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Abstract

Within Tsallis generalized thermostatistics, the grand canonical ensemble is derived for

quantum systems. In particular, the generalized Fermi-Dirac, Bose-Einstein and Maxwell-

Boltzmann statistics are de�ned. The behavior of the chemical potential is depicted as a

function of the temperature. Some thermodynamic quantities at high and low temperature

are studied as well.
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I. INTRODUCTION

If the appropriate distribution function for a system is known, we can compute the

expectation values of all thermodynamic quantities, such as energy and number of par-

ticles, as well as speci�c heat, magnetization, etc. However, the entropy still eludes us.

Boltzmann, followed by Gibbs, introduced the one which yields the correct results for the

thermodynamic properties of standard systems. This is

S = �kB
1X

N=0

X
i

p
(N)
i ln p(N)

i :

An important property of this entropy is the extensivity (additivity).

Now, non-extensivity (or non-additivity) is an important concept in some areas of

physics, by way of reference to some interesting generalizations of traditional concepts.

A generalization of the Boltzmann-Gibbs statistics has been recently proposed by Tsallis

[1{3] for non-extensive systems. This generalization relies on a new form for the entropy,

namely

Sq � �k
1 �

P
1

N=0

P
i

h
p
(N)
i

iq
1� q

;

where q 2 <; k is a positive constant and Sq recovers its standard form, in the limit q ! 1.

Various properties of the usual entropy have been proved to hold for the generalized

one: positivity, equiprobability, concavity and irreversibility [4]; its connection with ther-

modynamics is now established and suitably generalizes the standard additivity (it is

non-extensive if q 6= 1) as well as the Shannon theorem [5].

The thermal dependence of the speci�c heat has been studied for some physical sys-

tems, among them, we have the d = 1 Ising ferromagnet [6]; a con�ned free particle

(square well) [7]; two-level system and harmonic oscillator [8] and an anisotropic rigid

rotator [9].

It is important to remark that, this formalism has already received some physical

and mathematical applications. Among them, let us mention: Self-gravitating systems,
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Stellar polytropes, Vlasov equation [10{13]; L�evy-like anomalous di�usion [14{17]; Cor-

related anomalous difusion [18,19]; d = 2 Euler turbulence [10]; Self-organizing biological

systems [20]; Simulated Annealing (optimization techniques in Genetics, Traveling sales-

man problem, Data �tting curves, quantum chemistry) [21{26]; Neural networks [27].

This generalized statistics has been shown to satisfy appropriate forms of the Ehrenfest

theorem [28]; von Neumann equation [29]; Langevin and Fokker-Planck equations [19,30];

Callen's identity (used to approximatively calculate the critical temperature of the Ising

ferromagnet) [31]; Fluctuation-dissipation and Onsager reciprocity theorems [32]; its con-

nection with QuantumGroups [33], quantum uncertainty [34,35], fractals [36,37], quantum

correlated many-body problems [38], �nite systems [2,39], etc. has been established. In

additon to this, some aspects of the generalized statistical mechanics in relation to the

N-body classical problem were discussed [40,41], in order to treat more general situations

than the collisionless one.

There exists an attempt to generalize the quantum (Fermi-Dirac and Bose-Einstein)

statistics [42], but it was not taken into account the di�culty associated with the concomi-

tant partition function owing to the factorization process shown in [40]. Consequently,

the quantum ideal gas has not yet been adequatly discussed within generalized statistics.

The micro-canonical and canonical formulations have been quite well studied up to

now. In the present paper, the formalism in the grand-canonical ensemble is generalized.

