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1 Introduction

The aim of these notes is to provide a simple and pedagogical (as much as possible)
introduction to what is nowadays commonly called Algebraic Renormalization [1]. As
the name itself let it understand, the Algebraic Renormalization gives a systematic set
up in order to analyse the quantum extension of a given set of classical symmetries.
The framework is purely algebraic, yielding a complete characterization of all possible
anomalies and invariant counterterms without making use of any explicit computation
of the Feynman diagrams. This goal is achieved by collecting, with the introduction
of suitable ghost �elds, all the symmetries into a unique operation summarized by a
generalized Slavnov-Taylor (or master equation) identity which is the starting point for
the quantum analysis. The Slavnov-Taylor identity allows to de�ne a nilpotent operator
whose cohomology classes in the space of the integrated local polynomials in the �elds and
their derivatives with dimensions bounded by power counting give all nontrivial anomalies
and counterterms. In other words, the proof of the renormalizability is reduced to the
computation of some cohomology classes.

However, before going any further, let us make some necessary remarks on the limita-
tions of the method. The Algebraic Renormalization applies basically to the perturbative
regime, meaning that the quantum extension of the theory is constructed order by order in
the loop parameter expansion �h. Aspects regarding the convergence and the resummation
of the perturbative series are not considered and cannot, in general1, be handled within
this algebraic setup. In spite of its perturbative character the Algebraic Renormalization,
being based only on the locality and power counting properties of the renormalization the-
ory, does not rely on the existence of any regularization preserving the symmetries. This
means that the algebraic proofs of the renormalizability extend to all orders of pertur-
bation theory and are independent from the regularization scheme. This very important
feature gives to the Algebraic Renormalization a very large domain of applicability. In
practice, one can include almost all known power counting renormalizable theories in 
at
space-time covering, in particular, those for which no invariant regularization is known.
It is also worthwhile to mention that, besides the pure characterization of the anomalies
and of the invariant counterterms, the Algebraic Renormalization plays a quite useful role
in the study of other aspects of �eld theory which, although not touched in these lectures,
are object of a fruitful research activity. Let us mention, for instance:

� The nonrenormalization theorems and the ultraviolet �niteness
The aim here is to establish nonrenormalization theorems for anomalies (as the Adler-

Bardeen nonrenormalization theorem of the gauge anomaly [2]) and to provide a classi-
�cation of models which have vanishing �-function to all orders of perturbation theory.
Examples of the latters are given by some four dimensional gauge theories with N = 1; 2; 4
supersymmetry [3, 4] and by some topological �eld theories [5, 6].

� The characterization of new symmetries
This aspect, deeply related to the previous one, consists of the search of additional un-

known symmetries (eventually linearly broken) which may be responsible for the �niteness

1With the exception of few two dimensional models.
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properties displayed by a particular model. This problem, related to the existence of coho-
mology classes2 with negative ghost number, allows for a cohomological (re)interpretation
of the Noether theorem [7]. Examples of such additional symmetries are provided by the so
called vector supersymmetry of the topological theories and by the Landau ghost equation
responsible for the ultraviolet �niteness of a wide class of invariant local �eld polynomials
in the Yang-Mills theories [8].

� The geometrical aspects
As one can easily expect, the number of applications related to the geometrical aspects

of the BRST transformations and of the anomalies is very large. We shall limit ourselves
only to mention a particular feature which is focusing our attention since a few years,
namely the possibility of encoding all the transformations of all the �elds and anti�elds
(or BRST external sources) into a unique equation which takes the form of a generalized
zero curvature condition [9]. The zero curvature formalism allows us to obtain in a very
simple way the BRST cohomology classes and improves our understanding of the role of
the anti�leds.

Having (hopefully) motivated the usefulness of the Algebraic Renormalization, let us
now brie
y describe the plan of these notes. We shall adopt here the point of view
of not entering into the technical aspects concerning the anti�elds formulation and the
computation of the BRST cohomology classes, limiting ourselves only to state the main
results and reminding the reader to the several reviews and books appeared recently
in the literature [1, 10]. Rather, we shall work out in detail the renormalization of a
model rich enough to cover all the main aspects of the algebraic method. The example
we will refer to is the four dimensional euclidean topological Yang-Mills (TYM) theory
proposed by E. Witten [11] at the end of the eighty's. Besides the mere fact that TYM
is a continuous source of investigations, we shall see that this model possesses a very
interesting structure, requiring a highly nontrivial quantization and displaying peculiar
cohomological properties. This is due to the deep relationship with the N = 2 euclidean
supersymmetric Yang-Mills theory. In fact TYM in 
at space-time can be actually seen
as the twisted version of the N = 2 Yang-Mills theory in the Wess-Zumino gauge [12],
the Witten's fermionic symmetry being identi�ed with the singlet generator of the twisted
N = 2 supersymmetric algebra. Furthermore, by means of the introduction of appropriate
constant ghosts associated to the twisted N = 2 generators, we shall be able to quantize
the model by taking into account both the gauge invariance and theN = 2 supersymmetry,
overcoming the well known di�culties of the N = 2 susy algebra in the Wess-Zumino
gauge [4, 13]. Concerning now the BRST cohomology, we will have the opportunity of
checking how the twisted N = 2 susy algebra can be used to obtain in a straightforward
way the relevant cohomology classes. In particular, it will turn out that the origin of the
TYM action can be traced back to the invariant polynomial tr (�2), � being one of the
scalar �elds of the model. This relation has a very appealing meaning. Needless to say,
the N = 2 susy YM theory is indeed the corner stone of the duality mechanism recently
discussed by N. Seiberg and E. Witten [14], who used in fact tr (�2) in order to label the

2It turns out that in some cases also certain exact cocycles with negative ghost number become relevant
[8].
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di�erent vacua of the theory. Finally, we will show that the requirement of analyticity
[15] in the constant ghosts of the twisted N = 2 supersymmetry can be deeply related to
the so called equivariant cohomology proposed by R. Stora et al.[16, 17] in order to deal
with the topological theories of the cohomological type.
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2 Generalities on the Slavnov-Taylor identity and on

Cohomology

2.1 Classical action and symmetry content

The starting point of our analysis consists of assigning a set of �elds (A�; f�g), A� and
f�g being respectively a gauge �eld and a set of spinor and scalar matter �elds, and a
classical gauge invariant action Sinv

Sinv =
Z
d4xL(A;�) ; (2.1)

�g�Sinv = 0 ;

with

�g�A� = �D�� = � (@��+ [A�; �]) ; (2.2)

�g�� = [�; �] ;

where L(A;�) is a power counting renormalizable local polynomial in the �elds and their
derivatives and �g� is the generator of the gauge transformations with local in�nitesimal
parameter �(x). All the �elds are Lie algebra valued, i.e. A� = Aa

�T
a and � = �aT a,

the generators of the corresponding gauge group G being chosen to be antihermitiansh
T a; T b

i
= fabcT

c, with fabc the structure constants.

Remark 1 The action (2:1) refers to the standard case of a model containing only gauge
and matter �elds, implying in particular that the only degeneracy in order to compute the
propagators is the one associated with the transverse quadratic term in the gauge �elds
following from the usual Yang-Mills term tr(F��F ��). Although the algebraic method can
be applied to more sophisticated cases (p-forms,...), the �eld content of the expression
(2:1) covers a very large class of models, including the TYM theory.

Besides the gauge invariance, the classical action (2:1) will be assumed to be left
invariant by a set of additional global transformations whose corresponding generators
f�A; A = 1; :::g

�ASinv = 0 ; (2.3)

give rise, together with the gauge generator �g� ; to the following algebraic relations

[�A; �B] = �CC
AB�C + (matter eqs: of motion) + (gauge transf:) ; (2.4)

[�A; �
g
� ] = 0 ;
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where [�; �] denotes the graded commutator and CC
AB are appropriate constant coe�cients.

We do not specify further the nature of the indices A, B of the generators �A which,
according to the particular model considered, may refer to spinor indices, to Lorentz
indices, to group indices, etc... The generators �A may act nonlinearly on the �elds. The
fact that they are related to global invariances means that, unlike the gauge parameter �(x)
of eq.(2:2), the corresponding in�nitesimal parameters entering the �A-transformations
do not depend on space-time. The algebraic structure (2:4) is typical of supersymmetric
gauge theories in the Wess-Zumino gauge [4, 13, 18, 19] and of many topological theories
including, in particular, TYM.

The �rst step towards the construction of a classical Slavnov-Taylor identity consists
of turning the in�nitesimal parameters associated to the generators (�g� ; �A) into suitable
ghosts. The local gauge parameter �(x) will be thus replaced by the Faddeev-Popov ghost
c(x) and �g� will give rise to the well known nilpotent operator s corresponding to the
gauge transformations

sA� = �D�c ; (2.5)

s� = [c; �] ;

sc = c2 ;

s2 = 0 :

Concerning now the in�nitesimal parameters associated to the �A 's, they will be replaced
by global constant ghosts "A which will be taken as commuting or anticommuting accord-
ing to the bosonic or fermionic character of the corresponding generator. In addition, it
can be shown [4, 13, 18, 19] that one may de�ne the action of s and of the �A's on the
Faddeev-Popov ghost c and on the global ghosts "A in such a way that the extendend
BRST operator given by

Q := s+ "A�A +
1

2
CC

AB"
A"B

@

@"C
; (2.6)

has ghost number one and enjoys the following important property

Q2 = 0 (mod : matter eqs: of motion) : (2.7)

Of course,

QSinv = 0 ; (2.8)

showing that the operator Q collects together all the symmetries of the action (2:1) :
The second step in the construction of the Slavnov-Taylor identity is the introduction

of a gauge �xing term Sgf : To this purpose we introduce an antighost c and a Lagrangian
multiplier b transforming as

Qc = b+ ("� dependent terms) ; (2.9)

Qb = 0 + ("� dependent terms) ;
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where the "�dependent terms are chosen in such a way that

Q2c = Q2b = 0 : (2.10)

Therefore, recalling from eq.(2:7) that Q2A� = 0, it follows that a linear covariant Landau
type gauge �xing term

Sgf = Q
Z
d4x tr(c@A) (2.11)

= tr
Z
d4x (b@A+ c@�D�c+ ("� dep. terms)) ; (2.12)

provides a gauge �xed action (Sinv + Sgf ) which is invariant under Q, i.e.

Q(Sinv + Sgf) = 0 : (2.13)

The above equation means that the gauge �xing procedure has been carried out in a way
which is compatible with all the additional global symmetries �A of the classical action
(2:1). We also remark that the expression (2:11) belongs to a class of linear covariant
gauge conditions which can be proven to be renormalizable [1, 13].

