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Abstract

Light-front quantization of the Chern-Simons theory coupled to

complex scalars is performed in the local light-cone gauge following the

Dirac procedure. The light-front Hamiltonian turns out to be simple

one and the framework may be useful to construct renormalized �eld

theory of anyons. The theory is shown to be relativistic inspite of the

unconventional transformations of the matter and the gauge �eld, in the

non-covariant gauge adopted, under space rotations.

Key-words: Light-front; Anyons; Gauge theory; Quantization.

y Invited talk given at the International Workshop on Particle Theory and
Phenomenology, Iowa State University, Ames (Iowa), May 1995.
* E-Mail: prem@vax.�s.uerj.br or @cbpfsu1.cat.cbpf.br



- 2 - CBPF-NF-044/96

1. Introduction

Chern-Simons (CS) gauge theories1;2 coupled to matter �eld have been proposed

to describe excitations with fractional statistics3;4, anyons, and suggested to be relevant

for describing the quantized Hall e�ect and possibly the high-Tc superconductivity5

where the dynamics is e�ectively con�ned to a plane. There are, however, controversies

related to the quantized �eld theoretical formulation. The Lagrangian (path integral)

formulation6, for example, seems to give result which disagree with the canonical

Hamiltonian formulation7�10. It is claimed that the theory though shown relativistic

has angular momentum anomaly11 or shows anyonicity only in some nonlocal gauges10;7.

Internal algebraic inconsistency10 of using two local gauge conditions12 in the context of

the Coulomb gauge has also been stressed. The anomaly is also found absent in some

recent works13;14 and doubts have been raised about the anyonicity being gauge artefact9.

We clarify here some of the points by performing the light-front (l.f.) quantization15

of the CS theory coupled to the complex scalar �eld in the light-cone gauge. The

l.f. vacuum16;17 is known to be simpler than the conventional one and the anyonic

excitations and possibly some non-perturbative e�ects may be studied more conveniently.

In the descripton of the spontaneous symmetry breaking on the l.f., for example, it was

found18 that we do obtain the same physical result as that in the equal-time quantization,

although achieved through a di�erent mechanism. The conventional description requires

additional external constraints in the theory based on physical considerations while the

analogous ones on the l.f. were shown18 to arise from the self-consistency requirements

in the Hamiltonian theory itself. We conclude from our study that the abovementioned

rotational anomaly should rather be interpreted as gauge artefact, that even in the

present theory the application of two local gauge-�xing conditions on the phase space

is totally consistent, and that the l.f. Hamiltonian is simpler when compared to that

found in the local or nonlocal Coulomb gauge and it may be useful for constructing a

renormalized theory.
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2. Light-front Quantization of Chern-Simons Theory

The CS gauge theory we discuss is described by

L = (D��)( eD��
�) +

�

4�
����A�@�A� (1)

Here � is a complex scalar �led,A� is the gauge �eld, D� = (@�+ieA�), eD� = (@��ieA�),

���� is the Levi-Civita tensor needed to construct the Chern-Simons kinetic term. For

the coordinates x�, and for all other vector or tensor quantities, we de�ne the light-front

� components by x� = (x0�x2)=p2 = x�. We take x+ � � to indicate the light-front

time coordinate, x� is the longitudinal space coordinate and x1 is the transverse one.

The conjugate momenta are � = eD���; �� = D��; �� = a�+��A� where � = 4�a. The

conserved current j� = ie(��D�� � � eD���) is gauge invariant and its contravariant

vector property must remain intact if the theory constructed is relativistic.

Local light-cone gauge (l.c.g.), A� = 0, is easily shown to be accessible in the

Lagrangian theory; it will be shown below to be accessible also in the Hamiltonian

theory on the phase space of the CS gauge theory. Since a self-consistent Hamiltonian

theory19 must not contradict the Lagrangian theory we may start by deriving �rst the

necessary boundary conditions from the Lagrange eqs. written in the l.c.g.. For example,

from 2a@�A1 = j+ we derive that the electric charge is given by Q =
R
d2x j+ =

2a
R
dx1 [A1(x� =1; x1) �A1(x� = �1; x1)] . For nonvanishing charge, A1 may thus

not be taken to satisfy the periodic or the vanishing boundary conditions at in�nity along

x�. We will assume the anti-periodic boundary conditions for the gauge �elds along x�

while the vanishing ones along x1. For the scalar �elds following similar arguments we

assume vanishing boundary conditions. The canonical Hamiltonian may then be written

as

Hc =

Z
d2x

�
(D1�)( eD1�

�)�A+

�

(2)

where 
 = ie(�� � ����) + a�+ij@iAj + @i�
i and i = �; 1.
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We follow the Dirac method19 to construct an Hamiltonian for the constrained

dynamical system (1). From the de�nitions of the canonical momentawe �nd the primary

constraints: �+ � 0;>i � �i � a�+ijAj � 0;> � � � eD��� � 0;>� � �� � D�� � 0

where � indicates weak equality19. The preliminary Hamiltonian is taken to be H 0 =

Hc+
R
d2x

�
u>+u�>�+ui>i+u+�

+
�
where u; u�; ui; u+ are Lagrange multiplier �elds.

We postulate initially the standard equal-� Poisson brackets, and require the persistency

in � of the constraints making use of df(x; � )=d� = ff(x; � );H 0(� )g + @f=@� . We �nd

a secondary constraint 
 � 0. The Hamiltonian is then extended to include this one as

well and the step repeated and we �nd that no new constraint is generated.

The 
 and �+ can be shown to generate gauge transformations and the constraints

�+ � 0 and 
 � 0 are �rst class19 while the remaining ones are second class19. From

the Hamilton's eqs. of motion we verify that there does exist a choice of the Lagrange

multiplier �elds for which A� � 0 and dA�=d� � 0. The light-cone gauge A� � 0 is

thus accessible on the phase space (for a �xed � ). We add in the theory this gauge-

�xing constraints so that now the set of second class constraints may be checked to be:

>m; m = 1; 2::6: >1 � >�;>2 � >1;>3 � >;>4 � >�;>5 � A�;>6 � 
 while �+ �
0 stays �rst class. Next the Poisson brackets are modi�ed to de�ne the Dirac brackets

ff; ggD such that the second class constraints may be written as strong equalities19,

>m = 0 and eqs. of motion given by df(x; � )=d� = ff(x; � );H(extended)(� )gD + @f=@� .

The Dirac brackets are constructed to be

ff; ggD = ff; gg �
Z

d2ud2v ff;>m(u)gC�1
mn(u; v) f>n(v); gg (3)

where C�1(x; y) is the inverse of the constraint matrix with the elements Cmn =

f>m;>ng and given by
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0
BBBBB@

0 �4a@x� 0 0 0 0
4a@x� [��(x)�(y) + �(x)��(y)] 2ai�(x) �2ai�(x)� 0 �4a

0 2ai�(y) 0 (2a)2 0 0
0 �2ai��(y) (2a)2 0 0 0
0 0 0 0 0 2(2a)2

0 �4a 0 0 2(2a)2 0

1
CCCCCA
K(x � y)

(2a)2

(4)

with K(x � y) = �(1=4) �(x� � y�) �(x1 � y1); @�
xK(x; y) = (�1=2)�2(x � y) , and

�(x) = 1 for x > 0, �1 for x < 0, �(0) = 0. The Dirac brackets have the property

ff;>mgD = f>m; fgD = 0 for arbitrary variable f . We �nd that A+ which is already

absent in >m, drops out also from Hc since 
 = 0. The �+ � 0 stays �rst class even

with respect to the Dirac brackets and the multiplier u+ is left undetermined. The

variable �+ decouples and we may choose u+ = 0 so that �+ and A+ are eliminated.

The light-front Hamiltonian then simpli�es to

H l:f:(� ) =

Z
d2x (D1�)( eD1�

�) (5)

There is still a U(1) global gauge symmetry generated by Q. The scalar �elds transform

under this symmetry but they are left invariant under the local gauge transformations

since, f
; fgD = 0. The only independent variables left are � and �� which satisfy the

well known equal-� l.f. Dirac brackets

f�; �gD = 0; f��; ��gD = 0; f�(x; � ); ��(y; � )gD = K(x; y) (6)

We remark that we could alternatively eliminate �+ by introducing another local

gauge-�xing weak condition A+ � 0 (and dA+=d� � 0) which is shown to be accessible.