In Section II, the grand-partition function is obtained. In Section III, the extensions

of the Hilhorst transformations to the grand canonical ensemble are shown. Along the

same lines, the distribution function is generalized as well. In Section IV, the generalized

chemical potential is depicted as a function of the temperature for the Fermi-Dirac, and

Bose-Einstein gases. Approaches at high and low temperatures are derived.
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II. OPEN SYSTEMS: GENERALIZED GRAND-PARTITION FUNCTION

In general, open systems can exchange heat and matter with its surroundings; there-

fore, the energy and the particle number will uctuate. However, for systems in equilib-

rium we can require that both the average energy and the average particle number be

�xed. To �nd the probability distribution, we need to get an extremum of the entropy

which satis�es the above mentioned conditions. We proceed by the method of Lagrange

multipliers with three constraints.

In this problem, we can require that the generalized probability distribution be nor-

malized over all possible number of particles and all states of the system. Thus, the

normalization condition takes the form

1X
N=0

X
j

p
(N)
j = 1 ; (1)

the generalized average energy is de�ned

1X
N=0

X
j

h
p
(N)
j

iq
E

(N)
j = Uq ; (2)

it is also called q-expectation value [3] of the energy. The generalized average particle

number is de�ned

1X
N=0

N
X
j

h
p
(N)
j

iq
= Nq : (3)

or q-expectation value of N .

To obtain the equilibrium generalized probability distribution, we must �nd an ex-

tremum of the Tsallis entropy subject to the above constraints. This gives us

�o + q

"
�EE

(N)
j + �NN �

k

q � 1

# h
p
(N)
j

iq�1
= 0; (4)

where �o, �E and �N are the Lagrange multilpiers. Let us multiply Eq.(4) by p
(N)
j and

sum. It is found

�o
qk
�

1

q � 1
= �

�E
k
Uq +

1 �
P
1

N=0

P
j

h
p
(N)
j

iq
1� q

�
�N
k
Nq: (5)
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If we compare the Eq.(5) with the grand potential 
 = U �TS��N , taking �E = �1=T

and �N = �=T and de�ning �q(�; �) = [(q � 1)�o=qk]1=(q�1), the obtained probability

distribution for the grand-canonical ensemble is the following

p
(N)
j =

h
1� �(1� q)(E

(N)
j � �N)

i 1

1�q
=�q(�; �); (6)

where � = 1=kT , the number of particles N = 0; 1; 2:::, and E
(N)
j represents the N-particle

energy spectrum (characterized by the quantum number or set of quantum numbers j).

It is convenient to remark that in general

pN �
X
j

p
(N)
j 6=

2
4X

j

h
p
(N)
j

iq35
1=q

� p(N) (7)

where pN is the probability of having N particles (no matter the energy value) and p(N)

is the quantity which enables us re-writting Eq.(3) as
P
1

N=0N
h
p(N)

iq
= Nq; unless q = 1,

pN generically di�ers from p(N) ( for instance,
P
1

N=o pN = 1 always, whereas in general

P
1

N=0 p
(N) 6= 1 ).

The generalized grand partition function is obtained from Eq.(6) with the aid of Eq.(1)

�q(�; �) =
1X

N=0

X
j

h
1� �(1� q)(E

(N)
j � �N)

i 1

1�q : (8)

On the other hand, we can also obtain the fundamental equation for open systems, this

takes the following form


q = �kT
�1�q
q � 1

1� q
; (9)

and it is similar to the fundamental equation for closed systems (canonical ensemble [5]).

The average particle number is given by,

Nq =
@
q

@�
= �kT

1

(�q)q
@�q

@�
: (10)

For a quantum system the expresion for the probability density operator � being given by

� =
[1 � �(1� q)(H� �N)]

1

1�q

�q
; (11)



CBPF-NF-043/95 5

where H refers to the Hamiltonian of the system and N to the particle number operator.

The grand-partition function is given by

�q = Tr [1� �(1� q)(H� �N)]
1

1�q : (12)

The trace in Eq.(12) can be evaluated regarding some convenient set of basis states.