We are now ready to write down the Slavnov-Taylor identity. Denoting with f'ig =
(A�; f�g ; c; c; b) all the local �elds of (Sinv + Sgf); we associate to each �eld 'i of ghost
number N'i and dimension d'i the corresponding anti�eld '�i with ghost number �(1 +
N'i) and dimension (4� d'i), and we introduce the anti�eld dependent action

Sext = tr
Z
d4x

�
'�iQ'i + !ij'

�i'�j
�
: (2.14)

The �rst term in the expression (2:14) is needed in order to de�ne the nonlinear Q-
variations of the �elds 'i as composite operators. The second term, quadratic in the
anti�elds, allows to take care of the fact that the extended operator Q of eq.(2:6) is
nilpotent only modulo the matter equations of motion. The coe�cients !ij , depending in
general from both �elds 'i and global ghosts "A, are �xed by requiring that the following
identity holds

S(�) = 0 ; (2.15)

with

S(�) =
Z
d4x

��

�'i
��

�'�i
+

1

2
CC

AB"
A"B

@�

@"C
; (2.16)

and � being the complete action

� = Sinv + Sgf + Sext : (2.17)

The equation (2:15) is called the Slavnov-Taylor identity and will be the starting point
for the quantum analysis.

Remark 2 Although higher order terms (cubic, etc.,..) in the anti�elds '�i may be re-
quired in the action (2:14) in order to obtain the Slavnov-Taylor identity, they will not be
needed in the example considered here.
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2.2 Cohomology and renormalizability: anomalies and stability

of the classical action

We face now the problem of the quantum extension of the classical Slavnov-Taylor identity
(2:15), i.e. of the perturbative construction of a renormalized vertex functional3 �

� = � +O(�h) ; (2.18)

ful�lling the quantum version of eq.(2:15), i.e.

S(�) = 0 ; (2.19)

which would imply that all the classical symmetries, i.e. the gauge and the �A�invariances,
can be implemented at the quantum level without anomalies. In order to detect the pres-
ence of possible anomalies, let us suppose that eq.(2:19) breaks down at a certain order
�hn; (n � 1);

S(�) =�hn�+O(�hn+1) ; (2.20)

where, from the power counting and locality properties of the renormalized perturbation
theory, the breaking � is an integrated local polynomial in the �elds, anti�elds and global
ghosts with ghost number one.

The breaking � is easily seen to be constrained by a consistency condition. In fact,
de�ning the linearized operator BF

BF =
Z
d4x

 
�F
�'i

�

�'�i
+

�F
�'�i

�

�'i

!
+

1

2
CC

AB"
A"B

@

@"C
; (2.21)

F being an arbitrary functional with even ghost number, we have the following exact
algebraic relation

BF S(F) = 0 : (2.22)

In addition, if F satis�es the Slavnov-Taylor identity

S(F) = 0 ; (2.23)

it follows that the operator BF is nilpotent,

BFBF = 0 : (2.24)

In particular, from the classical Slavnov-Taylor identity (2:15) it follows that the linearized
operator B� corresponding to the classical action � is nilpotent

B� =
Z
d4x

 
��

�'i
�

�'�i
+

��

�'�i
�

�'i

!
+

1

2
CC

AB"
A"B

@

@"C
; (2.25)

B�B� = 0 :

3� is the generator of the 1PI Green's functions.
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De�nition 1 The cohomology classes of the operator B� in the space of the local inte-
grated polynomials in the �elds 'i, anti�elds '�i, global ghosts "A and their space-time
derivatives, are de�ned as the solutions � of the consistency condition

B�� = 0 ; (2.26)

which are not of the form

� = B�
b� ; (2.27)

with
�
�; b�� local integrated polynomials in the �elds, anti�elds and global ghosts. Solu-

tions of the type (2:27) are called exact and can be proven to be physically irrelevant. The
cohomology of B� is called empty if all solutions of eq.(2:26) are of the type (2:27).

Acting now on both sides of eq.(2:20) with the operator B�

B� =
Z
d4x

 
��

�'i
�

�'�i
+

��

�'�i
�

�'i

!
+

1

2
CC

AB"
A"B

@

@"C
= B� + O(�h) ; (2.28)

and making use of

B�S(�) = 0 ; (2.29)

we get, to the lowest order in �h, the consistency condition

B�� = 0 : (2.30)

The latter is nothing but a cohomology problem for the operator B� in the sector of the
integrated local �eld polynomials with ghost number one. Let us now suppose that the
most general solution of the consistency condition (2:30) can be written in the exact form

� = B�
b� ; (2.31)

for some local integrated polynomial b� with ghost number zero. Therefore, the rede�ned
vertex functional

� = � � �hn b� ; (2.32)

obeys the Slavnov-Taylor identity

S(�) =O(�hn+1) : (2.33)

This equation means that if the breaking term � is cohomologically trivial, one can
always extend the Slavnov-Taylor identity to the order �hn. The procedure can be iterated,
allowing us to conclude that if the cohomology of B� is empty in the sector of ghost number
one it is always possible to implement at the quantum level the classical Slavnov-Taylor
identity (2:15). In this case the model is said to be anomaly free. On the contrary, when
the cohomology of B� is not empty, i.e.
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� = rA + B�
b� ; (2.34)

A 6= B�
bA ;

with r an arbitrary coe�cient and bA some local �eld polynomial, it is not possible to
compensate the breaking term by adding suitable local terms to the vertex functional.
The best that one can do is just to reabsorb the trivial part B�

b� of eq.(2:34),

S(�) =r�hnA+O(�hn+1) : (2.35)

In this case one speaks of an anomaly, meaning that the classical symmetries cannot be
implemented at the quantum level.

Remark 3 It is important here to underline that the algebraic method does not provide
the numerical value of the coe�cient r. This means that the anomaly A appearing in
the left hand side of eq.(2:35) is only a potential anomaly, whose existence has to be
con�rmed with an explicit computation of r. Moreover, the vanishing of the coe�cient r
does not imply the absence of the anomaly. It only means that the anomaly is absent at
the order �hn. Possible anomalous contributions are expected at higher orders, unless one
is able to establish a nonrenormalization theorem. This is the case, for instance, of the
Adler-Bardeen nonrenormalization theorem of the gauge anomaly which states that if the
coe�cient r is vanishing at the one loop order, it will vanish at all orders [2].

Having discussed the characterization of the possible anomalous terms, let us turn
now to the analysis of the invariant counterterms, i.e. of the local ambiguities which
a�ect the Slavnov-Taylor identity. In fact, if � is a vertex functional which satis�es the
Slavnov-Taylor identity to the order �hn

S(�) = O(�hn+1) ; (2.36)

then adding to � any local invariant �eld polynomial �hn� with the same quantum numbers
and dimension of the classical action �

B�� = 0 ; (2.37)

the resulting vertex functional still satis�es eq.(2:36), i.e.

�� = � + �hn� ; (2.38)

S(��) = O(�hn+1) :

In other words, the Slavnov-Taylor identity characterizes the vertex functional � only up
to local invariant polynomials � which can be freely added to each order of perturbation
theory. The vertex functional � will be uniquely �xed only once the most general solution
of eq.(2:37) has been given and a suitable set of renormalization conditions has been
imposed. Again, eq.(2:37) shows that the search of the invariant counterterms is a problem
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of cohomology of B� in the space of the integrated local �eld polynomials with ghost
number zero. In general, � will be of the form

� = �coh + B�
b� ; (2.39)

with �coh identifying the nontrivial cohomology sectors of B�.
Let us now introduce the notion of stability of the classical action. The complete action

� of eq.(2:17) is said to be stable if the most general local invariant counterterm can be
reabsorbed by means of a rede�nition of the �elds and of the parameters, i.e. denoting
with fgg the parameters of � (coupling constants, masses, gauge parameters, etc....) we
have

�('i; '�i; "A; g) + �hn� = �('i0; '
�i
0 ; "

A
0 ; g0) +O(�hn+1) ; (2.40)

with

'i0 = 'i(1 + �hn&') +O(�hn+1) ; (2.41)

'�i0 = '�i(1 + �hn&'�) +O(�hn+1) ;

"A0 = "A(1 + �hn&") +O(�hn+1) ;

g0 = g(1 + �hn&g) +O(�hn+1) ;

(&'&'�&"&g) being renormalization constants. Let us also remark that the knowledge of the
nontrivial counterterms �coh has a very important meaning. One can show indeed that
the elements of �coh correspond to the renormalization of the physical parameters of �,
i.e. of the coupling constants and of the masses, while the trivial term B�

b� turns out
to be related to the unphysical renormalization of the �eld amplitudes and of the gauge
parameters. In addition, the renormalized Green's functions with the insertion of local
gauge invariant composite operators can be proven to be independent from the parameters
belonging to the trivial part B�

b�.
De�nition 2 The classical action � satisfying the classical Slavnov-Taylor identity (2:15)
is said to be renormalizable if the following two items are ful�lled, namely
i) there are no anomalies, i.e.

� ! � = � +O(�h) ; (2.42)

S(�) = 0 ;

ii) the action is stable.
The absence of anomalies ensures that the classical symmetries can be implemented at the
quantum level, while the stability means that all possible local countertems compatible with
the symmetry content can be reabsorbed by rede�ning the �elds and the parameters of the
original action �.
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In summary, we have seen that the renormalizability of a given classical model can
be established by looking at the cohomology of the operator B� in the sector of the
integrated local �eld polynomials with ghost number respectively one (anomalies) and
zero (counterterms).

Remark 4 We should also mention that in the case in which one (or more) of the global
generators �A acts linearly on the quantum �elds 'i, the dependence of the quantum action
� from the corresponding global ghost turns out to be uniquely �xed already at the classical
level. This means that, denoting with �lC the linearly realized global generator, for the
corresponding global ghost "lC we may write the following classical identity

@�

@"lC
= �l

C =
Z
d4xMli

C'
i ; (2.43)

where Mli
C denote a set of generalized coe�cients depending only on the anti�elds '�i, on

the global ghosts "A and on their space-time derivatives. The breaking �l
C, being linear in

the quantum �elds 'i, is thus a classical breaking and will be not a�ected by the quantum
corrections [1]. Therefore the equation (2:43) has the meaning of a linearly broken Ward
identity which, once extended at the quantum level, will imply that the higher order terms
of the renormalized vertex functional �

� = � +
1X
j=1

�hj�j ; (2.44)

do not depend from the global ghost "lC. In fact, from

@�

@"lC
= �l

C ; (2.45)

it follows that
@�j

@"lC
= 0 ; j � 1 ; (2.46)

due to equation (2:43) : This result shows that the dependence of the theory from the global
ghosts corresponding to linearly realized symmetries is completely �xed by the classical
equation (2:43) : As we shall see later on in the analysis of TYM, this will be the case of
the global ghost associated to the space-time translation invariance.

2.3 Some useful result on cohomology

Let us conclude this short introduction to the Algebraic Renormalization by stating some
useful result on the computation of the cohomology of the operator B�. Let us begin by
underlining the important role played by the functional space the operator B� acts upon.
Di�erent functional spaces yield, in general, di�erent cohomology classes for B�. In the
previous Subsection we have adopted as basic functional space for the operator B� the
space of the integrated local polynomials in the �elds ', anti�elds '�, global ghosts " and
their space-time derivatives. We emphasize here that the choice of this functional space
follows directly from the locality properties of the renormalized perturbation theory.
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Remark 5 Concerning in particular the global ghosts "A it will be very easy to check
that the Feynman rules stemming from the quantized TYM action yield a perturbative
expansion which is analytic in the "A's. This analyticity property, whose precise mathe-
matical meaning is that of a formal power series, will be of great importance in order to
understand the BRST cohomology classes of TYM.

