A Theorem of Müntz-Szasz Type for Intervals [1,a]

Luiz C.L. Botelho

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290-180 - Rio de Janeiro, RJ, Brasil

Departamento de Física Universidade Federal Rural do Rio de Janeiro 23851–180 – Itaguaí, RJ, Brasil

Abstract

A classical theorem of Müntz-Szasz states that the closure of all finite linear combinations of the functions $1, t^{\lambda_1}, t^{\lambda_2}, \cdots$ for $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$ is C([0, 1]) if $\sum \frac{1}{\lambda_n} = -\infty$ (see for instance [1]). If turns out that the some result for intervals of the form [1, a] (a > 1) the usual given somewhat simple proofs do not work out [1], [2], [3]. However, I have the following restrict form of the above cited Müntz-Szasz theorem.

Theorem: Suppose $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$ and let X be the closure in C([1, a]) of the set of all finite linear combinations of the functions

1,
$$t^{\lambda_1} exp(-\lambda_1 t)$$
, $t^{\lambda_2} exp(-\lambda_2 t)$, \cdots

We have that if $\sum 1/\lambda_n = +\infty$ then X = C([1, a]).

Proof: Following the usual complex variable proof of ref. [1], I need to prove that if $\sum 1/\lambda_n = +\infty$ and if μ is a complex Borel measure on I = [1, a] such that

1)

$$\int_{I} t^{\lambda_n} e^{-td_n} \partial \mu(t) = 0 \qquad (n = 1, 2, 3, \cdots) , \qquad (1)$$

then also

2)

$$\int_{I} t^{k} e^{-kt} d\mu(t) = 0 \qquad (k = 0, 1, 2, 3, \cdots)$$
⁽²⁾

or equivalently (since e^{-kt} is a analytical function on I) $\mu(t) = 0$.

So let me assume that 1 is true. Let me consider the function

3)

$$f(z) = \int_{1}^{a} t^{z} e^{-zt} \partial \mu(t)$$
(3)

Obviously f(z) is holomorphic in the righ half plane H^+ furthermore f(z) is bounded there, since

$$\begin{array}{c} \sup_{\substack{0 < x < \infty \\ 0 < x < \infty \end{array}} |f(z)| \leq \mu([1, a]) \times \sup_{\substack{0 < x < \infty \\ t \in [1, a]}} |t^{x} e^{-xt}| \\ \mu([1, a]) \sup_{\substack{0 < x < \infty \\ 1 \leq t \leq a \\ 0 < x < \infty \end{array}} |e^{xlgt} e^{-xt}| \\ \sup_{\substack{1 \leq t \leq a \\ 1 \leq t \leq a \\ 1 \leq t \leq a \end{array}} |e^{x(lgt-t)}| \leq \mu([1, a]) \sup_{\substack{sup \\ 0 < x < \infty \\ 1 \leq t \leq a \end{array}} |e^{-x}| \tag{4}$$

since $lgt - t \leq 0$ for $t \in [1, a] < \infty$.

Define the following function $g \in H^{\infty}(|z| \leq 1)$ $g(z) = f\left(\frac{1+z}{(1-z)}\right)$. Then $g\left(\frac{\lambda_n-1}{\lambda_n+1}\right) = 0$ and $\sum \left(1 - \left|\frac{\lambda_n-1}{\lambda_n+1}\right|\right) = +\infty$ or $\sum \frac{1}{\lambda_n} = +\infty$. Hence $g(z) \equiv 0$ or $f(z) \equiv 0$. I have thus proved my proposed result.

Acknowledgements

Luiz C.L. Botelho was supported by CNPq – Brazil Science Agency. I am very thankful to Professor Helayël-Neto from CBPF for scientific support.

References

- Walter Rudin, "Real and Complex Analysis", Tata McGraw-Hill, second edition, 1974.
- [2] A.F. Timan, "Theory of Approximation of Functions of a Real Variable", Dover Publications, Inc. NY., 1994.
- [3] W.A. Luxemburg, "Approximation Theory II", Edited G.G. Lorentz et al., Academic Press, 1976.