III. HILHORST INTEGRAL TRANSFORMATIONS AND GENERALIZED

DISTRIBUTION FUNCTION

The so called Hilhorst integral transformations [2] and the extension for q < 1 shown by

Prato [41] are important because they connect a thermodynamic or statistical generalized

quantity to its respective standard quantity. Therefore, an extension of the Hilhorst inte-

gral to the grand-canonical ensemble is derived. From the representation of the Gamma

function we have

��� =
1

�(�)

Z
1

0
d����1e���: (13)

Using this expresion in the generalized grand partition function (8) with the identi�cations

� = 1=(q � 1) and � = 1 + �(q� 1)(E
(N)
j � �N), it is obtained

�q(�; �) =
1

�( 1
q�1)

1X
N=0

X
j

Z
1

0
d��

1

q�1
�1 exp

�
�[1 + �(q� 1)(E

(N)
j � �N)]�

�
: (14)

Whenever

1X
N=0

X
j

Z
1

0
d� =

Z
1

0
d�

1X
N=0

X
j

; (15)

Eq.(14) becomes

�q(�; �) =
1

�( 1
q�1

)

Z
1

0
d��

1

q�1
�1

1X
N=0

X
j

exp
�
�
h
1 + �(q� 1)(E(N)

j � �N)
i
�
�
: (16)

Finally, it is obtained

�q(�; �) =
1

�( 1
q�1)

Z
1

0
d��

1

q�1
�1e���1(�(q � 1)�; �); (17)
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for q > 1; and (see [41])

�q(�; �) = �(
2 � q

1 � q
)
i

2�

I
C
d�(��)

�1

1�q
�1e���1(��(1� q)�; �); (18)

for q < 1. The contour C in the complex plane is depicted in FIG. 1. The connection

between Eq.(17) and Eq.(18) is shown in Appendix A.

Now, we write similar transformations for the q-expectation value of the energy. It is

obtained

Uq =
X
l

1

[�q(�)]q�(
q

q�1 )

Z
1

0
d��

1

q�1 e���1(�(q � 1)�; �)U1(�(q � 1)�) (19)

for q > 1 (for the canonical ensemble it is shown in [9]); and

Uq =
�( 1

1�q
)

[�q(�)]
q

i

2�

I
C
d�(��)

�1

1�q e���1(��(1� q)�; �)U1(��(1� q)�) (20)

for q < 1.

Similar expresions are obtained for the q-expectation value of the particle number

Nq =
1

[�q(�)]q�(
q

q�1 )

Z
1

0
d��

1

q�1 e���1(�(q � 1)�; �)N1(�(q � 1)�) (21)

for q > 1; and

Nq =
�( 1

1�q )

[�q(�)]
q

i

2�

I
C
d�(��)

�1

1�q e���1(��(1� q)�; �)N1(��(1� q)�) (22)

for q < 1.

Finally, let us also write the generalized distribution function in the Hilhorst manner.

We remark that a double sum over all possible number of particles and all states of the

systems appears at each quantity, in particular, the average particle number (3). The

double sum can be transformed to one only sum over all states of a single particle by

standard methods.

Now, let us remember that

N1 =
X
l

n1l; (23)
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where n1l is known as the distribution function and it is very well de�ned in the Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac statistics. By replacing Eq.(23) into Eq.(21)

and Eq.(22), we obtain the generalized distribution functions. We de�ne

nql =
1

[�q(�)]
q �( q

q�1
)

Z
1

0
d��

1

q�1 e���1(�(q � 1)�)n1l(�(q � 1)�) (24)

for q > 1; and

nql =
�( 1

1�q
)

[�q(�)]
q

i

2�

I
C
d�(��)

�1

1�q e���1(��(1� q)�)n1l(��(1� q)�) (25)

for q < 1.

Therefore, we have de�ned the generalized distribution functions in connection with

the standard distribution and partition functions through Eq.(24) and Eq.(25). In addi-

tion, we have

Nq =
X
l

nql (26)

which is the generalization of the Eq.(23).