The additional modi�cation of brackets does not alter the Dirac brackets of the scalar

�eld already obtained. There is thus no inconsistency in choosing the two local and weak

gauge-�xing conditions A� � 0 on the phase space at one �xed time � in the CS gauge

theory; that they are accessibile follows from the Hamilton's eqs. of motion. Analogous



- 6 - CBPF-NF-044/96

conclusion holds also for the local Coulomb gauge in the equal-time formulation where

we require A0 � 0 and div ~A � 0.

We check now the self-consistency19. From the Hamilton's eq. for � we derive (e = 1,

�� = @��): @�@+�(x; � ) = f��(x; � );H(� )gD = 1
2
D1D1��iA+@��� i

2
(@�A+)� where

�2a @�A+ = j1 = �ie(��D1�� � eD1�
�). On comparing this with the corresponding

Lagrange eq. @+@�� = 1
2
D1D1� � iA+@�� � i

2
(@�A+)� in the light-cone gauge it is

suggested for convenience to rename the expression A+ on the phase space by (the

above eliminated ) A+. We thus obtain agreement also with the other Lagrange eq.

�2a @�A+ = j1 = �ie(��D1�� � eD1�
�). The Gauss' law eq. is seen to correspond to


 = 0 and the remaining Lagrange eq. is also shown to be recovered. The Hamiltonian

theory in the light-cone gauge constructed here is thus shown self-consistent. The

variable A+ has reappeared on the phase space and we have e�ectively A� = 0 (and

not A� = 0). Similar discussion can be made in the Coulomb gauge in relation to A0

and there is no inconsistency on using the non-covariant local gauges for the CS system.

That only the nonlocal gauges may describe10 the fractional statistics consistently for

the Lagrangian (1) is not true; it should also arise in the quantum dynamics of the

simpler Hamiltonian theory on the l.f. or in the local Coulomb gauge. In the latter

case or in the nonlocal gauges the Hamiltonian is complicated and renormalized theory

seems di�cult to construct. A dual description7;10 may also be constructed on the l.f..

We can rewrite the Hamiltonian density as H = (@1�̂)(@1�̂�) if we use A1 = @1� where

8a�(x�; x1) =
R
d2y �(x� � y�) �(x1 � y1) j+(y) and de�ne �̂ = ei�� , �̂� = e�i��� .

The �eld �̂ clearly does not have the vanishing Dirac bracket (or commutator) with

itself and it gives rise to the manifest fractional statistics. The theory is quantized via

the correspondence of iff; ggD with the commutator [f; g] of the corresponding �eld

operators. Any ambiguity in the operator ordering is resolved by the Weyl ordering.

3. Relativistic Covariance and Absence of Anomaly

The relativistic invariance of the theory above is shown by checking the Poincar�e

algebra of the �eld theory space time symmetry generators. The canonical energy-
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momentum tensor derived from (1) is given by

�c
�� = ( eD���)(@��) + (D��)(@���) + a����A�@

�A� � ���L (7)

where @��c
�� = 0 by construction. In the light-cone gauge they get simpli�ed, for

example, �c
++ = 2���; �c

+1 = �(�@1� + ��@1�
�); �c

+� = (D1�)( eD1�
�) = H. The

momentum generators de�ned by P� =
R
d2x �c

+� are conserved and shown to generate

the translations, e.g., f�;P�gD = @��; f��; P�gD = @��
� . The Noether current

following from the Lorentz invariance of (1) is J��� = �J��� = x��c
�� � x��c

�� �
i(@L=@(@�A�))(���)��A

� where (���)�� = i(������ � ������) and @�J
��� = 0. The

Lorentz generators areM�� = �M�� =
R
d2xJ+�� =

R
d2x

�
x��c

+��x��c+� �(A����
A���)

�
and in the l.c.g. they simplify to M�1 =

R
d2x

�
x��c

+1�x1�c+� �aA2
1

�
; M+1 =

x+P 1 � R d2xx1�c++; M+� = x+P� � R d2xx��c++.

