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ABSTRACT

A classical theorem of Miintz-Szasz states that the closure of all finite linear combina-
tions of the functions 1,#M %2 .-+ for 0 < \; < Ay < A3 < --- is C([0,1]) if 2 Al—n = —00

(see for instance [1]).
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If turns out that the some result for intervals of the form [1,a] (@ > 1) the usual given
somewhat simple proofs do not work out [1], [2], [3]. However, I have the following restrict

form of the above cited Miintz-Szasz theorem.

Theorem: Suppose 0 < Ay < Ay < A3 < --- and let X be the closure in C([1,a]) of the

set, of all finite linear combinations of the functions
1, tMexp(—=Ait), t"2exp(—Ayt), -

We have that if - 1/A, = +oo then X = C([1, a]).

Proof: Following the usual complex variable proof of ref. [1], I need to prove that if

> 1/A, = 400 and if p is a complex Borel measure on [ = [1,a] such that

[tretouty =0 (=123, (1)
I

then also

/Itke_ktd,u(t) —0  (k=0,1,2,3,-") 2)

kt

or equivalently (since e™ is a analytical function on I) u(t) = 0.

So let me assume that 1 is true. Let me consider the function

fz)= [ e ont) 3)
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Obviously f(z) is holomorphic in the righ half plane H* furthermore f(z) is bounded

there, since

sup  [f(2)] < p([La]) x  sup |17
<o < oo 0< x < 0o
tell,al

p(llia])  sup  ferioie|
)<< oo
1<t<a

p(Lal) - sup [ < p[Lal) sup e ()
)<< oo 0< 2 < oo
1<t<a

since [gt —t <0 for t € [1,a] < oo.
Define the following function ¢ € H*(|z] < 1) g(z) = f (d"’_’i)) Then ¢ (iz_:) =0
and Y (1 —

iz;}) = 400 or ) Al—n = +oo. Hence ¢g(z) = 0 or f(z) = 0. I have thus

proved my proposed result.
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