IV. APPLICATIONS TO QUANTUM IDEAL GASES

The statistics of N-body quantum systems plays a crucial role in determining the

thermodynamic behavior at very low temperature. It is known however that, in the stan-

dard framework, there is no di�erence between Bose-Einstein and Fermi-Dirac statistics

at high temperature. Maxwell-Boltzmann statistics is the name given to the statistics

which describes the behavior of the systems at high temperature.

The quantum state E
(N)
l of the system is speci�ed by the one-particle states. The

total energy is given by

E
(N)
l = �1l + �l2 + : : :+ �lN = n1�1 + n2�2 + : : :+ n

1
�
1

Where �i is the energy of the state and ini is the occupation number, we have also

n1+n2+ : : :+ n1 = N . The generalized grand partition function for the Maxwell-Boltz-

mann statistics can be written as
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�M�B
q =

1X
N=0

1

N !

X
1l

X
l2

: : :
X
lN

[1� �(1� q)(�1l + �l2 + : : :+ �lN �N�)]
1

1�q ; (27)

where we have inserted the factor 1=N ! in the same way as in the q = 1 statistics, because

it gives us the proper form of the grand partition function for indistinguishable particles

at high temperature.

The generalized grand partition function in Fermi-Dirac statistics, acordding to Pauli

exclusion principle, is given by

�F�D
q =

1X
N=0

1X
1l

1X
l2=l1+1

: : :
1X

lN=lN�1+1

[1� �(1� q)(�1l + �l2 + : : : �lN �N�)]
1

1�q : (28)

Each di�erent set of occupation number corresponds to one possible state. Sometimes, it

is convenient to write the partition function by the equivalent form

�F�D
q =

1X
no=0

: : :
1X

nj=0

: : :
1X

n1=0

"
1 � �(1� q)

X
l

nl(�l � �)

# 1

1�q

: (29)

The exclusion principle restricts the occupation number (ni) of each state to 0 or 1.

The generalized grand partition function in Bose-Einstein statistics is given by

�B�E
q =

1X
N=0

1X
1l

1X
l2=l1

:::
1X

lN=lN�1

[1� �(1� q)(�1l+ �l2 + : : :+ �lN �N�)]
1

1�q : (30)

Here, there is no restriction on the number of particles that can occupy a given momentum

state. Another form for this partition function is

�B�E
q =

1X
no=0

: : :
1X

nj=0

: : :
1X

n1=0

"
1� �(1� q)

X
l

nl(�l � �)

# 1

1�q

: (31)

The occupation number (ni) of each momentum state can be 0,1,2,...

A. Particles with Periodic Boundary Conditions

We consider a gas of non-interacting particles of massm with the condition exp(ikl`) =

1, so kl` = 2�l and l = 0;�1;�2;�3; :::

The spectrum for a single particle is given by

�l =
�h2k2l
2m

=
�h2

2m
(
2�l

`
)2

where �h = h=2� (h is the Planck constant).
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1. High-Temperature Approach

In order to �nd �M�B
q in connection with �M�B

1 ( Eq.(17) and Eq.(18)), we write

�M�B
1 conveniently. Thus, the grand partition function within q = 1 statistics is given by

�M�B
1 =

1X
N=0

eN��

N !

"X
l

e���l
#N

: (32)

If the volume is large enough, the particle energies will be closely spaced and we can

replace the sum over l by an integral over a continuous variable k. Thus,

1X
l=�1

e���l !

 
`

2�

!D
2�D=2

�(D=2)

Z
1

0
dkkD�1e���h

2k2=2m; (33)

where D is the dimension. Hence, �M�B
1 becomes

�M�B
1 =

1X
N=0

1

N !
eN��

 
m`2

2��h2�

!ND=2

; (34)

Replacing Eq.(34) into Eq.(18), we obtain:

�M�B
q =

1X
N=0

�(2�q1�q
)[1 + �(1� q)�N ]

1

1�q
+ND

2

N !(1� q)DN=2�(2�q1�q +
ND
2 )

 
m`2

2��h2�

!ND=2

; (35)

for q < 1.

