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Abstract
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1 Introduction

The �eld theory with a �'4 self-interaction has been extensively studied in the literature.

General expressions for Feynman diagrams at zero temperature has been presented until the four-

loops approximation [1]. In the same way, in the recent past the temperature dependence of the

renormalized mass and coupling constant has been analysed by many authors [2]. More recently

di�erent methods has been used to study �nite temperature quantum �eld theory [3] [4].

The purpose of this paper is to present a two-loop calculation of the (�'4 + �'6)D=3 model.

For simplicity we assume that the dimension of the order parameter is one. We obtained the

thermal correction to the mass squared m2(�) and coupling constant �(�). Note that if the

thermal coupling constant �(�) becomes negative (for positive mass squared m2(�)) a �rst order

phase transition could occur. For negative mass squared and positive �(�) we have a second order

phase transition. The point m2(�) = �(�) = 0 de�nes the tricritical point [5]. Some systems as

metamagnets (anti�eromagnets in the presence of a strong external �eld) or in He3�He4 mixture

can present such kind of behavior. A tree level discussion of the tricritical phenomena can be

found in Refs.[6] [7]. For a treatment using the Callan-Zymanzik equation see for example ref.[8]

In three recent papers, the thermal correction to the mass and coupling constants was analysed

in the �'4 and E�mov-Fradkin models. The possibility for vanishing the renormalized coupling

constant in (�'4)D=4 model by thermal or topological e�ects was discussed in the �rst of these

papers by Ford and Svaiter [9]. Assuming a trivial topology of the spacelike section Malbouisson

and Svaiter [10] extended part of the discussion of Ford and Svaiter [9]. Assuming that the

system is in thermal equilibrium with a reservoir, the thermal correction to the mass �m2(�) and
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coupling constant ��(�) was obtained in a generic D-dimensional spacetime using the one-loop

approximation. Using a mix between dimensional and analytic regularization procedures and a

modi�ed minimal renormalization scheme the authors proved that in the one-loop approximation

for D � 4, the renormalized coupling constant attains its maximum at zero temperature and

decreases monotonically as the temperature of the thermal bath increases. As was discussed, for

D < 4 the renormalized coupling constant may becomes negative above some temperature ��1
�
. As

was discussed by Funakubo and Sakamoto and also Fendley [11], in the two-loop approximation

the e�ect of the temperature over the physical parameters is opposite in the high temperature

regime. Nevertheless we cannot disregards the posibility to vanish the thermal coupling constant

at some intermediate temperature.

Part of the analysis of these above cited papers was extended by Malbouisson and Svaiter [12]

assuming Lagrange densities with non-polynomial arguments. Still using the one-loop aproxima-

tion the behavior of the model at low and high temperatures was discussed. Using the notion of

the critical dimension Dc(n), these author proved that in the truncated model the renormalized

coupling �N (��1) becomes negative above some temperature ��1N for D < Dc. In this situation

the origin is a metastable vacuum.

The stability of the O(N) model in D = 3 was analysed by Appelquist and Heinz [13]. These

authors studied the model with a Abelian gauge �eld coupled to a massless, charged N component

�eld in the critical regime. They founded that the model contains a non-zero infrared stable �xed

point in the scalar coupling and also in the gauge coupling. Bardeen, Moshe and Bander [16]

studied the pure O(N) �('a'a)2+�('a'a)3 model and founded an ultraviolet �xed point at �nite

coupling � = ��. For � > 16�2 the model has no stable ground state for large N.
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As noted a long time ago by Dyson [18], in QED for negative coupling constant e2 the Hamil-

tonian is unbounded from below and the vacuum is a metastable state with a mean life of the

order e(�
1

jgj
). For instance in the (�'4)D<4 model and �(�) < 0 we have the same problems. In

D = 4 the contribution from instantons to the massless model was analysed by Feinberg and Yofa

[19]. These authors calculed high order correction to the instanton contribution to the Green's

functions in the regime � < 0. As was discussed by Parisi and others [20], asymptotic stimates in

perturbation theory can be obtained using the semiclassical arguments computing perturbatively

the imaginary part of the Green's functions for small negative coupling constant �.

