) is zero, namely the Lagrangian converts back
to the free quark Lagrangian, under the limit x0 ! x the second term in (13) vanishes due
to the trace structure, and the �rst term just recovers the regular vertex for free quarks.
Obviously, if the �rst term were the vertex in the complete theory under the limit, the
second term must be zero. Therefore, (12) is an approximation we take, which is trivially
true for the free quark case. But for a lagrangian with the pion �eld, as long as a non-
trivial �a(x) exists, the second term gives rise to a non-vanishing contribution. Therefore,
one can be convinced that to the leading order, the �rst term of (13) corresponds to
the free quark contribution where the mass is the constituent quark mass and �a(x) is
ignored, thus causes the regular Coulomb potential. Meanwhile the second term is the
correction term caused by the background pion �eld �a(x). In other words, we attribute
the correction from the pion �eld to the second term of (13) at this leading order, so (13)
simply gives a modi�ed form, the regular Coulomb term plus a correction. Furthermore it
is noted that this expression is valid only if < q01jq1 >= 1 1, ignoring di�erent color indices
of the two quarks, it means that this approximation is a static modi�cation to the color
current and charge. The authors of ref. [11] showed that for the deep inelastic scattering,
this approximation gives results consistent with data, so we have reason to believe that
the second term of (13) indeed includes the majority of the correction caused by the pion
background �eld.

1Here we thank Prof. Chang for calling us to notice this point
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This modi�cation is very similar to that in the multipole expansion method to ap-
proach hadronic transitions [12], there

LQ =
Z
d3x	(i/@ � g/A�m)	�

1

2

g2

4�

X
a

Z
d3xd3y�a(~x; t)

1

j~x� ~yj
�a(~y; t); (14)

where �a(~x; t) and �a(~y; t) are color density and the �rst term in LQ is the normal one.
Therefore our correction term in (13) corresponds to the second term of eq.(14) which
applies in a di�erent physical �eld.

The �rst term of (13) contributes to the regular Coulomb potential <�a�a>�s
4r

, and the
second term is the subject of our present study.

(iii) Derivations
An explicit expression of SF (x; x0) was given in ref. [11] and it is noted that in this

case SF (x; x0) cannot be written as SF (x� x0) which is true for free fermions. Thus

SF (x; x
0) =

1

(2�)4

Z
d4pSF (x; p)e

ip(x�x0); (15)

and

SF (x; p) = S
(0)
F (x; p)

1X
n=0

[(�i/@x)S
(0)
F (x; p)]n; (16)

S
(0)
F = �

/p�MÛ

p2 �M2
; (17)

where
Û = exp(�i
5�

a(x)� a): (18)

As a usually adopted approach, one needs to take the hedgehog ansatz [13] as

� a�a(x) = �(r)r̂ � ~� ; (19)

where r̂ = ~r
r
is a unit radial vector.

The integration over p in eq.(15) is divergent, so one can use the commonly adopted
dimensional regularization approach and take an identity to get rid of the divergence [11]

Nc

(4�)2
M

2

�
=

F 2
�

16
; (20)

where F� is the pion decay constant.
Thus substitute all the results into eq.(10), and as the spin projections of quarks are

under consideration, we also need to insert in the spin projection operator de�ned in (9).

V = < �a�a > f
�s
4r

+ g2s

Z
[Tr([P (n; s1)]

ySF (x; x
0)[P (n; s01)]
�)(

Z
d4q

(2�)4
eiq(x�y)

~q2
)

� Tr([P (n; s2)]
ySF (y; y

0)[P (n; s02)]

�)jx0!x

y0!y
]d3xd3yg; (21)
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where r � j~x� ~yj.
It is noted that there are no cross terms between the �rst and second terms of (13),

because if the momentum carried by the intermediate gluon is not zero, the second term
vanishes for < q01jq1 >=< q02jq2 >= 0, but if ~p1 = ~p01 and ~p2 = ~p02, in the free quark piece
(the �rst term of (13)) u(~p1)
�u(~p1) can be calculated explicitly and is proportional to

~p1 in the instantaneous approximation, then one can have a cross term as ~p1 � ~r�(r2), an
average over ~p1 would give a null result.

