A Theorem of Müntz-Szasz Type for Intervals [1,a]

Luiz C.L. Botelho
Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290-180 - Rio de Janeiro, RJ, Brasil
Departamento de Física
Universidade Federal Rural do Rio de Janeiro 23851-180 - Itaguaí, RJ, Brasil
Abstract

A classical theorem of Müntz-Szasz states that the closure of all finite linear combinations of the functions $1, t^{\lambda_{1}}, t^{\lambda_{2}}, \cdots$ for $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ is $C([0,1])$ if $\sum \frac{1}{\lambda_{n}}=-\infty$ (see for instance [1]).

If turns out that the some result for intervals of the form $[1, a](a>1)$ the usual given somewhat simple proofs do not work out [1], [2], [3]. However, I have the following restrict form of the above cited Müntz-Szasz theorem.

Theorem: Suppose $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ and let X be the closure in $C([1, a])$ of the set of all finite linear combinations of the functions

$$
1, t^{\lambda_{1}} \exp \left(-\lambda_{1} t\right), t^{\lambda_{2}} \exp \left(-\lambda_{2} t\right), \cdots
$$

We have that if $\sum 1 / \lambda_{n}=+\infty$ then $X=C([1, a])$.

Proof: Following the usual complex variable proof of ref. [1], I need to prove that if $\sum 1 / \lambda_{n}=+\infty$ and if μ is a complex Borel measure on $I=[1, a]$ such that
1)

$$
\begin{equation*}
\int_{I} t^{\lambda_{n}} e^{-t d_{n}} \partial \mu(t)=0 \quad(n=1,2,3, \cdots) \tag{1}
\end{equation*}
$$

then also
2)

$$
\begin{equation*}
\int_{I} t^{k} e^{-k t} d \mu(t)=0 \quad(k=0,1,2,3, \cdots) \tag{2}
\end{equation*}
$$

or equivalently (since $e^{-k t}$ is a analytical function on I) $\mu(t)=0$.
So let me assume that 1 is true. Let me consider the function
3)

$$
\begin{equation*}
f(z)=\int_{1}^{a} t^{z} e^{-z t} \partial \mu(t) \tag{3}
\end{equation*}
$$

Obviously $f(z)$ is holomorphic in the righ half plane H^{+}furthermore $f(z)$ is bounded there, since

$$
\begin{align*}
& \sup _{0<x<\infty}|f(z)| \leq \mu([1, a]) \times \underset{0<x<\infty}{ } \sup \left|t^{x} e^{-x t}\right| \\
& t \in[1, a] \\
& \mu([1, a]) \underset{0<x<\infty}{\sup ^{|c| g t} e^{-x t} \mid} \\
& 1 \leq t \leq a \\
& \mu([1, a]) \underset{0<x<\infty}{\sup ^{x(l g t-t)} \mid \leq \mu([1, a])} 0<\sup _{0<\infty}\left|e^{-x}\right| \tag{4}\\
& 1 \leq t \leq a
\end{align*}
$$

since $\lg t-t \leq 0$ for $t \in[1, a]<\infty$.
Define the following function $g \in H^{\infty}(|z| \leq 1) g(z)=f\left(\frac{1+z}{(1-z)}\right)$. Then $g\left(\frac{\lambda_{n}-1}{\lambda_{n}+1}\right)=0$ and $\sum\left(1-\left\lvert\, \frac{\lambda_{n}-1}{\lambda_{n}+1}\right.\right)=+\infty$ or $\sum \frac{1}{\lambda_{n}}=+\infty$. Hence $g(z) \equiv 0$ or $f(z) \equiv 0$. I have thus proved my proposed result.

Acknowledgements

Luiz C.L. Botelho was supported by CNPq - Brazil Science Agency. I am very thankful to Professor Helayël-Neto from CBPF for scientific support.

References

[1] Walter Rudin, "Real and Complex Analysis", Tata McGraw-Hill, second edition, 1974.
[2] A.F. Timan, "Theory of Approximation of Functions of a Real Variable", Dover Publications, Inc. NY., 1994.
[3] W.A. Luxemburg, "Approximation Theory II", Edited G.G. Lorentz et al., Academic Press, 1976.