On the space of the integrated local �eld polynomials the operator B� has a natural
decomposition as

B� = b0 + bR ; (2.47)

b20 = 0 ;

b0 being the so called abelian approximation.

Example 1 Let s be the nilpotent operator of the eq.(2:5) acting on the space of the local
polynomials in the variables (A�; f�g ; c). Therefore

s = s0 + sR ; (2.48)

with
s0A� = �@�c ; s0c = 0 ; s0� = 0 ; s20 = 0 ; (2.49)

and
sRA� = [c;A�] ; sRc = c2 ; sR� = [c; �] : (2.50)

One sees thus that s0 corresponds in fact to the abelian approximation in which all the
commutators [�; �] have been ignored.

The usefulness of the decomposition (2:47) relies on a very general theorem stating
that the cohomology of the complete operator B� is isomorphic to a subspace of the
cohomology of the operator b0. In most cases this result allows to obtain a large amount
of informations on the cohomology of B� by analysing that of the simpler operator b0. Let
us also remark that the aforementioned theorem, although referred here to the abelian
approximation, is valid for other kinds of decomposition of the operator B�.

Let us give now a second important result, known as the doublets theorem. A pair of
�elds (u; v) is called a BRST doublet if

b0u = v ; b0v = 0 : (2.51)

It can be shown that if two �elds appear in a BRST doublet, then the cohomology of b0,
and therefore that of B�, does not depend on these �elds. This second result allows to
eliminate from the game all the �elds appearing as BRST doublets, greatly simplifying
the computation of the cohomology classes.

More details on cohomology can be found in Chapter 5 of ref. [1].
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3 Witten's topological Yang-Mills theory

3.1 The action and its fermionic symmetry

Topological Yang-Mills theory has been proposed at the end of the eighty's with the
aim of providing a �eld theory framework for the topological invariants of euclidean four
manifolds [11]. The model allows in fact to de�ne a set of observables, i.e. local �eld
polynomials integrated over suitable homology cycles, whose correlation functions turn
out to be deeply related with the so called Donaldson invariants [20].

Although TYM can be formulated on smooth four manifolds, we shall consider here the
case of the 
at euclidean space-time4. In fact our attitude in these lectures is to interpret
TYM theory as a twisted version of the conventional N = 2 supersymmetric euclidean
Yang-Mills theory, as it will become clear in the next Sections where the relationship with
the cohomological formulations of Labastida-Pernici [24] and Baulieu-Singer [25] will be
also discussed. Following the original Witten's work, the TYM classical action is given
by

STYM =
1

g2
tr
Z
d4x

�
1

2
F+
��F

+�� � ���(D� � �D� �)
+ (3.52)

+�D� 
� � 1

2
�D�D

�� +
1

2
� f �;  �g

�1

2
� f���; ���g � 1

8
[�; �] � � 1

32

h
�; �

i h
�; �

i�
;

where g is the unique coupling constant and F+
�� is the self-dual part of the Yang-Mills

�eld strength

F+
�� = F�� +

1

2
"����F

�� ; eF+
�� =

1

2
"����F

+�� = F+
�� ; (3.53)

F�� = @�A� � @�A� + [A�; A�] ;

"���� being the totally antisymmetric Levi-Civita tensor

"����"
���� = 2(����

�
� � ����

�
�) : (3.54)

The three �elds (���;  �; �) in the expression (3:52) are anticommuting with ��� self-dual

e��� = 1

2
"�����

�� = ��� = ���� : (3.55)

Accordingly, the term (D� � �D� �)+ in (3:52) has to be understood as

(D� � �D� �)
+ = (D� � �D� �) +

1

2
"����(D

� � �D� �) ; (3.56)

4See [21] for the computation of some topological invariant associated to submanifolds of R4.
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(D�� = @� �+[A�; �]) being the covariant gauge derivative. Finally
�
�; �

�
are commuting

complex scalar �elds, � being assumed to be the complex conjugate5 of �.
Of course, TYM being a gauge theory, is left invariant by the gauge transformations

�g�A� = �D�� ; (3.57)

�g�� = [�; �] ; � = �; ; �; �; � ;

�g�STYM = 0 ; (3.58)

Remark 6 It is easily checked that the kinetic terms in the action (3:52) corresponding to

the �elds
�
�; ; �; �; �

�
are nondegenerate, so that these �elds have well de�ned propaga-

tors. The only degeneracy is that related to the pure Yang-Mills term F+
��F

+�� . Therefore,

from eq.(3:57) one is led to interpret the �elds
�
�; ; �; �; �

�
as ordinary matter �elds, in

spite of the unconventional tensorial character of (��� ;  �). This point will become more
clear later on, once the relationship between TYM and the N = 2 euclidean gauge theories
will be established.

In addition to the gauge invariance, the action (3:52) turns out to be left invariant by
the following nonlinear transformations [11]

�WA� =  � ; (3.59)

�W � = �D�� ;

�W� = 0 ;

�W��� = F+
�� ;

�W� = 2� ;

�W� =
1

2

h
�; �

i
;

and

�WSTYM = 0 : (3.60)

The operator �W is of fermionic type and obeys the relation

�2W = �g� + (�-eq. of motion) ; (3.61)

�g� denoting a gauge transformation with gauge parameter �: More precisely

�2
W
A� = �D�� ; (3.62)

�2W � = [�; �] ;

5See also Witten's remark on this point given at the end of the Subsect. 2.2 of [11].
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�2W� = 0 ;

�2W� =
h
�; �

i
;

�2W� = [�; �] ;

�2
W
��� = [�; ���]� g2

2

�STYM
����

:

The equations (3:61) ; (3:62) mean essentially that the operator �W becomes nilpotent
when acting on the space of the gauge invariant functionals. This property turns out
to play an important role in the construction of the Witten's observables. In particular,
eq.(3:61) shows that the operator �W belongs to the class of the operators f�Ag considered
in the previous Section (see eq.(2:4)).

Remark 7 One should remark that the relative coe�cients of the various terms of the
TYM action (3:52) are not completely �xed by the fermionic symmetry �W . In other words,
the action (3:52) is not the most general gauge invariant action compatible with the �W-
invariance. Nevertheless, we shall see that STYM turns out to possess additional nonlinear
invariances which �x completely the relative numerical coe�cients of the various terms
of expression (3:52) and allow for a unique coupling constant. Moreover, these additional
nonlinear symmetries give rise together with the �W-symmetry to a twisted version of the
N = 2 susy algebra in the Wess-Zumino gauge.

Following Witten, it is also easily seen that assigning to
�
A;�;  ; �; �; �

�
the following

R-charges (0;�1; 1;�1; 2;�2) ; the TYM action (3:52) has vanishing total R-charge.
Let us display, �nally, the quantum numbers of all the �elds and of �W .

Dim:and R�charges

A� ���  � � � � �W
dim: 1 3=2 3=2 3=2 1 1 1=2

R� charg: 0 �1 1 �1 2 �2 1
nature comm. ant: ant: ant: comm: comm: ant:

Table 1:

3.2 Twisting the N=2 supersymmetric algebra

For a better understanding of the TYM action (3:52) and of its fermionic symmetry
(3:60), let us present now the twisting procedure of the N = 2 supersymmetric algebra
in 
at euclidean space-time. We shall follow here mainly the detailed analysis done by
M. Mari~no6 [12]. In the absence of central extension7 the N = 2 supersymmetry is

characterized by 8 charges
�
Qi

�;Qj

_�

�
obeying the following relations

n
Qi

�;Qj _�

o
= �ij (�

�)
� _� @� ; (3.63)n

Qi
�;Qj

�

o
=

n
Qi

_�;Qj
_�

o
= 0 ;

6This work is an uptodate reference on this subject, including a discussion of the twisting procedure
in the presence of matter multiplets and central charges, as well as a study of the relationship between
topological �eld theories and gauge models with extended supersymmetry.

7This is the case for instance of theories involving only massless �elds.
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where (�; _�) = 1; 2 are the spinor indices, (i; j) = 1; 2 the internal SU(2) indices la-

belling the di�erent charges of N = 2; and (��)
� _� = (1;

!

i�);
!
� being the Pauli ma-

trices (see App.A for the euclidean susy conventions). The special feature of N = 2
is that both spinor and internal indices run from 1 to 2, making possible to identify
the index i with one of the two spinor indices (�; _�). It is precisely this identi�ca-
tion which de�nes the twisting procedure. As explained in [12], this is equivalent to
a rede�nition of the action of the four dimensional rotation group. Indeed, in the four
dimensional 
at euclidean space-time the global symmetry group of N = 2 supersym-
metry is SU(2)L � SU(2)R � SU(2)I � U(1)R where SU(2)L � SU(2)R is the rotation
group, and SU(2)I and U(1)R are the symmetry groups corresponding respectively to
SU(2)-transformations of the internal index i and to the R-symmetry, the R-charges of�
Qi

�;Qj

_�

�
being respectively (1;�1). The twisting procedure consists thus of replacing

the rotation group SU(2)L �SU(2)R by SU(2)L �SU(2)0R where SU(2)0R is the diagonal
sum of SU(2)R and of SU(2)I . Identifying therefore the internal index i with the spinor
index �, the N = 2 susy algebra (3:63) becomes

n
Q�

�;Q
 _�

o
= ��
 (�

�)
� _� @� ; (3.64)n

Q�
�;Q�




o
=

n
Q� _�;Q� _�

o
= 0 :

Let us de�ne now the following generators (�; ��; ���) withR-charge (1;�1; 1) respectively;

� =
1p
2
"��Q�� ; (3.65)

�� =
1p
2
Q� _� (��)

_�� ;

��� =
1p
2
(���)

��Q�� = ���� ;

where, as usual,

��� =
1

2
(���� � ����) : (3.66)

Notice that the generators ��� are self-dual

��� = e��� = 1

2
"�����

�� ; (3.67)

due to the fact that the matrices ��� are self-dual in euclidean space-time (see App.A).

Equations (3:65) show that we can replace the spinorial charges
�
Qi

�;Qj

_�

�
with the 8

generators (�; ��; ���), respectively a scalar �, a vector �� and a self-dual tensor ���. In
terms of these generators, the N = 2 susy algebra reads now

�2 = 0 ; (3.68)

f�; ��g = @� ;

f��; ��g = 0 ;
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and

f��; ���g = �("����@� + g��@� � g��@�) ; (3.69)

f�; ���g = f��� ; ���g = 0 ;

where g�� = diag(+;+;+;+) is the 
at euclidean metric and where use has been made
of the relations (see App.A)

tr(����) = 2g�� ; (3.70)

����� = �("������ + g���� � g����) :
The charges (�; ��; ���) are called twisted generators and the eqs.(3:68), (3:69) de�ne the
twisted version of the N = 2 susy algebra (3:63). We see, in particular, that the singlet
operator �, although rather di�erent from the operator s of the gauge transformations
(2:5), is nilpotent, allowing thus for a BRST-charge like interpretation. It should also be
remarked from eq.(3:68) that the singlet and the vector generators (�; ��) give rise to an
algebraic structure which is typical of the topological models [6]. In this case the vector
charge ��, usually called vector supersymmetry, is known to play an important role in
the derivation of the ultraviolet �niteness properties of the topological models and in the
construction of their observables [6]. Therefore the N = 2 susy algebra, when rewritten
in terms of the twisted generators, displays the same algebraic structure of the topological
models. In what follows we shall check that this feature is more than a simple analogy.
Let us emphasize in fact that, since a few years, the relationship between topological �eld
theories and models with extended supesrymmetry is becoming more and more apparent
[12].