The integration over ~x and ~y means that the two quarks are anywhere and this average
e�ect could be a global correction. Later our derived formula shows that this overall e�ect
vanishes. In fact, carrying out this overall integration is meaningless because we hope
to study interaction between quarks as a function of their distance. Therefore in later
expressions we keep the quark 1 at position ~r1 and quark 2 at position ~r2, to match the
dimension, one needs to use a parameter IN of dimension of volume to replace the spatial
integration.

As in the Breit equation, one has to take the spontaneous approximation to obtain
interquark potential, and we do the same here. With formulae (15) through (21), one may
obtain the correction term to the Coulomb potential and all calculations are standard.

V corr =
< �a�a > �s

4
[�iT r([P (n; �01)

y]
�[P (n; �1)]SF (x; x
0))(

1

r
)

� (�i)Tr([P (n; �02)
y]
�[P (n; �2)]SF (y; y

0))]jx0!x

y0!y
� (
F 2
�

8
)2 � I2N

=
< �a�a >

4

�s
r
�(r1)�(r2)

d

dr1
�(r1)

d

dr2
�(r2)[(1 + � + �0 + ��0)cos�

� 2(� + �0)cos�1cos�2](
F 2
�

8
)2 � I2N ; (22)

where for simplicity, we take �i = 2si as the projections which have eigen values �1 and
� � �1 � �

0
1 and �0 � �2 � �

0
2, r = j~r1 � ~r2j.

In this expression, there are cos�, cos �1 and cos�2, �1 and �2 are the polar angles of
~r1 and ~r2 respectively and � = �1 � �2. Their existence is due to the hedgehog ansatz
as �a(x) = �(x)r̂a, so the background pion �eld has a spatial direction. The term pro-
portional to cos�1cos�2 is owing to our special choice of the spin projection axis. For a
physical picture which makes a common sense, there is no any special direction is the
space, so that one needs to integrate out �1 and �2, while keeping �1 � �2 �xed.

Thus the total potential is

V mod
eff =

�s < �a�a >

4r
+
< �a�a >

4

�s
r
�(r1)�(r2)

d

dr1
�(r1)

d

dr2
�(r2) �

[(1 + � + �0 + ��0)cos� � 2(� + �0)cos�1cos�2](
F 2
�

8
)2 � I2N + V 0; (23)

where V 0 comes from the relativistic correction in the �rst term of Breit expansion (13),
since in this scenario M is the constituent quark mass, so that the relativistic correction
is not large. Writing dcos�1dcos�2 into dcos(�1 � �2)dcos�2 and integrating over dcos�2
the second term in the square bracket of (23) vanishes. This leads to V mod which will be
plotted in Figs.3 and 4.
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In next section, we will employ two widely accepted ansatz for �(r) to evaluate the
correction from the background pion �eld.

III. The numerical calculation of V corr.

The pion �eld �a(x) principally is a consequence of QCD, and should be derived if
we knew how to handle the non-perturbative QCD, but due to lack of such knowledge,
generally one has to take the hedgehog ansatz and meanwhile �(r) may have di�erent
forms. In this section, we adopt two widely accepted ansatz for �(r), (1) is that suggested
by the authors of refs.[4,5], and (2), the Skyrme form [13].

(1) The pro�le function [4,5]

�(r) = 2arctan(
r0
r
)2; (24)

where r0 = 0:57 fm and in the expressions the dimensional parameter IN is taken as 4�
3
r30.

According to ref.[4,5], this r0 can give gA = 1:15, g�NN = 13:6, so it indeed convinces us
that the valence quark picture is right. This �(r) has a property that

d

dr
�(r) =

�4r20r

r40 + r4
r!0
�! 0;

which is important and we will see it later.
The numerical results are shown in Fig.3. In this �gure, we set r1 as 0.3 fm and 0.5 fm

and let r2 move around, then we graphically demonstrate the dependence of the modi�ed
Coulomb potential as a function of r = j~r1 � ~r2j. In this graph we let ~r1 and ~r2 be along
the same line, i.e., cos� can be 0 and 1.

The curve 1 corresponds to the pure Coulomb potential in the free quark case, and
curve 2 and 3 for the r1 = 0:3 fm and 0.5 fm respectively. It is observed that there is a
bump at the modi�ed potential curves as r gets to certain values and its appearance will
be explained in next section.