The expressions of the generators as obtained on using the symmetric Belinfante

tensor �B
�� = [ �c

�� + a����@�(A�A
�)] , or the symmetric gauge invariant one7

di�er from �c
�� only by a surface term whose contribuition to the Lorentz genertors

vanishes. We remind that A1 is now a dependent variable and the extra term in

M�1 is sometimes called11;7;9 anomalous spin induced on the scalar �eld due to the

constrained dynamics generated by the C.S. term. A direct veri�cation20 of the closure

of the Poincar�e algebra on the mass shell is straightforward. The anomalous spin

term does not break the relativistic invariance. We do �nd f�(x; � );M�1(� )gD =

[x�@1�x1@�]�(x; � )� i
2
�(x; � )

R
d2y�(x��y�)�(x1�y1)A1(y; � ), f�(x; � );M+1(� )gD =

[x+@1 � x1@+]�(x; � ), f�(x; � );M+�(� )gD = [x+@� � x�@+]�(x; � ). The unusual

term containing A1 on the right hand side has been called11;7 a rotational anomaly

arising from the anomalous spin. Our discussion, however, shows that we may rather

interpret the anomalous transformation of the scalar �eld in the l.c.g. (or in the

Coulomb gauge11;7 ) as gauge artefacts. For example, the unusual commutators

fM�� ; A�gD = 0 or fP�; A�gD = 0 originate from the construction of the Dirac

bracket on working in the l.c.g.. As a matter of fact A1 also satis�es an unusual
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transformation, fA1(x; � );M�1(� )gD = (x�@1 � x1@�)A1 � A+ + (1=@�) @1A1 but

f@�A1(x; � );M�1(� )gD = (x�@1 � x1@�)(@�A1) � (@�A+). Since j+ � @�A1 and

j1 � @�A+ it follows that the gauge invariant current j� does preserve the property

of a contravariant vector in the l.c.g. as it should. The anyonicity seems not to

be related to the unusual behavior under rotations of the scalar or the gauge �eld in

non-covariant gauges but rather to the (renormalized) quantum dynamics of CS system

which is described, for example, on the l.f. by eqs. (5) and (6) or alternatively by the

dual description above which is more di�cult for constructing a renormalized theory.

A parallel discussion in the Coulomb gauge can be clearly made and in the case of the

fermionic �eld as well.

Acknowledgements

Acknowledgements are due to Prof. Abdus Salam for the hospitality at ICTP,

Trieste, and the hospitality o�ered at LAFEX-CBPF. Comments from Prof. J. Leite

Lopes, F. Caruso, R. Shellard, B. Pimentel and R. Moreira are thankfully acknowledged.

References

1. S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48 (1982) 975.

2. R. Mackenzie and F. Wilczek, Int. J. Mod. Phys. A 3 (1988) 2827.

3. R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395; 60 (1988) 2677.

4. J. Froehlich and P.A. Marchetti, Nucl. Phys. B356 (1991) 533.

5. F. Wilczek, ed., Fractional Statistics and Anyon Superconductivity (World Scienti�c,

Singapore, 1990).

6. see for example, S. Forte, Rev. Mod. Phys. 64 (1992) 193 and references therein.

7. G.W. Semeno�, Phys. Rev. Lett. 61 (1988) 517.

8. T. Matsuyama, Phys. Letts. B 228 (1989) 99.

9. A. Foerster and H.O. Girotti, Phys. Lett. B 230 (1989) 83.

10. R. Banerjee, A. Chatterjee, and V.V. Sreedhar, Ann. Phys. (N.Y.) 222 (1993) 254.

11. C. Hagen, Ann. Phys. (N.Y.) 157(1984) 342.

12. See for example, P.P. Srivastava, Nuovo Cimento 64 A (1981) 259.



- 9 - CBPF-NF-044/96

13. R. Banerjee, Phys. Rev. D48 (1993) 2905.

14. R. Amorim and J. Barcelos-Neto, UFRJ preprint, IF-UFRJ-05/94.

15. P.A.M. Dirac, Rev. Mod. Phys. 21 (1949) 392.

16. S.J. Brodsky and H.C. Pauli, Schladming Lectures, SLAC-PUB-5558/91.

17. K.G. Wilson, Nucl. Phys. B (proc. Suppl.) 17 (1990).

18. P.P. Srivastava, Nuovo Cimento A 107 (1994) 549; A 108 (1994)35;

Lectures, Proceedings XIV Encontro Nacional de Part��culas e Campos, Caxambu,

MG, pgs. 154-192, 1993, Sociedade Brasileira de F��sica; hep-th@xxx.lanl.gov/

9312064. See also 9412204, 9412205.

19. P.A.M. Dirac, Lectures in Quantum Mechanics, Benjamin, New York, 1964.

20 P.P. Srivastava, Light-front Dynamics of Chern-Simons System, ICTP Trieste

preprint, IC/94/305, hep-th@xxx.lanl.gov/9412239.