The purpose of this paper is to investigate the tricritical phenomena in the (�'4 + �'6)D=3.

We compute �(2)(0) and �(4)(0) up to second order in perturbation theory and proved that the

two-loop approximation is enough to obtain the tricritical point where a line of second order phase

transition merges smoothly at this point into a line of �rst order phase transition. This paper

is organized as follows. In section II we will review some general formalism. In section III the

thermal correction to the mass and coupling constant �(�) for the two-loop one particle irreducible

diagrams �(2)(0) and �(4)(0) is presented. Conclusions are given in section IV. In this paper we

use �h = c = 1.

2 General formalism

Let us consider the vacuum to vacuum persistence functional in the presence of an external scalar

source J(x).

Z(J) =
Z
D' exp

�
�
Z
dDx (L(') + J(x)'(x))

�
(1)
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where

L(') =
1

2
(@')2 +

1

2
m2'2 +

1

4!
�'4 +

1

6!
�'6: (2)

The n-point correlation functions are de�ned as

G(n)(x1; x2; ::; xn) =< '(x1):::'(xn) > =
1

Z(J)

�nZ(J)

�J(x1)�J(x2)::�J(xn)
jJ=0

=
Z
D''(x1):::'(xn)exp

�
�
Z
dDx L(')

�
: (3)

We de�ne the generating functional of the connected correlation functions of the �elds by

W (J), where W (J) = lnZ(J).

Thus

G(n)
c (x1; x2; ::; xn) =

�nW (J)

�J(x1)�J(x2)::�J(xn)
jJ=0 =< '(x1):::'(xn) >c : (4)

The generating functional of the connected one-particle irreducible correlation functions can

be introduced, performing a Legendre transformation

�('0) = �W (J) +
Z
dDx'(x)J(x) (5)

and

�(n)(x1; x2; ::; xn) =
�n�('0)

�'0(x1)�'0(x2)::�'0(xn)
j'0=0: (6)

where
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'0(x) =
�W

�J(x)
(7)

If � = 0 and � = 0, the partition function Z(J) can be calculed exactly i.e.

Z0(J) = exp
�
�
1

2

Z
dDxJ(x)D(x� y;m2)J(y)

�
; (8)

where

(��x +m2)D(x � y;m2) = �D(x� y): (9)

For � 6= 0 and � 6= 0 it is not possible to �nd exactly Z(J) and perturbation theory is

mandatory, so we have

Z(J) = exp

0
@� �

4!

Z
dDx

 
�

�J(x)

!4
1
A exp

0
@��

6!

Z
dDy

 
�

�J(y)

!6
1
AZ0(J): (10)

and

�(n)(p1; p2; :::pn�1; pk) =

Z
dDx1d

Dx2:::d
Dxn�1d

Dy exp (i(p1x1 + p2x2 + :::(pn�1xn�1 + ky)) �(x1; :::xn�1; 0): (11)

The problem we will study is to �nd a tricritical temperature ��1(m;�; �) for a set of values of

m, � and � where the 1PI diagrams �(2)(0) and �(4)(0) vanishes. This point de�nes the tricritical

point. Consequently let us examinate thermal e�ects over �(2)(0) and �(4)(0; 0; 0; 0) � �(4)(0). We

will calculate explicity the two-loop contribution to the renormalized thermal mass and coupling

constant. The diagrams contributing to the two-point function are:
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It is possible to obtain the expressions of �(2)(0) and �(4)(0) given by:

�(2)(0) = m2 +
1

2
�(a)�

1

4
�2(b)�

1

6
�2(c)�

1

8
�(d) (12)

and

�(4)(0) = ��
3

2
�2(e) +

3

4
�3(f) + 3�3(g) +

3

2
�3(h)

�
1

2
�(i) +

1

4
��(j) +

2

3
��(k) +

1

2
��(l); (13)

where:

(a) =
1

(2�)D

Z dDq

(q2 +m2)
(14)

(b) =
1

(2�)2D

Z dDq1
(q21 +m2)