(2) The Skyrme form.
In principle, the function �(r) is obtained numerically by solving a very complicated

non-linear di�erential equation, however, Atiyah and Manton suggested an ansatz [14]

�(r) = �[1�
1q

1 + �2=r2
]: (25)

With this pro�le function form, they achieved �2 = 2:11 and the dimensionless energy is
1:243 � 12�2 compared to the numerical result 1:232 � 12�2. Since this form is analytic,
so our calculation can be greatly simpli�ed by adopting this function. However, with this
function

d

dr
�(r) =

�2��2

(r2 + �2)3=2

does not go to zero as r! 0.
The numerical results are shown in Fig.4, all parameters are the same as adopted for

Fig.3. There a jump is observed at the curves and this discontinuity is due to the fact
d
dr
�(r) does not approach to zero when r! 0 and will be discussed in next section.
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This corrected Coulomb potential form favors the diquark structure of baryons, which
we will discuss in next section. Besides, this modi�cation may have phenomenological
consequences in other �elds.

First, in the nucleon-nucleon scattering evaluation, the study on the phase shifts may
determine the nuclear force behavior. In fact the nuclear force stands as the Van der
Waals force induced by QCD. However the derivation is somewhat di�erent from that
given in this work, because the interacting two quarks are from two di�erent clusters
(nucleons ), so in the expression (1) the 	q and 	q0 are solutions corresponding to two
di�erent modei�ed Dirac equations where the centers are at di�erent coordinates. But
the procedure for deriving e�ective potential is the same. In the traditional approaches,
the contribution from the pure Coulomb potential is proportional to 1=r6 while from the
linear con�nement is to 1=r3 [15]. Usually they fail to result a middle range nuclear
force which can meet experimental data, i.e. the obtained middle range attraction is not
su�ciently strong. This correction would cause a new term proportional to 1=r� where
3 � � � 6. Our rough estimation indicates that this value � is close to 6, i.e. re
ects a
modi�cation of the Coulomb potential, but can strengthen the middle range attraction.
However a careful evaluation of the scattering phase shifts is a very di�cult work and we
will present all more accurate evaluations in our next work [16].

Besides as some authors estimated the baryon spectra in terms of the potential model
[10], if we replace the regular Coulomb potential with this corrected one, a few tens of
MeV di�erence should be resulted. Because the spectrum is an overall e�ect and the
obtained correction term is proportional to cos� where � is the angle between the radial
vectors of the concerned two quarks which is caused by the hedgehog mechanism, for
spectrum evaluation one needs to average over the angle, thus

R
d
1d
2cos(�1� �2) = �4

gives an additional factor to the spectrum.
IV. Discussions.

In this work, we employ two di�erent ansatz for the background pion �eld. The ana-
lytic and numerical results all indicate that the pion �eld indeed gives rise to a hadronic
correction to the interaction between quarks (or quark-antiquark). There are some fea-
tures to be noted.

(i) The e�ective potential including the hadronic correction depends on the positions
of two quarks, because the pion �eld is a function of coordinates, besides due to hedgehog
ansatz, the pion �eld is along the radial direction, and it causes the dependence of the
interquark potential on the angle between two quarks. Namely, quarks interact di�erently
while being at di�erent positions.

(ii) Because �(r) is a decreasing function of r and acts as an external �eld for the
e�ective potential between quarks, the two quarks at di�erent positions feel di�erent
interactions. As discussed above, this is a modi�cation to the e�ective color currents
carried by the two quarks and the color current density is a function of coordinates.

(iii) The angle � = �1��2 plays a crucial role in the hadronic correction. If r = j~r1�~r2j
is small when j~r1j is �xed, the angle between two quark-radial directions is less than �=2,
(see Fig.2), the dependence of the modi�ed potential on the distance is a smooth curve
which is only a bit shifted to the larger distance side compared to the pure Coulomb
potential. However, if r is larger than a certain value, the angle between two quarks along
radial directions becomes larger than �=2, a bump at the curve appears. The reason is
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obvious. Fixing ~r1 and letting ~r2 move, without losing generality, and to elucidate the
whole picture, we assume ~r1 and ~r2 remain along the same axis. As quark 1 is at position
~r1, and quark 2 moves towards the origin, one can observe that the curve is shifted to
right side, but as the quark-2 position crosses the origin, the polar angle � = �1 � �2
immediately changes into � � �. In Figs.3 and 4, � = 0 when two quarks are on th same
side of the origin, whereas when the quark-2 position crosses the origin, i.e. the distance
r = jr1 � r2j is larger than a certain value, � = ��. This induces cos� to change a sign,
and a bump at the curve appears. There would be another case that, quark 1 and quark
2 reside on the opposite sides with respect to the origin, and are very close to each other,
then separating them to larger distance (r gets larger), a corresponding graph which is
similar to Fig.3 or 4, shows a somewhat sharper increase near r ! 0 region and then tends
to the curve of the regular Coulomb potential. In fact all these modi�ed forms have the
same asymptotic large-r behavior as the regular Coulomb potential, and it is expected.