Remark 8 It is useful to remark here that the supersymmetric charges
�
Qi

�;Qj

_�

�
of

eq.(3:63) have been implicitly referred to a linear realization of supersymmetry, meaning
that they act linearly on the components of the N = 2 multiplets. Instead, in what follows
we shall deal with a di�erent situation in which supersymmetry in nonlinearly realized,
due to the use of the Wess-Zumino gauge [4, 13]. As it is well known, the Wess-Zumino
gauge allows to reduce the number of �elds component, simplifying considerably the full
analysis. There is however a price to pay. The supersymmetric transformations are now
nonlinear and the algebra between the supersymmetric charges closes on the translations
only modulo gauge transformations and equations of motion. Accordingly, the N = 2
algebra in the Wess-Zumino gauge will read thenn

Qi
�;Qj _�

o
= �ij (�

�)� _� @� + (gauge transf:) + (eqs: of mot:) ; (3.71)n
Qi

�;Qj
�

o
=

n
Qi

_�;Qj
_�

o
= (gauge transf:) + (eqs: of mot:) :

Analogously, for the twisted version

�2 = (gauge transf:) + (eqs: of mot:) ; (3.72)

f�; ��g = @� + (gauge transf:) + (eqs: of mot:) ;

f��; ��g = (gauge transf:) + (eqs: of mot:) ;

and
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f�; ���g = f���; ���g = (gauge transf:) + (eqs: of mot:) ; (3.73)

f��; ���g = �("����@� + g��@� � g��@�) + (g: tr:) + (eqs: mot:) ;

As we shall see in the next subsections, it is precisely this twisted version of the N = 2
susy algebra which shall be found in the TYM theory.

3.3 Relationship between TYM and N=2 pure Yang-Mills

Having discussed the twisting procedure, let us now turn to the relationship between
Witten's TYM and the N = 2 Yang-Mills theory. Let us show, in particular, that
TYM has the same �eld content of the N = 2 Yang-Mills theory in the Wess-Zumino
gauge. The minimal N = 2 supersymmetric pure Yang-Mills theory is described by a
gauge multiplet which, in the Wess-Zumino gauge, contains [13, 12] : a gauge �eld A�,

two spinors  i
� i = 1; 2, and their conjugate  

i

_�, two scalars �; � (� being the complex
conjugate of �). All these �elds are in the adjoint representations of the gauge group.

We also recall that in the Wess-Zumino gauge the generators
�
Qi

�;Qj

_�

�
of N = 2 act

nonlinearly and the supersymmetry algebra is that of eqs.(3:71).
Let us proceed by applying the previous twisting procedure to the N = 2 Wess-Zumino

gauge multiplet (A�;  
i
�;  

i

_�; �; �). Identifying then the internal index i with the spinor

index �, it is very easy to see that the spinor  
i

_� can be related to an anticommuting
vector  �; i.e

 
i

_�
twist�!  � _� �!  � = (��)

_�� � _� : (3.74)

Concerning now the �elds  i
� we have

 i
�

twist�!  �� =  (��) +  [��] ; (3.75)

 (��) and  [��] being respectively symmetric and antisymmetric in the spinor indices �; �.
To the antisymmetric component  [��] we associate an anticommuting scalar �eld �

 [��] �! � = "�� [��] ; (3.76)

while the symmetric part  (��) turns out to be related to an antisymmetric self-dual �eld
��� through

 (��) �! ��� = e��� = (���)
�� (��) : (3.77)

Therefore, the twisting procedure allows to replace the N = 2 Wess-Zumino multiplet

(A�;  
i
�;  

i

_�; �; �) by the twisted multiplet (A�;  �; ���; �; �; �) whose �eld content is pre-
cisely that of the TYM action (3:52).

As one can now easily guess, the same property holds for the N = 2 pure Yang-Mills
action, as it has been detailed analysed in the Chapters 3 and 6 of [12], i.e.

SN=2
Y M (A�;  

i
�;  

i

_�; �; �)
twist�! STYM (A�;  �; ���; �; �; �) ; (3.78)
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showing thus that the TYM is in fact the twisted version of the ordinary N = 2 Yang-
Mills in the Wess-Zumino gauge. This important point, already underlined by Witten in
its original work [11], deserves a few clarifying remarks in order to make contact with the
results on topological �eld theories obtained in the recent years.

Remark 9 The �rst observation is naturally related to the existence of further symmetries
of the TYM action (3:52). In fact, from eq.(3:78) one can immediately infer that the
TYM should possess the same symmetry content of the N = 2 Yang-Mills. We expect
therefore that, according to the previous analysis, the TYM will be left invariant by a set
of additional transformations whose generators (�; ��; ���) correspond to the twisted N = 2

supersymmetric charges Qi
�;Qj

_� and ful�ll the Wess-Zumino susy algebra (3:72) ; (3:73).
It is easy to check that Witten's fermionic symmetry �W of eq.(3:59) corresponds to the
twisted scalar generator �. Concerning now the vector and the tensor invariances ��; ���,
we shall postpone their detailed analysis to the next Subsect., limiting here to con�rm their
existence and their relevance (especially that of ��) for the quantum analysis.

Remark 10 The second remark is related to the standard perturbative Feynman diagram
computations. From eq.(3:78) it is very tempting to argue that the values of quantities like
the �-function should be the same when computed in the ordinary N = 2 Yang-Mills and
in the twisted version. After all, at least at the perturbative level, the twisting procedure
has the e�ect of a linear change of variables on the �elds. The computation of the one loop
�-function for TYM has indeed been performed by R.Brooks et al.[22]. As expected, the
result agrees with that of the pure N = 2 Yang-Mills. We recall here that the N = 2 Yang-
Mills �-function receives contributions only of one loop order [23]. It is also wortwhile to
mention that, recently, the algebraic renormalization analysis of N = 2 Yang-Mills theory
in the Wess-Zumino gauge has been carried out by N. Maggiore [13] who has shown that
the model is anomaly free and that there is only one possible nontrivial local invariant
counterterm, corresponding to a possible renormalization of the unique gauge coupling
constant. As we shall see later, the same conclusion will be reached in the case of TYM.

Remark 11 The third point is related to the important and intriguing issue of the coho-
mological triviality of the TYM theory. Witten's TYM theory is commonly classi�ed as
a topological theory of the cohomological type [5], meaning that the TYM action can be
expressed as a pure BRST variation. Of course, this property seems to be in disagreement
with the interpretation of TYM following from the relation (3:78). Nevertheless, we shall
prove that there is a way out, allowing us to clearly establish to what extent we can con-
sider TYM as a cohomological theory. The point here is that the quantization of the TYM
action has to be done by taking into account the full N = 2 twisted supersymmetric alge-
bra. This step can be easily handled by following the same procedure proposed by P. White
[4] in the proof of the ultraviolet �niteness of N = 4 Yang-Mills in the Wess-Zumino
gauge. As already remarked, one introduces constant ghosts associated to the nonlinear
supersymmetric transformations. These constant ghosts allow to de�ne an extended BRST
operator which turns out to be nilpotent modulo the (matter) equations of motion, as the
operator of eq.(2:6) : Then, the analysis of the renormalizability can be performed along the
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lines of the previous Section. Moreover, the perturbative Feynman expansion is easily seen
to be analytic in these constant ghosts, meaning that the functional space which is acted
upon by the BRST operator is that of the formal power series in the global parameters.
It is precisely the requirement of analyticity in the constant ghosts which yields nontrivial
cohomology classes, as it has been already established by P.White and N. Maggiore in the
cases of the conventional untwisted N = 2; 4 theories [4, 13]. This means that, as long
as the analyticity requirement is preserved, the theory is nontrivial and can be viewed as
an ordinary supersymmetric �eld theory, the �elds (��� ;  �; �; �; �) being interpreted as
matter �elds. On the other hand, if the analyticity requirement is relaxed, the theory be-
comes cohomologically trivial and we fall into the well known Labastida-Pernici [24] and
Baulieu-Singer [25] formulations. It is useful to notice here that in these formulations the
�elds (���;  �; �; �; �) carry a nonvanishing ghost number and are no longer considered as
matter �elds. Rather, they are interpreted as ghost �elds. In particular,  � corresponds
to the ghost of the so called topological shift symmetry [24, 25]. It is an important fact,
however, that TYM possesses a nontrivial content also when considered as a cohomological
BRST trivial theory. Indeed, as shown by R. Stora et al.[16, 17], the relavant cohomology
which characterizes the TYM in the cohomological version is the so called equivariant
cohomology which, unlike the BRST cohomology, is found to be not empty, allowing to
recover the original observables proposed by Witten. Remarkably in half, the two points
of view can be shown to be equivalent, as proven by the authors [18, 15], who have been
able to establish that the equivariant cohomology coincides in fact with the cohomology of
an extended operator, provided analyticity in a suitable global parameter is required. In
the present case, the role of this global parameter is palyed by the constant global ghosts
of N = 2 supersymmetry, the analyticity requirement following from perturbation theory.
Summarizing, the TYM theory can be seen either as a conventional �eld theory (analytic-
ity in the global ghosts is here demanded) or as a topological theory of the cohomologycal
type. In this latter case one has to remember that the Witten's observables should belong
to the equivariant cohomology. We will have the opportunity of showing the explicit equiv-
alence of both points of view in the analysis of the invariant �eld polynomial tr(�2). Let
us conclude this remark by emphasizing that the analyticity requirement, being naturally
related to perturbation theory, is more closed to the present discussion.