Z dDq2
(q22 +m2)2

: (15)

(c) =
1

(2�)2D

Z dDq1d
Dq2

(q21 +m2)(q22 +m2)((q1 + q2)2 +m2)
(16)

(d) =

 
1

(2�)D

Z dDq

(q2 +m2)

!2

(17)

(e) =
1

(2�)D

Z dDq

(q2 +m2)2
(18)

(f) =

 
1

(2�)D

Z dDq

(q2 +m2)2

!2

(19)
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(g) =
1

(2�)2D

Z
dDq1d

Dq2
(q21 +m2)(q22 +m2)((q1 + q2)2 +m2)2

(20)

(h) =
1

(2�)2D

Z
dDq1

(q21 +m2)

Z
dDq2

(q22 +m2)3
(21)

(i) =
1

(2�)D

Z
dDq

(q2 +m2)
(22)

(j) =
1

(2�)2D

Z
dDq1

(q21 +m2)

Z
dDq2

(q22 +m2)2
(23)

(k) =
1

(2�)2D

Z
dDq1d

Dq2
(q21 +m2)(q22 +m2)((q1 + q2)2 +m2)

(24)

(l) =
1

(2�)2D

Z
dDq1

(q21 +m2)

Z
dDq2

(q22 +m2)2
(25)

Before go to the next section to calculate the integrals at �nite temperature and show how the

tricritical behavior appear, we would like to make some remarks. Although we use the terminology

"thermal mass" to �2(0), interacting thermal �eld theory does not admit the notion of mass in

the usual sense of a real axis pole in the full propagator [14]. Nevertheless we still use the term

physical mass since the physical mass and this quantity are related by a �nite quantity (using the

renormalization group arguments).

3 The tricritical phenomena

The aim of this section is to show that there is a temperature where the tricritical phenomena

appear. To regularize the model we can choose between a plethora of regularization procedures:
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Pauli-Villars, dimensional regularization, momentum cuto� etc. We prefer to use a mix between

dimensional and zeta function analytic regularization. Therefore let us de�ne:

I�(D; s) = 1=�
1X

n=�1

Z
dD�1k

(2�)D�1
1

(!2
n + k2 +m2)s

(26)

Writing �(2)(0) and �(4)(0) as a function of I�(D; s) we have:

�(2)(0) = m2 +
1

2
�I�(D; 1) �

1

4
�2I�(D; 1)I�(D; 2)

�
1

6
�2(c)�

1

8
� (I�(D; 1))

2 : (27)

and

�(4)(0) = � �
3

2
�2I�(D; 1) +

3

4
�3(I�(D; 2))

2 + 3�3(g) +
3

2
�3I�(D; 1)I�(D; 3)

�
1

2
�I�(D; 1) +

1

4
��I�(D; 1)I�(D; 2) +

2

3
��(k)

+
1

2
��I�(D; 1)I�(D; 2): (28)

Using the analytic extension of the inhomogeneous Epstein zeta function it is possible to obtain

I�(D; s);

I�(D; s) =
mD�2s

(2�
1

2 )D�(s)

 
�(s �

D

2
) + 4

1X
n=1

(
2

mn�
)
D
2
�sKD

2
�s(mn�)

!
; (29)

where K�(z) is the modi�ed Bessel function of thirth kind [15]

We would like to stress that for D > 3 the '6 interaction is irrelevant and cannot a�ect the

infrared structure of the model. Nevertheless for D = 3 the '6 interaction is marginal and the



{ 10 { CBPF-NF-047/96

above comment does not follow. We will have that there is a set of values of the parameters m2,

� and � for each temperature which lead to the vanishing of the thermal physical mass m2(�)

and coupling constant �(�) i.e., the critical line in the parameter space. Note that the basis of all

considerations above assume that the sunset and related diagrams can not modify the tricritical

behavior.

A straighforward calculation gives for I�(3; 1), I�(3; 2) and I�(3; 3)

I�(3; 1) =
m

2�

 
�
1

2
+

1X
n=1

(
1

mn�
)e�mn�

!
(30)

I�(3; 2) =
1

16�m

�
1

2
+

1

em� � 1

�
(31)

and �nally

I�(3; 3) =
1

16m3

 
1

2
+

1

em� � 1
+

1X
n=1

(mn�)e�mn�
!