Let us study the spin factor in the correction term.

A = (1 + � + �0 + ��0)cos� (26)

(a) if � = �0 = 1, A � A1 = 4cos�;
(b) if � = 1, �0 = �1 (or � = �1, �0 = 1), A � A2 = 0;
(c) if � = �0 = �1, A � A3 = 0.
In (a), the two quarks (or a quark, an antiquark) do not 
ip spin projections during

the interaction with gluon; (b) one quark (antiquark) 
ips while another does not; (c) the
two quarks 
ip simultaneously. As � = 0 and �, jA1j gets to the maximum. Generally,
both the 
ip and non-
ip amplitudes exist with a proper probability. One may also see
that the correction term vanishes at some special angles, for example � = �=2, namely, ~r1
is perpendicular to ~r2. As ~r2 crosses the origin, A1 changes sign and the bump in Fig.(3)
and (4) would be resulted.

The dependence of the potential on the distance between quarks is illustrated in Fig.3
and 4, where Fig.3 corresponds to ansatz (1) and Fig.4 to ansatz (2) respectively, and
when the two quarks reside on the same side with respect to the origin the angle is 0,
while the distance gets larger and they reside on opposite sides of the angle is �.

(iv) The second term in eq.(13) contributes only in the case that the momentumcarried
by the interchange gluon is zero. In ref.[17], based on the QCD sum rules, the authors
also derived a QCD force which is singular like �(q) where q is the gluon momentum.
This force plays an important role in the intermediate momentum range. At very short
and very long distance regions, the Coulomb and linear pieces of the whole potential
take dominance respectively, therefore the modi�cation to the Coulomb potential in our
present work may correspond to the force derived in ref. [17].

The dependence on the interquark distance is quite di�erent from the regular Coulomb
potential obtained for the free quark case where the potential is only a function of the
distance between two quarks. The modi�ed potential not only depends on the distance,
but also on the polar angle spanned between the two-quark radial vectors and the position
of the two quark system . This is just because of �a(x) = r̂a�(r).

For the ansatz (1), since d
dr
�(r)jr!0 = 0, a continuous shoulder (bump) appears at

a certain value of r, and the curve is smooth. In contrary, for ansatz (2), the curve is
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discontinuous, i.e. there is a �nite jump at the corresponding value, that is proportional
to the discontinuity d

dr
�(r)jr!0 6= 0, which is a �nite number.

A direct consequence of this modi�cation is that the modi�ed potential has a shape
which is wider than the regular Coulomb potential at short distance region, and while
the distance becomes larger, i.e. the two quarks reside on opposite sides with respect
to the origin, a shoulder appears at the potential curves. By the Quantum Mechanics,
it is well known that for a Coulomb potential, this modi�cation corresponds to a larger
e�ective charge which makes the Coulomb well wider, then the binding energy becomes
more negative, namely if there is a bound state, the binding is stronger and the state
is more stable. Furthermore, the upwards shoulder which jumps up about a few tens of
MeV, e�ectively increases the well wall and it de�nitely makes the bound state even more
stable.

Therefore based on a simple analysis, this modi�ed form indicates that the additional
pion �eld inclines to strengthen the binding e�ect between quarks as long as they are in
3 (for quarks) and a singlet (for quark-antiquark). This is especially important for the
baryon case. If two quarks which submerge in the background pion �eld, move to certain
positions, i.e. exist on opposite sides with respect to the origin, they intend to be bound
together, so this modi�cation from the pion �eld indeed favors the diquark structure of
baryons. In particular, the diquark, if it exists, according to our analysis, should reside
near the origin of the baryon, while the third quark moves around. As this diquark breaks,
one of the quarks may join the other one or the third quark to constitute a new diquark,
all these structures exist with certain probabilities.