3.4 The vector supersymmetry

Let us now complete the previous analysis by showing that the TYM action (3:52) pos-
sesses indeed further nonlinear symmetries whose anticommutation relations with the
Witten's fermionic symmetry �W yield precisely the twisted N = 2 susy algebra of
eqs.(3:72) ; (3:73). Let us �rst focus on the vector invariance ��. To this aim we introduce
the following nonlinear transformations

��A� =
1

2
��� +

1

8
g��� ; (3.79)

�� � = F�� � 1

2
F+
�� �

1

16
g�� [�; �] ;
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��� =
1

2
D�� ;

����� =
1

8
("����D

��+ g��D��� g��D��) ;

��� = � � ;
��� = 0 ;

and

Dim:and R�charges

��
dim: 1=2

R� charg: �1
nature ant:

Table 2:

Transformations (3:79) are found to leave the TYM action (3:52) invariant

��STYM = 0 : (3.80)

In addition, it is easily veri�ed that the vector generator �� gives rise, together with the
operator �W, to the following algebraic relations

f�W ; ��g = @� + �gA�
+ (matt: eqs: of motion) ; (3.81)

f��; ��g = �1

8
g���

g

�
+ (matt: eqs: of motion) ;

where �gA�
and �g

�
are gauge transformations with �eld dependent parameters A� and �,

respectively. It is apparent thus from eqs.(3:61) ; (3:81) that, as expected, the operators
�W and �� obey the twisted N = 2 supersymmetric algebra (3:72) :

Let us also write down, for further use, the explicit form of eqs.(3:81), i.e.

f��; ��gA� =
1

8
g��D�� ; (3.82)

f�W; ��gA� = @�A� �D�A� ;

f�W; ��g � = @� � + [A�;  �] +
g2

4

�STYM
����

; (3.83)

f��; ��g � = �1

8
g�� [�; �] +

g2

16
(g��g�� + g��g�� � 2g��g�� )

�STYM
� �

;

f��; ��g � = �1

8
g�� [�; �] ; (3.84)

f�W ; ��g � = @�� + [A�; �] ;



CBPF-NF-043/97 22

f��; ��g��� = �1

8
g�� [�; ��� ] ; (3.85)

f�W ; ��g��� = @���� + [A�; ��� ] +
g2

8
("���� + g��g�� � g��g�� )

�STYM
� �

;

f��; ��g� = �1

8
g�� [�; �] ; (3.86)

f�W; ��g� = @��+ [A�; �] ;

and

f��; ��g� = 0 ; (3.87)

f�W; ��g� = @��+ [A�; �] :

Remark 12 We underline here that the form of the TYM action (3:52), not completely
speci�ed by the fermionic symmetry �W , turns out to be uniquely characterized by the
vector invariance ��. In other words, eqs.(3:80) and (3:81) �x all the relative numerical
coe�cients of the Witten's action (3:52) allowing, in particular, for a single coupling
constant. This feature will be of great importance for the renormalizability analysis of
the model.

Concerning now the existence of a self-dual symmetry ��� ; we shall remind the reader
to the App.B, where the explicit form of the self-dual transformations will be given.
Needless to say, the self-dual generator ��� will reproduce, together with the operators
�W ; ��, the complete N = 2 susy algebra (3:72) ; (3:73). The reasons why we do not
actually take in further account the self-dual transformations ��� are due partly to the
fact that, as previously remarked, the TYM action is already uniquely �xed by the (�W ,
��)�symmetries and partly to the fact that the generator ��� turns out to be almost
trivially realized on the �elds, as one can easily infer from the App.B. Looking for instance
at the ���-transformations of the �elds A� and  �, it is apparent to check that they can
be rewritten as

���A� = �("���� + g��g�� � g��g�� )�WA� ; (3.88)

��� � = ("���� + g��g�� � g��g�� )�W 
� ;

showing in fact that the ��� -transformations can be trivially realized in terms of �W -
transformations. This means that the subalgebra (3:72) carries essentially al the relevant
informations concerning the N = 2 supersymmetric structure ot the TYM.

We can turn now to the quantization of the model. This will be the task of the next
Section.

Remark 13 Of course, all the nonlinear (�W; ��; ���)-transformations of the �elds of

TYM can be obtained by performing the twist of the conventional (Qi
�;Qj

_�)-transformations

of the untwisted N=2 susy Wess-Zumino multiplet (A�;  
i
�;  

i

_�; �; �).
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4 Quantizing topological Yang-Mills

4.1 Extendend BRST operator and gauge �xing

As we have seen in the previous Section, the TYM action STYM is left invariant by a
set of nonlinear symmetries whose generators �W , ��, give rise to an algebra (3:72) of the
type of that considered in eq.(2:4). Following therefore the discussion of Sect.2., we shall
begin by looking at an extended BRST operator Q which turns out to be nilpotent on
shell. To this purpose we �rst introduce the Faddeev-Popov ghost �eld c corresponding
to the local gauge invariance (3:58) of the action (3:52),

�! c ; �g� ! s ; (4.89)

with

sA� = �D�c ; (4.90)

s � = fc;  �g ;
s��� = fc; ���g ;
s� = fc; �g ;
s� = [c; �] ;

s� =
h
c; �

i
;

sc = c2 ; (4.91)

s2 = 0 ;

and

sSTYM = 0 : (4.92)

We associate now to each generator entering the algebra (3:72), namely �W, �� and @�,
the corresponding constant ghost parameters (!; "�; v�)

! ! �W ; "� ! �� ; v� ! @� : (4.93)

with

Dim:; R�charges and gh�numbers

c ! "� v�

dim : 0 �1=2 �1=2 �1
R�ch arg e 0 �1 1 0
gh� number 1 1 1 1

nature ant: comm: comm: ant:
Table 3:

Therefore, the extended BRST operator

Q =s+ !�W + "��� + v�@� � !"�
@

@v�
; (4.94)
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has ghost number one, vanishing R-charge, and

QSTYM = 0 ; (4.95)

Q2 = (matter eqs. of mot.) :

Remark 14 We underline here that the �elds (A�;  �; �; ���; �; �) do not carry any ghost
number. In particular ( �; �; ���; �; �) are considered as (twisted) matter �elds.

While the �rst condition of the above equation follows from the simple observation
that the TYM action (3:52) does not depend from the ghosts and that it is invariant
under ordinary space-time translations, the second one requires some care and follows
from de�ning in a suitable way the action of the four generators s; �W ; �� and @� on the
ghosts (c; !; "�; v�). To have a more precise idea of how this is done, let us work out in
detail the case of the two operators s and �W. Recalling that

�2
W
= �g� + (�-eq. of motion) ; (4.96)

one looks then for an operator (s+ !�W) such that

(s+ !�W)
2 = 0 on (A�;  �; �; �; �; c; !) ; (4.97)

(s+ !�W)
2��� = (�-eq. of motion) :

After a little experiment, it is not di�cult to convince oneself that the above conditions
are indeed veri�ed by de�ning the action of s and �W on the ghost (c; !) as

s! = 0 ; �W! = 0 ; �Wc = �!� : (4.98)

Notice that the only nontrivial extension is that of the operator �W on the Faddeev-Popov
ghost c. It is precisely this transformation which compensates the gauge transformation
�g� in the right hand side of eq.(4:96), ensuring then the on shell nilpotency of the operator
(s+ !�W).

The above procedure can be now easily repeated in order to include in the game also
the operators �� and @�. The �nal result is that the extension of the operator Q on the
ghosts (c; !; "�; v�) is found to be

Qc = c2 � !2�� !"�A� +
"2

16
�+ v�@�c ; (4.99)

Q! = 0 ; Q"� = 0 ;

Qv� = �!"� :
The construction of the gauge �xing term is now almost trivial. We introduce an antighost
c and a Lagrangian multiplier b transforming as [4, 13]

Qc = b+ v�@�c ; (4.100)

Qb = !"�@�c+ v�@�b ;
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with

Q2c = Q2b = 0 : (4.101)

Dim:; R�charges and gh�numbers

c b
dim 2 2

R�ch arg e 0 0
gh � number �1 0

nature ant: comm:
Table 4:

According to the eq.(2:11), for the gauge �xing action we thus get

Sgf = Q
Z
d4x tr(c@A) (4.102)

= tr
Z
d4x

�
b@�A� + c@�D�c� !c@� � � "�

2
c@���� � "�

8
c@��

�
;

so that the gauge �xed action (STYM + Sgf) is Q-invariant,

Q (STYM + Sgf) = 0 : (4.103)

The above equation means that the gauge �xing procedure has been worked out by taking
into account not only the pure local gauge symmetry but also the additional nonlinear
invariances �W and ��, as one can easily deduce from the explicit dependence of the gauge
�xing term (4:102) from the global ghosts !; "�. Of course, the absence of the ghost v� is
due to the space-time translation invariance of expression (4:102).

Let us conclude this paragraph by summarizing all the properties of the extended
operator Q, i.e.

QA� = �D�c+ ! � +
"�

2
��� +

"�
8
� + v�@�A� ; (4.104)

Q � = fc;  �g � !D��+ "�
�
F�� � 1

2
F+
��

�
� "�
16
[�; �]

+v�@� � ;

Q��� = fc; ���g+ !F+
�� +

"�

8
("���� + g��g�� � g��g��)D

��

+v�@���� ;

Q� = fc; �g+ !

2
[�; �] +

"�

2
D��+ v�@�� ;

Q� = [c; �]� "� � + v�@�� ;

Q� =
h
c; �

i
+ 2!� + v�@�� ;

Qc = c2 � !2�� !"�A� +
"2

16
�+ v�@�c ;

Q! = 0 ;
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Q"� = 0 ;

Qv� = �!"� ;
Qc = b+ v�@�c ;

Qb = !"�@�c + v�@�b ;

with

Q2 = 0 on
�
A;�; �; �; c; !; "; v; c; b

�
; (4.105)

and

Q2 � =
g2

4
!"�

�STYM
����

(4.106)

+
g2

32
"�"�

 
g��

�STYM
� �

+ g��
�STYM
� �

� 2g��
�STYM
� �

!
;

Q2��� = �g
2

2
!2 �STYM

����
(4.107)

+
g2

8
!"�

 
"����

�STYM
� �

+ g��
�STYM
� �

� g��
�STYM
� �

!
:

Remark 15 Notice that the Q-transformation of the Faddeev-Popov ghost c contains
terms quadratic in the global parameters !; "�. The presence of these terms (in particular
of !2�) in the transformation of the ghost c has been shown to be of great importance by
the authors of ref. [18] in order to identify the relevant nontrivial cohomology classes of
TYM.

4.2 The Slavnov-Taylor identity

As explained in Sect.2, in order to obtain the Slavnov-Taylor identity we �rst cou-
ple the nonlinear Q-transformations of the �elds in eqs.(4:104) to a set of anti�elds
(L;D;
�; ��; �; �;B��);

Sext = tr
Z
d4x ( LQc+DQ�+ 
�QA� + ��Q � (4.108)

+�Q�+ �Q� + 1

2
B��Q��� ) ;

with

Dim:; R�charges and gh�numbers

L D 
� �� � � B��

dim : 4 3 3 5=2 3 5=2 5=2
R� ch arg e 0 �2 0 �1 2 1 1
gh� number �2 �1 �1 �1 �1 �1 �1

nature comm: ant: ant: comm: ant: comm: comm:
Table 5:
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Moreover, taking into account that the extended operator Q is nilpotent only modulo the
equations of motion of the �elds  � and ���, we also introduce a term quadratic in the
corresponding anti�elds ��; B��; i.e.