(32)

To evaluate the sum in I�(3; 1) we use the following trick

1X
n=1

(
1

mn�
)e�mn� =

1

m�

1X
n=1

(e�m�)n

n
= �

1

m�
ln(1� e�m�) (33)

The eq.(32) can be written as

I�(3; 3) =
1

16m3

 
1

2
+

1

em� � 1
+m�

e�m�

(em� � 1)2

!
(34)

The idea is to de�ne the quantities x = m�, y = �

m
and z = �. In the space (x; y; z) the

condition �2(0) = 0 de�ne a surface. The same happens for �4(0). The intersection of both

surfaces de�ne a tricritical line. See �g.(3). The e�ective potential as a function of the vacuum
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expectation value of the �eld and m� can be ploted. The temperature is the parameter that

allows us to interpolate between the two con�gurations: a metastable state at < ' >= 0 in the

low temperature regime with �rst order phase transition and a second order phase transition in

the high temperature regime. See �g.(4). At some intermediate temperature the tricritical point

appears.

In the high temperature regime it is possible to write

I�(3; 1) =
m

2�

 
�
1

2
+

1X
k=1

(m�)k�1

k!

!
: (35)

and

I�(3; 2) =
1

16m�

1X
k=0

B2k

(2k)!
(m�)2k�1: (36)

A possivel method to deal with the system in the high temperature regime is dimensional

reduction (DM). This approach has been used by many authors [22]. The basic idea is that in

the imaginary time formalism the free propagator has a form (!n + p2 +m2)�1. The Matsburara

frequency act like a mass so in the high temperature regime the non-static modes (n 6= 0) decouple

and we have a three dimensional theory after the integration of the non-zero modes. Of course

this efective model will describe the original model only for distances R >> ��1.

4 Conclusion

Studying the (�'4 + �'6)D=3 model at �nite temperature we obtained a well known result. We

proved that for each set of values of m, � and � there is a temperature ��1(m;�; �) where the

physical thermal mass m2(�) and coupling constant �(�) vanishes. Two remarks should be made.
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First is that the existence of the tricritical point can not be modi�ed with the inclusion of the

sunset and related graphs. The inclusion of these graphs will only change the temperature of

the tricritical point. The second is the existence of a pole in �4(0) at zero temperature as was

noted by Bardeen, Moshe and Bander[16]. In the pure �'4 it is possible to sum a in�nite series of

diagrams (ring diagrams) to circumvent the problem, since the �eld acquire a mass proportional to

(�)
1

2��1. We conjectured that the same can be done in the �'4+�'6 model in such a way that the

dynamically generated mass throws away the infrared divergence. A more elaborated argument

was given by Parisi [21], where the introduction of multi-local operators as counterterms can

eliminate the infrared divergences.

A natural extension of this paper is to calculate the decay rate of the metastable state

< ' >= 0 with nucleation of bubbles in the low temperature regime [23]. For m� > m�� the

solution < ' >= 0 is a unstable minimum of the potential (the false vacuum), and it is posssible

to evaluate the probability per unit time and volume for the falso vacuum to decay into the true

vacuum of the model. To calculate then decay rate it is necessary to evaluate the instanton solution

and a gaussian integral around the instanton. This subject is under investigation in this model.
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Figure Caption

�g.(1) - The diagrams that contributes to the 1PI two-point functions.

�g.(2) - The diagrams that contributes to the 1PI four-point functions.

�g.(3) - The two surfaces �(2)(0) = 0 and �(4)(0) = 0 in the space x = m�, y = �
m
and z = �.

�g.(4) - The e�ective potential as a function of the vacuum expectation value of the �eld and

m�. In the low temperature regime, there is a metastable minimum at < ' >= 0 (there

is a true minimum outside the origin that does not appears in the �gure). Increasing the

temperature appears the tricritical temperature ��1
�
. In the high temperature regime there

is only a second order phase transition.
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