This modi�cation supports our understanding of the diquark structure.

V. Conclusion.

In this work we consider the e�ects from the background pion �eld for baryons which
characterizes the chiral symmetry breaking and causes the constituent quark mass.

For the valence constituent quark mass scenario, the potential model is a reasonable
description of the real physics for baryons, because the constituent quark masses are not
small and the relativistic correction is not very important, but if quarks only possess
current quark masses, the relativistic e�ects would never be negligible. Namely, due to
the chiral symmetry breaking, quarks gain constituent masses and the potential model
makes sense.

To derive the potential, the traditional way is to employ the Breit equation, where the
free quark spinors are used and their masses are constituent masses. However as many
authors pointed out that the constituent quark mass is associated with the background
pion �eld, therefore an obvious modi�cation to the traditional potential is to include the
e�ects from the additional pion �eld. To realize it, instead of the free quark spinors, one
should use the spinors which are solutions of the modi�ed Dirac equation with mass term
Me�

a(x)�a
5 . To elucidate the physical picture, instead of purely numerical solution, we
follow the way suggested by some theoreticians to separate the correction term from the
total potential whose zero-th order is exactly the regular Coulomb potential.

The authors of ref.[9] considered the in
uence of the pion �eld in the study of proton
spin problem, and found that the contribution of the pion �eld may be the key to solve
the the proton spin crisis. Therefore, it motivates us to investigate e�ects of the pion �eld



{ 11 { CBPF-NF-044/97

to other subjects.
Since the con�nement part of the potential comes from non-perturbative QCD e�ects

which are still obscure, we avoid such ambiguity in this work and only try to investigate
modifying the Coulomb part of the potential which is caused by the one-gluon-exchange
diagram and can be calculated perturbatively. We derive a modi�ed Coulomb potential
as given in preceeding sections and observe an obvious correction to the regular Coulomb
potential. Especially, when the two quarks reside on opposite sides with respect to the
origin, the e�ective potential well wall increases and it makes a bound state of the two
quarks more stable. This conclusion supports the theory that diquark structure exists
inside baryons.

In the derivations we take some approximation, so the positions and heights of the
shoulders on the curves shown in Fig.3 and 4 may be not very accurate, but as discussed
above, the validity of the approach was discussed and a convincing result was given in
ref.[9], so one can believe that the qualitative behavior of the modi�ed Coulomb potential
that we have found in this work should be right.

In fact, the background pion �eld may be a consequence of a collective e�ects of the
quarks and is due to the non-perturbative QCD, therefore, in our treatment we partly
include some non-perturbative QCD, and it is also consistent with the conclusion of ref.
[17]. As we know from ref.[4,5] that due to the chiral symmetry breaking the quarks
become constituent quarks "dressed" with the pion �eld, therefore derivation of mutual
interaction between quarks must include such "dresses", but not the bare quarks. In fact,
as the zero-th order approximation, �a(x)! 0 or F� ! 0, we just recover the free quark
case, namely obtain the regular Coulomb potential. Obviously, this picture also causes
modi�cation to the con�nement part of the potential and we may study it later when we
have more knowledge on the sources of the con�nement.

We also employ the modi�ed Coulomb potential to evaluate the phase shifts of nucleon-
nucleon scattering from which one may determine the nuclear force, we have found that
this correction cause a Van der Waals force which is proportional to 1=r� and 3 � � � 6.
This change can increase the middle range attraction of nuclear force which is expected.
Moreover, we also estimate a possible change of the evaluation of the baryon spectrum due
to the correction and leave all uncertainties to the parameters by �tting data. It indicates
that such a correction to the Coulomb part of a potential may bring some substantial
e�ects to certain processes and we will study them in more detail and publish the results
elsewhere.
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Figure caption

Fig.1. The Feynman diagram of the one-gluon-exchange interaction between two quarks
(quark-antiquark).

Fig.2. The geometric diagram where two quarks exist inside the hadron, r0 is a parameter
which characterizes the pion �eld �(x). r1, r2, �1 and �2 correspond to the positions of
quark 1 and quark 2 where the azimuthal angles are irrelevant so omitted.

Fig.3. The modi�ed Coulomb potential where the ansatz suggested by the authors of
ref.[4,5] is adopted.

Fig.4 The modi�ed Coulomb potential where the Skyrme form for the pion �eld �(x) is
adopted.
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