Squad = tr
Z
d4x

 
�

4
!2B��B�� +

�

2
!B��"��� +

�

2
"�"����� +




2
"2�2

!
; (4.109)

where the coe�cients (�; �; �; 
) are �xed by requiring that the complete action

� = STYM + Sgf + Sext + Squad ; (4.110)

obeys the following identity

S(�) = 0 ; (4.111)

with

S(�) = tr
Z
d4x

 
��

�A�

��

�
�

+
��

���
��

� �
+
��

�L

��

�c
+
��

�D

��

��
+
��

��

��

��

+
��

��

��

��
+
1

2

��

�B��

��

����
+ (b+ v�@�c)

��

�c

+(!"�@�c+ v�@�b)
��

�b

!
� !"� @�

@v�
: (4.112)

The condition (4:111) is easily worked out, yielding for the coe�cients �; �; � and 
 the
following values

� =
g2

2
; � = �g

2

2
; � = � g

2

16
; 
 =

g2

16
: (4.113)

The equation (4:111) yields thus the classical Slavnov-Taylor identity for the TYM and
will be the starting point for the analysis of the renormalizability of the model. However,
before entering into the quantum aspects, let us make some further useful considerations
which allow to cast the Slavnov-Taylor identity (4:111) in a simpli�ed form which is more
suitable for the quantum discussion.

4.3 Analysis of the classical Slavnov-Taylor identity

In order to obtain a simpli�ed version of the Slavnov-Taylor identity, we shall make use of
the fact that the complete action � is invariant under space-time translations, as expressed
by

P�� =
X
i

Z
d4x

 
@�'

i ��

�'i
+ @�'

�i ��

�'�i

!
= 0 ; (4.114)

'i = all the �elds (A; ; �; �; �; �; c; c; b) ;

'�i = all the anti�elds (
; �; L;D; �; �;B) : (4.115)
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Let us now observe that, as a consequence of the fact that P� acts linearly on the �elds and
anti�elds, the dependence of the complete action � from the corresponding translation
constant ghost v� turns out to be �xed by the following linearly broken Ward identity,
namely

@�

@v�
= �cl

� ; (4.116)

where

�cl
� = tr

Z
d4x( L@�c�D@��� 
�@�A� + ��@� �

��@��+ �@�� +
1

2
B��@���� ) ; (4.117)

is a classical breaking, being linear in the quantum �elds. We fall thus in the situation
described in the Remark 5 of Sect.2, meaning that we can completely eliminate the
global constant ghost v� without any further consequence. Introducing in fact the actionb� through

� = b� + v��cl
� ; (4.118)

@ b�
@v�

= 0 ;

it is easily veri�ed from (4:111) that b� obeys the modi�ed Slavnov-Taylor identity

S(b�) = !"��cl
� ; (4.119)

with

S(b�) = tr
Z
d4x

 
� b�
�A�

� b�
�
�

+
� b�
���

� b�
� �

+
� b�
�L

� b�
�c

+
� b�
�D

� b�
��

+
� b�
��

� b�
��

+
� b�
��

� b�
��

+
1

2

� b�
�B��

� b�
����

+ b
� b�
�c

+ !"�@�c
� b�
�b

!
;

(4.120)

and �cl
� as in eq.(4:117). The equation (4:119) represents the �nal form of the Slavnov-

Taylor identity which will be taken as the starting point for the quantum analysis of the
model. It is interesting to observe that, due to the elimination of the ghost parameter
v�, the classical breaking �cl

� appears now on the right hand side of the identity (4:119),
yielding thus a linearly broken Slavnov-Taylor identity. As a consequence the linearized
Slavnov-Taylor operator Bb� de�ned as

Bb� = tr
Z
d4x

 
� b�
�A�

�

�
�

+
� b�
�
�

�

�A�
+
� b�
� �

�

���
+
� b�
���

�

� �
+
� b�
�L

�

�c

!
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+
� b�
�c

�

�L
+
� b�
��

�

�D
+
� b�
�D

�

��
+
� b�
��

�

��
+
� b�
��

�

��
+
� b�
��

�

��

+
� b�
��

�

��
+
1

2

� b�
����

�

�B��
+
1

2

� b�
�B��

�

����
+ b

�

�c
+ !"�@�c

�

�b

!
;

(4.121)

is not strictly nilpotent. Instead, we have

Bb�Bb� = !"�P� ; (4.122)

meaning that Bb� is nilpotent only modulo a total derivative. It follows then that Bb� becomes
a nilpotent operator when acting on the space of the integrated local polynomials in the
�elds and anti�elds. This is the case, for instance, of the invariant counterterms and of
the anomalies.

Besides the Slavnov-Taylor identity (4:119), the classical action b� turns out to be
characterized by further additional constraints [1], namely

� the Landau gauge �xing condition

� b�
�b

= @A ; (4.123)

� the antighost equation
� b�
�c

+ @�
� b�
�
�

= 0 ; (4.124)

� the linearly broken ghost Ward identity, typical of the Landau gauge

Z
d4x

 
� b�
�c

+

"
c;
� b�
�b

#!
= �cl

c ; (4.125)

with �cl
c a linear classical breaking

�cl
c =

Z
d4x

�
[c; L]� [A;
]� [�;D] + [ ; �]� [�; �] + [�; � ] +

1

2
[�;B]

�
: (4.126)

As usual, commuting the ghost equation (4:125) with the Slavnov-Taylor identity (4:119) one
obtains the Ward identity for the rigid gauge invariance [1], expressing the fact that all
the �elds and anti�elds belong to the adjoint representation of the gauge group.

4.4 Classical approximation: the reduced action

Following the standard procedure, let us introduce, for further use, the so called reduced
action eS [1] de�ned through the gauge �xing condition (4:123) as

b� = eS + tr
Z
d4x b@A ; (4.127)
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so that eS is independent from the lagrangian multiplier b. Moreover, from the antighost
equation (4:124) it follows that eS depends from the antighost c only through the combination8


�


� = 
� + @�c : (4.128)

Therefore, for eS we have

eS =
1

g2
tr
Z
d4x

�
1

2
F+F+ � ���(D� � �D� �)

+ + �D� 
� � 1

2
�D�D

��

+
1

2
� f �;  �g � 1

2
� f���; ���g � 1

8
[�; �]� � 1

32

h
�; �

i2�
+tr

Z
d4x

 
L(c2 � !2�� !"�A� +

"2

16
�) +D([c; �]� "� �)

+
�(�D�c+ ! � +
"�

2
��� +

"�
8
�) + �(

h
c; �

i
+ 2!�)

+��(fc;  �g � !D��+ "�F�� � "�

2
F+
�� �

"�
16
[�; �])

+� (fc; �g+ !

2
[�; �] +

"�

2
D��)

+
1

2
B��(fc; ���g+ !F+

�� +
1

8
("�"���� + "�g�� � "�g��)D

�� )
�

+tr
Z
d4x

 
g2

8
!2B��B�� � g2

4
!B��"��� � g2

32
"�"����� +

g2

32
"2�2

!
:

(4.129)

Accordingly, for the Slavnov-Taylor identity (4:119) we get

S( eS) = !"� e�cl
� ; (4.130)

where S( eS) denotes now the homogeneous operator

S( eS) = tr
Z
d4x

 
� eS
�A�

� eS
�
�

+
� eS
���

� eS
� �

+
� eS
�L

� eS
�c

+
� eS
�D

� eS
��

+
� eS
��

� eS
��

+
� eS
��

� eS
��

+
1

2

� eS
�B��

� eS
����

!
;

(4.131)

and e�cl
� is given by the expression (4:117) with 
� replaced by 
�, i.e.

e�cl
� = tr

Z
d4x( L@�c�D@��� 
�@�A� + ��@� �

��@��+ �@�� +
1

2
B��@���� ) : (4.132)

8The variable 
� is also called shifted anti�eld.
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For the linearized Slavnov-Taylor operator BeS we obtain now

BeS = tr
Z
d4x

 
� eS
�A�

�

�
�
+
� eS
�
�

�

�A�
+
� eS
� �

�

���
+
� eS
���

�

� �
+
� eS
�L

�

�c

+
� eS
�c

�

�L
+
� eS
��

�

�D
+
� eS
�D

�

��
+
� eS
��

�

��
+
� eS
��

�

��
+
� eS
��

�

��

+
� eS
��

�

��
+
1

2

� eS
����

�

�B��
+
1

2

� eS
�B��

�

����

!
;

(4.133)

and

BeSBeS = !"�P� : (4.134)

The usefulness of working with the reduced action relies on the fact that eS depends only
on those variables which are really relevant for the quantum analysis. It is apparent,
for instance, that the Landau gauge �xing condition (4:123) can be regarded indeed as a
linearly broken local Ward identity, implying thus that the Lagrangian multiplier b cannot
appear in the expression of the invariant counterterms and of the possible anomalies. Of
course, the same holds for the antighost c which, due to the equation9 (4:124), can enter
only through the combination 
�.

Let us also recall, �nally, the quantum numbers of all the �elds and anti�elds entering
the expression of the reduced action (4:129).

Quantum numbers

A� ���  � � � �

dim : 1 3=2 3=2 3=2 1 1
R� ch arg e 0 �1 1 �1 2 �2
gh� number 0 0 0 0 0 0

nature comm: ant: ant: ant: comm: comm:
Table 6: F ields

(4.135)

Quantum numbers

c ! "�
dim : 0 �1=2 �1=2

R� ch arg e 0 �1 1
gh� number 1 1 1

nature ant: comm: comm:
Table 7: Ghosts

(4.136)

9Both the Landau gauge-�xing condition and the antighost equation can be proven to be renormaliz-
able [1].
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Quantum numbers

L D 
� �� � � B��

dim : 4 3 3 5=2 3 5=2 5=2
R� charg e 0 �2 0 �1 2 1 1
gh � number �2 �1 �1 �1 �1 �1 �1

nature comm: ant: ant: comm: ant: comm: comm:
Table 8: Antifileds

(4.137)
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5 Renormalization of topological Yang-Mills

5.1 Cohomology of the linearized Slavnov-Taylor operator B eS
We are now ready to discuss the renormalization of the TYM. As already underlined in
Sect.2, the �rst task is that of characterizing the cohomology classes of the linearized
Slavnov-Taylor operator which turn out to be relevant for the anomalies and the in-
variant counterterms. Let us recall that both anomalies and invariant counterterms
are integrated local polynomials �G in the �elds (A; ; �; �; �; �; c), in the anti�elds
(L;D; 
; �; �; �;B), and in the global ghosts (!; "), with dimension four, vanishing R-
charge and ghost number G respectively one and zero. In addition, they are constrained
by the consistency condition

BeS�G = 0 ; G = 0; 1 ; (5.138)

BeS being the linearized Slavnov-Taylor operator of eq.(4:133). From the relation (4:134),
i.e.