2. Fermi-Dirac Gas at Zero-temperature Limit

The average particle number at low temperature is given by (see Appendix B)

N1 =
2

�(D=2)

 
m`2

2��h2

!D=2 "
�D=2

D
+

1X
n=1

gn(�;D)(kBT )
2n

#
: (36)

We solve Eq.(22) with the aid of Eq.(36) for q < 1

Nq

�( 1
1�q

)A(D)
F =�q(�)q

=
�D=2

D

i

2�

I
C
d�(��)

�1

1�q e���1 + (37)

+
1X
n=1

gn(D;�) (�(1� q))�2n
i

2�

I
C
d�(��)

�1

1�q
�2ne���1:

where A
(D)
F is de�ned in Eq.(B4). Finally
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Nq

A
(D)
F

=
�D=2

D
1q + (38)

+
1X
n=1

gn(D;�)�( 1
1�q

)

(1 � q)2n�( 1
1�q

+ 2n)

�
[kT � (1� q)(H� �N)]2n

�
q
:

Here 1q is the q-expectation values of 1 and it is a function of T ; in general 1q 6= 1, unless

q = 1. It is easy to verify that in the limit q ! 1, Eq.(38) is reduced to Eq.(36). Now,

the generalized Fermi level obeys the following expresion,

Nq =
2

�(D=2)

 
m`2

2��h2

!D=2
2
4�D=2

F

D
lim
T!0

1q +
1X
n=1

gn(D; �F )�(
1

1�q
)

�( 1
1�q

+ 2n)
lim
T!0

�
(H� �FN)2n

�
q

3
5 (39)

Now, we can verify that the sum vanishes when q ! 1, because

lim
q!1

�( 1
1�q )

�( 1
1�q

+ 2n)
= lim

q!1
(1 � q)2n = 0

thus, Eq.(39) is reduced to the known result for the Fermi level in Boltzmann-Gibbs

statistics when q! 1.

B. Particles in a Box

We consider a gas of non-interacting particles into a box. The spectrum for a single

particle is given by

�l =
�h2

2m
(
�l

`
)2

where l = 1; 2; 3; ::: and ` is the side of the box.

The chemical potential as function of the temperature is depicted in FIG. 2 for q = 1,

typical values of N1 and D = 1; the thermodynamic limit is easily computed. See the

Fermi-Dirac case in FIG. 2.(a) and the Bose-Einstein case in FIG. 2.(b).

In the Boltzmann-Gibbs statistics the exponential form of the probability distribu-

tion allows for the explicit integration, in evaluating the partition function �1, of the

momentum-dependent part (kinetic energy) of exp(��H). This fact, reduces the work

involved in computing �1 of the evaluation over just the con�guration variables of the

one-body con�guration space. It is clear, this interesting property is lost for q 6= 1.
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The behavior at high temperature of the generalized partition function for q < 1 is

given by

�M�B
q =

1X
N=0

1

2DN

DNX
m=0

(�)DN�m(DN)!

(DN �m)!m!

�(2�q1�q
)[1 + �(1� q)�N ]

1

1�q
+m

2

N !(1� q)m=2�(2�q1�q
+ m

2
)

 
2m`2

��h2�

!m=2

; (40)

for particles into a box in D dimensions.

The computation is very slow when q di�ers from the unity. FIG. 3 depicts the chemical

potential versus temperature for q = 0:8 (see Fermi-Dirac case in FIG. 3(a) and Bose-

Einstein case in FIG. 3(b)). The thermodynamic limit in (a) is found by extrapolating

(to the origin) the trend of the chemical potential with 1=Nq for �xed temperature T .

It was not reliable to do the same in (b) because all generalized quantities converge very

slowly, which made numerically inaccessible the region Nq > 6.