BeSBeS = !"�P� ; (5.139)

one sees that BeS is in fact a nilpotent operator when acting on the space of the integrated
functionals which are invariant under space-time translations. It follows therefore that
the relevant solutions of the eq.(5:138) identify nontrivial elements of the integrated co-
homology of BeS . In order to characterize the integrated cohomology of BeS we introduce
the operator

N" = "�
@

@"�
; (5.140)

which counts the number of global ghosts "� contained in a given �eld polynomial. Ac-
cordingly, the functional operator BeS displays the following "-expansion

BeS = beS + "�W� +
1

2
"�"�W�� ; (5.141)

where, from eq.(5:139) the operators beS ; W�; W�� are easily seen to obey the following

algebraic relations

beSbeS = 0 ; (5.142)

n
beS ;W�

o
= !P� ; (5.143)

and
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fW�;W�g+
n
beS ;W��

o
= 0 ; (5.144)

fW�;W��g+ fW� ;W��g+ fW�;W��g = 0 ;

fW�� ;W��g+ fW��;W��g+ fW��;W��g = 0 :

with

Quantum numbers

beS W� W��

dim : 0 1=2 1
R� ch arg e 0 �1 �2
gh � number 1 0 �1

nature ant: ant: ant:
Table 9:

In particular, from the eqs.(5:142) ; (5:143) we observe that the operator beS is strictly

nilpotent and that the vector operatorW� allows to decompose the space-time translations
P� as a beS�anticommutator, providing thus an o�-shell realization of the algebra (3:72).

Furthermore, we shall check that the decomposition formula (5:143) will be of great
usefulness in order to obtain the nontrivial expression of the invariant counterterms of
the complete operator BeS . Let us also give, for further use, the explicit form of the
operators beS ; W�; W�� , namely

beSA� = �D�c+ ! � ; (5.145)

beS � = fc;  �g � !D�� ;

beSc = c2 � !2� ;

beS� = [c; �] ;

beS� =
h
c; �

i
+ 2!� ;

beS� = fc; �g+ !

2

h
�; �

i
;

beS��� = fc; ���g+ !F+
�� +

g2

2
!2B�� ;

and

beS
� =
1

g2

�
4D�F�� + 4 f �; ���g � f �; �g+ 1

2

h
�;D��

i
� 1

2

h
D��; �

i�
�! [�; ��] + 2!D�B�� + fc; 
�g ;

beS�� =
1

g2

�
4D���� +D�� �

h
�; �

i�
� !
� + [c; ��] ;

beSL = [c; L]� [�;D]�D�
� + [ �; �
�]�

h
�; �

i
+ [�; � ] +

1

2
[��� ; B�� ] ;
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beSD =
1

g2

�
�1

2
D�D��� 1

2
f��� ; ���g � 1

8
f�; �g � 1

16

h
�;
h
�; �

ii�
+!D��� � !2L+

!

2

h
�; �

i
+ f c;Dg ;

beS� =
1

2g2

�
�D�D��+ f �;  �g+ 1

8

h
�;
h
�; �

ii�
� !

2
[�; � ] + fc; �g ;

beS� =
1

g2

�
D� � +

1

4
[�; �]

�
� 2!� + [c; � ] ; (5.146)

beSB�� =
1

g2

�
�2(D� � �D� �)

+ + 2 [�; ���]
�
+ [c;B�� ] :

For the operator W� we get

W�A� =
1

2
��� +

1

8
g��� ;

W� � = F�� � 1

2
F+
�� �

1

16
g��

h
�; �

i
� g2

4
!B�� ;

W�c = �!A� ;

W�� = � � ;
W�� = 0 ;

W�� =
1

2
D�� ;

W���� =
1

8

�
"����D

��+ g��D��� g��D��
�

�g
2

8
! ("�����

� + ����� � �����) ; (5.147)

and

W�
� =
�
�!g��L� 1

2
D��� +

1

2
g��D

��� +
1

2
g��

h
�; �

i
�1

4

h
B��;�

i
� 1

2
"����D

��� ;
�

W��� = g��D ;

W�L = 0 ;

W�D = � 1

16

h
�; ��

i
;

W�� =
1

16
[�; ��]� 1

2
D�� � 1

4
D�B�� ;

W�� = �1

8

� ; (5.148)

W�B�� = �1

4
("����


� + g��
� � g��
�) :

Finally, for W�� one obtains
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W��A� = W��� =W��� =W��� =W����� = 0 ;

W�� � =
g2

16
(2g���� � g���� � g����) ;

W��c =
1

8
g��� ; (5.149)

and, for the anti�elds

W��
� = W���� =W��L =W��D =W��� =W��B�� = 0 ;

W��� =
1

8
g��L : (5.150)

According to the general results on cohomology given in the Subsect. 2.3, the in-
tegrated cohomology of BeS is isomorphic to a subspace of the integrated cohomology
of beS . Let us therefore �rst focus on the operator beS . We have now to mention that

one of the advantages of having decomposed the operator BeS according to the counting
operator (5:140) is due to the fact that the (nonintegrated) cohomology classes of beS have
been already identi�ed by the authors of ref. [18], who computed in fact the cohomology
of beS in terms of the so called invariant or constrained cohomology, the name invariant

cohomology standing for the computation of the cohomology in the space of the gauge
invariant polynomials. Their result can be immediately adapted to our present case, being
stated as follows:

� The cohomology classes of the operator beS in the space of the nonintegrated local

polynomials in the �elds and anti�elds which are analytic in the global ghosts are
given by invariant polynomials in the undi�erentiated �eld � built up with monomials
Pn(�) of the type

Pn(�) = tr

 
�n

n

!
; n � 2 : (5.151)

Remark 16 Although the formal proof of the above result can be found in the orig-
inal work [18], let us present here a very simple and intuitive argument for a better
understanding of eq.(5:151) : Following [18] we further decompose the operator beS
according to the counting operator N = !@=@!, i.e.

beS = b0eS + !b1eS + !2b2eS : (5.152)

From eqs.(5:145) ; (5:146) it is apparent to see that the �rst term b0eS of the decompo-

sition (5:152) picks up the part of the operator beS corresponding to the pure gauge

transformations, while the second and the third term (b1eS ; b2eS ) have basically the e�ect
of a shift transformation. This is particularly evident if one looks at the �rst set of
transformations (5:145) concerning only the �elds (A; ; �; �; �; �; c): It should also
be remarked that among the �elds (A; ; �; �; �; �; c) the scalar component � is the
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only �eld whose transformation does not contain the global ghost !, so that the ac-
tion of the operator beS on � reduces to a simple pure gauge transformation. Recalling

now that the cohomology of beS is, in turn, isomorphic to a subspace of the cohomol-

ogy of b0eS , we can easily understand that the characterization of the cohomology of

beS can be reduced in fact to a computation of the so called invariant cohomology, i.e.

to the computation of the cohomology in the space of the gauge invariant polynomials
which are left unchanged by the shift transformations corresponding to (b1eS ; b2eS ). It

follows therefore that the only invariants which survive are exactely the polynomials
in the undi�erentiated �eld �, justifying thus the result (5:151). We also remark
that the polynomials Pn(�) can be eventually multiplied by appropriate powers in the
constant ghosts ("�; !) in order to obtain invariants with the right R-charge, ghost
number and dimension. Finally let us underline that, due to the commuting nature
of the �eld �, the expression tr(�n) (for n su�ciently large) is related to higher
order invariant Casimir tensors whose existence relies on the choice of the gauge
group G.

5.2 Analyticity in the constant ghosts and triviality of the co-

homology of beS
Before analysing the consequences which follow from the result (5:151) on the cohomology
of the complete operator BeS , let us discuss here the important issue of the analyticity in
the constant global ghosts. In fact, as repeatedly mentioned in the previous Sections,
the requirement of analyticity in the ghosts ("�; !), stemming from pure perturbative
considerations, is one of the most important ingredient in order to interpret the TYM in
terms of a standard �eld theory which can be characterized by a nonvanishing BRST co-
homology. In particular, we have already emphasized that the nonemptiness of the BRST
cohomology relies exactly on the analyticity requirement. For a better understanding of
this point, let us consider in detail the case of the simplest invariant polynomial P2(�)

P2(�) =
1

2
tr�2 : (5.153)

It is an almost trivial exercise to show that tr�2 can be expressed indeed as a pure
beS�variation, namely

tr�2 = beS tr
�
� 1

!2
c�+

1

3!4
c3
�
: (5.154)

This formula illustrates in a very clear way the relevance of the analyticity requirement.
It is apparent from the eq.(5:154) that the price to be payed in order to write tr�2 as a
pure beS�variation is in fact the loss of analyticity in the global ghost !.

In other words, as long as one works in a functional space whose elements are power
series in the global ghosts, the cohomology of beS is not empty. As we shall see later on,

this will imply that also the cohomology of BeS will be nontrivial, meaning that TYM can
be regarded as a standard supersymmetric gauge theory of the Yang-Mills type. On the
other hand, if the analyticity requirement is relaxed, the cohomology of beS , and therefore
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that of the complete operator BeS, becomes trivial, leading thus to the cohomological
interpretation of Baulieu-Singer [25] and Labastida-Pernici [24]. We see therefore that
the analyticity requirement in the global ghosts is the property which intertwines the two
possible interpretation of TYM. One goes from the standard �eld theory point of view to
the cohomological one by simply setting ! = 1, which of course implies that analyticity is
lost. In addition, it is rather simple to convince oneself that setting ! = 1 has the meaning
of identifying the R-charge with the ghost number, so that the �elds (�; ; �; �; �) aquire
a nonvanishing ghost number given respectively by (�1; 1;�1; 2;�2). They correspond
now to the so called topological ghosts of the cohomological interpretation.

Remark 17 It is also interesting to point out that there is a deep relationship between
the analyticity in the global ghosts and the so called equivariant cohomology proposed
by R. Stora et al. [16, 17] in order to recover the Witten's observables in the case in
which TYM is considered as a cohomological theory with vanishing BRST cohomology.
Roughly speaking, the equivariant cohomology can be de�ned as the restriction of the BRST
cohomology to the space of the gauge invariant polynomials which cannot be written as
the BRST variation of local quantities which are independent from the Faddeev-Popov
ghost c. In other words, a gauge invariant cocycle # is called nontrivial in the equivariant
cohomology if # cannot be written as the beS -variation of a local polynomial e# which is

independent from the ghost c, i.e. if

# = beS e# ; (5.155)

with e# containing necessarily c, then # identi�es a nontrivial element of the equivariant
cohomology10. Considering now the polynomial tr�2, we see that it yields a nontrivial
equivariant cocycle in the cohomological interpretation (i:e: ! = 1), due to the unavoidable
presence of the Faddeev-Popov ghost c on the right hand side of eq.(5:154). Moreover,
keeping the standard point of view (i:e: ! 6= 1), it is apparent that in order to write
tr�2 as a trivial cocycle use has to be done of the e�ective variable c=!, meaning that the
loss of anlyticity is accompanied by the presence of the Faddeev-Popov ghost c. This shows
that, in the case of the invariant polynomials Pn(�); the analyticity requirement and the
equivariant cohomology identify indeed the same class of invariants [15].

5.3 The integrated cohomology of beS and the absence of anoma-

lies.

Having characterized the cohomology of beS , let us now brie
y analyse the integrated co-

homology classes or, equivalently, the local cocycles which belong to the cohomology of beS
modulo a total space-time derivative. Let us begin �rst with the integrated cohomology
classes which have the same quantum numbers of the invariant counterterms, i.e. dimen-
sion four and vanishing R�charge and ghost number. Combining the result (5:151) with
the technique of the descent equations11, it turns out that the integrated cohomology

10See ref.[17] for a geometrical construction of the equivariant cohomology classes.
11See Chapt.5 of ref.[1] for a self contained illustration of the method.
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classes of beS with dimension four and vanishing ghost number can be identi�ed, modulo

exact cocycles, with the following three elements,Z
d4x tr(�4) ;

Z
d4x

�
tr�2

�2
; (5.156)

and

"����W�W�W�W�

Z
d4x tr

 
�2

2

!
; (5.157)

with W� given in eqs.(5:141) ; (5:147) ; (5:148). The �rst two terms in eq. (5:156) possess
R-charge 8 and therefore have to be ruled out. The only term with the correct quantum
numbers (see Tables 6-8 of eqs.(4:135)-(4:137)) is thus that of eq.(5:157) : The invariance
of the term (5:157) under the action of beS easily follows from the decomposition (5:143),

which implies that beS and W� can be regarded as anticommuting operators when acting

on the space of the integrated local functionals. Its nontriviality is easily seen to be a
consequence of the nontriviality of (tr�2), according to eq.(5:151) :

Remark 18 It is worth to underline here that expressions of the type of eq.(5:157) are
not a novelty, as they appear rather naturally in the study of the BRST cohomology of the
topological models. Their occurrence lies precisely on the existence of a vector operator
W� which allows to decompose the space-time derivatives as a BRST anticommutator,
as in the equation (5:143). As shown in [26], the decomposition formula (5:143) turns
out to be of great importance in order to obtain the integrated cohomology classes from
the nonintegrated ones. The operator W� plays in fact the role of a climbing operator
which allows to solve in a very straightforward and elegant way the descent equations
corresponding to the integrated cohomology. It is a simple exercise, for instance, to verify
that the following cocycles, respectively a one, two and a three form,

W�

 
tr
�2

2

!
dx� ; (5.158)

W�W�

 
tr
�2

2

!
dx� ^ dx� ;

W�W�W�

 
tr
�2

2

!
dx� ^ dx� ^ dx� ;

belong indeed to the cohomology of beS modulo a total derivative. The expression (5:158) are

seen to reproduce (modulo trivial terms) the Witten observables of the TYM theory [11],
giving a more direct idea of the usefulness of the operator W�.

Turning now to the integrated cohomology classes in the sector of dimension four,
R-charge zero and ghost number one, it can be proven that the result (5:151) implies that
the only integrated invariants which can be de�ned are those which are beS -exact, meaning

that the integrated cohomology of beS in the sector of the anomalies is empty. Therefore

the integrated cohomology of the complete operator BeS turns out to be empty as well,
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so that the classical Slavnov-Taylor identity (4:119) can be extended at the quantum
level without anomalies. It is important to mention that this result, already obtained
by N. Maggiore [13] in the analysis of the N = 2 untwisted gauge theories, means, in
particular, that there is no possible extension of the nonabelian Adler-Bardeen gauge
anomaly compatible with N = 2 supersymmetry.

In summary, we have seen that the operator beS has a nonvanishing integrated coho-

mology only in the sector of the invariant counterterms, in which the unique nontrivial
element is given by the expression (5:157). We have now to recall that the computation
of the cohomology of beS is only a �rst step towards the characterization of the nontrivial

classes of the complete operator BeS . Moreover, from the previous results, we can infer
that the cohomology of BeS in the sector of the invariant counterterms can contain at
most a unique element. The task of the next �nal section will be that of providing the
expression of the unique nontrivial invariant counterterm of TYM.

5.4 The invariant counterterm of TYM

Let us face now the problem of the characterization of the most general local invariant
counterterm �count which can be freely added, to each order of perturbation theory, to
the vertex functional � which ful�ls the quantum version of the Slavnov-Taylor identity12

(4:119),

S(�) = !"��cl
� ; (5.159)

� = b� +O(�h) :

We look then for an integrated local polynomial in the �elds, anti�elds and global ghosts
with dimension four and vanishing R-charge and ghost number, which is a nontrivial
solution of the consistency condition

BeS�count = 0 : (5.160)

In order to �nd a candidate for �count we observe that the classical breaking term in
the right-hand side of eqs.(4:119) and (5:159) does not depend from the gauge coupling
constant g of TYM, according to eq.(4:117). Therefore, acting with @=@g on both side of
eq.(4:130) we get

BeS @ eS@g = 0 : (5.161)

We see that @ eS=@g yields a solution of the consistency condition (5:160). Of course, it
remains to prove that @ eS=@g identi�es a nontrivial element of the cohomology of BeS . In
order to prove the nontriviality of @ eS=@g we proceed, following a well known standard
cohomology argument, by assuming the converse, i.e. that @ eS=@g can be written as an
exact cocycle:

12We remind here that, due to the absence of anomalies, the classical Slavnov-Taylor identity (4:119)
can be always extended at the quantum level.
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@ eS
@g

= BeS��1 ; (5.162)

for some integrated local polynomial ��1 in the �elds, anti�elds and constant ghosts with
negative ghost number. Decomposing now the equation (5:162) according to the counting
operator N" = "�@=@"� of eq.(5:140) we get, to zeroth order in "�, 

@ eS
@g

!
"=0

= beS��1"=0 ; (5.163)

with
�
@ eS=@g�

"=0
given by 

@ eS
@g

!
"=0

= �2

g
STYM +

g!2

4

Z
d4x trB��B�� ; (5.164)

and STYM being the original TYM action of eq.(3:52) : However, it is very simple to check
that the expression (5:164) can be rewritten as

 
g
@ eS
@g

!
"=0

=
2

3g3
"����W�W�W�W�

Z
d4x tr

 
�2

2

!
(5.165)

+beS
Z
d4x tr (�D � �� �) :

Therefore, according to the analysis of the previous section, it follows that the term�
@ eS=@g�

"=0
belongs to the integrated cohomology of beS . Equation (5:162) cannot thus

be satis�ed, meaning that @ eS=@g identi�es indeed a nontrivial element of the cohomology
of BeS . We can conclude therefore that the symmetry content of the topological Yang-Mills
theory allows for a unique invariant nontrivial counterterm whose most general expression
can be written as

�count = &g
@ eS
@g

+ BeS��1 ; (5.166)

&g being an arbitrary free parameter corresponding to a possible renormalization of the
gauge coupling constant g. The result (5:166) is in complete agreement with that found in
ref. [13] in the case of untwisted N = 2 YM. This concludes the algebraic renormalization
analysis of Witten's TYM.

Remark 19 Observe that eqs.(5:164), (5:165) imply that the expression of the original
TYM action (3:52) can be rewritten as

STYM = �
 

1

3g3
"����W�W�W�W�

Z
d4x tr

 
�2

2

!!
"=!=0

+ beS(:::) ;
(5.167)

This suggestive formula shows that the origin of the Witten's action can be in fact traced
back, modulo an irrelevant exact cocycle, to the invariant polynomial tr�2.
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Remark 20 Let us also recall here that the explicit Feynman diagrams computation yields
a nonvanishing value for the renormalization constant &g, meaning that TYM (understood
here as the twisted version of N = 2 YM) possesses a nonvanishing � function for the
gauge coupling g. The latter agrees with that of the pure N = 2 untwisted Yang-Mills [22].
Moreover, it is well known that the � function of N = 2Yang-Mills theory receives only
one loop order contributions [23]. This important result is commonly understood in terms
of the nonrenormalization theorem for the U(1) axial anomaly which, due to supersym-
metry, belongs to the same supercurrent multiplet of the energy-momentum tensor. This
implies that there is a relationship between the coe�cient of the axial anomaly and the �
function, providing then a useful argument in order to understand the absence of higher
order corrections for the N = 2 gauge Yang-Mills theory. On the other hand, the formula
(5:167) shows that the TYM action STYM is directly related to the invariant polynomial
tr (�2). It is known since several years that in the N = 2 susy gauge theories the Green's
functions with the insertion of composite operators of the kind of the invariant polynomials
Pn(�) of eq.(5:151) display remarkable �niteness properties and can be computed exactely,
even when nonperturbative e�ects are taken into account [27]. It is natural therefore to
expect that the �niteness properties of tr (�2) are at the origin of the absence of higher
order corrections for the gauge � function of both twisted and untwisted N = 2 gauge
theories. In other words the relation (5:165) could give us an alternative understanding of
the nonrenormalization theorem for the N = 2 gauge � function. We shall hope to report
soon on this aspect in a more formal and detailed work.

.
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A Appendix

A.1 Susy conventions in euclidean space-time

The supersymmetric conventions adopted here are those which can be found in ref. [28].
For the matrices (��; ��) we have

(��)� _� = (1;
!

i�) ; (��) _�� = (1;� !

i�) ; (A.168)
!
� being the Pauli matrices. As usual, the spinor indices (�; _�) are rised and lowered by
means of the antisymmetric tensors "��; " _� _�. The matrices (��; ��) obey the following
algebra

���� + ���� = 2g�� ; (A.169)

���� + ���� = 2g�� ;

as well as the completeness relations

(��)� _� (��)
_�� = 2����

_�
_� ; (A.170)

with g�� the 
at euclidean metric g�� = diag(+;+;+;+):
For the antisymmetric matrices ��� and ��� we have respectively

��� =
1

2
(���� � ����) ; ��� = e��� = 1

2
"������� ; (A.171)

��� =
1

2
(���� � ����) ; ��� = �e��� = �1

2
"������� ;

and

���� = g�� + ��� ; (A.172)

���� = g�� + ��� :

The following useful relations hold

����� = g���� � g���� � "������ ; (A.173)

����� = g���� � g���� + "������ ;

����� = g���� � g���� � "������ ;

����� = g���� � g���� + "������ :

B Appendix

B.1 Tensorial self-dual transformations

As expected, the TYM action of eq.(3:52) is left invariant by a set of nonlinear transfor-
mations whose generators ��� are self-dual, i.e. ��� = e���: They read
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���A� = �("���� � + g�� � � g�� �) ; (B.174)

��� � = �("����D��+ g��D��� g��D��) ;

���� = 0 ;

���� = 8���

���� = �4F+
��

������ =
1

8
("���� + g��g�� � g��g��)

h
�; �

i
+(F+

��g�� � F+
��g�� � F+

��g�� + F+
��g��)

+(" �
��� F

+
�� � " �

��� F
+
�� + " �

��� F
+
�� � " �

��� F
+
��) :

The above transformations are checked to give rise, together with transformations (3:59)
and (3:79), to the complete twisted N = 2 supersymmetric algebra of eqs.(3:72) and
(3:73).

Remark 21 According to the algebraic set up of Sect.4, the tensor self-dual transforma-
tions (B:174) can be easily encoded in the Slavnov-Taylor identity (4:119) by means of
the introduction of a suitable constant tensor self-dual ghost. However, the inclusion of
the self-dual symmetry does not modify the previous results on the renormalizability of
TYM. The theory will remain anomaly free and will admit a unique invariant nontrivial
counterterm. As one can easily understand, this is essentially due to the fact that the ten-
sor transformations (B:174) do not actually act on the scalar �eld �, so that they cannot
modify the cohomology result of eq.(5:151).
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