CONCLUSIONS

It is well established the connection between the generalized statistical mechanics in

the grand canonical ensemble with thermodynamics through the relation given by Eq.(9).

Following along the lines of the Hilhorst integral transformations for the grand parti-

tion function �q, we have obtained the analogous expressions for the appropriate averages

of the particle number and the energy in the grand-canonical ensemble. In the same style,

the generalized distribution functions are de�ned as well.

It is clear that the statistical and thermodynamic quantities transform to their stan-

dard forms in the q! 1 limit, as it has been shown in some cases.
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APPENDIX A

By taking z as variable of integration, F (z; �) = e�z�1(��(1 � q)z; �) and � =

1=(1 � q); the integral in Eq.(18) can be written as

I
C
dz(�z)���1F (z; �) =

�Z
ab
+
Z
bcd

+
Z
de

�
dz(�z)���1F (z; �); (A1)

where ab, bcd and de are lines of C shown in FIG. 1. If we use z = � for the integral along

the line ab, z = �ei� along the line bcd and z = �e2i� along the line de, we have

I
C
dz(�z)���1F (z; �) = �ei��

Z �

1

d�����1e���1(��(1� q)�; �) (A2)

����ei�
Z 2�

0
d(ei�)(ei�)���1e��e

i�

�1(��(1� q)�ei�; �)

�e�i��
Z
1

�
d�����1e���1(��(1� q)�; �):

Now, putting q > 1 and �! 0 we can see that the second integral vanishes. Thus,

I
C
dz(�z)���1F (z; �) = �2i sin(

�

q � 1
)
Z
1

0
d��

1

q�1
�1e���1(�(q� 1)�; �) (A3)

On the other hand, we have the following property of the � function

�(p)�(1 � p) =
�

sin �p
: (A4)

Using the Eq.(A3) and Eq.(A4) into Eq.(18), we obtain

�q(�; �) =
1

�( 1
q�1)

Z
1

0
d��

1

q�1
�1e���1(�(q � 1)�; �): (A5)

Summarizing, we have recovered Eq.(17) from Eq.(18).

APPENDIX B

The average particle number N1 for a fermion system in the large enough volume

approach is given by
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N1 =

 
`

2�

!D Z
dD~k

1

exp(�(�~k � �)) + 1
: (B1)

Thus

N1 =

 
`

2�

!D
2�D=2

�(D=2)

1

2

�
2m

�h2

�D=2 Z 1
0

d�k
�
D=2�1
k

exp(�(�k � �)) + 1
: (B2)

Let us transform this integral with the following change of variable �k � � = kTz,

N1 =

 
`

2�

!D
2�D=2

�(D=2)

�
2m

�h2

�D=2 kT

2

Z
1

��=kT
dz

(�+ kTz)D=2�1

ez + 1
: (B3)

De�ning

A
(D)
F =

 
`

2�

!D
2�D=2

�(D=2)

�
2m

�h2

�D=2

=
2

�(D=2)

 
m`2

2��h2

!D=2

; (B4)

the integral can be written as:

N1

kTA
(D)
F =2

=
Z �=kT

0
dz

(� � kTz)D=2�1

e�z + 1
+
Z
1

0
dz

(� + kTz)D=2�1

ez + 1
: (B5)

Using the simple transformation

1

e�z + 1
= 1�

1

ez + 1
(B6)

in the �rst integral, then

N1

kTA
(D)
F =2

=
Z �=kT

0
dz(� � kTz)D=2�1 (B7)

�
Z �=kT

0
dz

(� � kTz)D=2�1

ez + 1
+
Z
1

0
dz

(� + kTz)D=2�1

ez + 1
:

The second integral converges very fast; therefore, if T vanishes the upper limit can be

replaced by 1, so

N1

kTA
(D)
F =2

=
�D=2

(D=2)kT
+
Z
1

0
dz

(�+ kTz)D=2�1 � (�� kTz)D=2�1

ez + 1
: (B8)

Finally

N1 =
2

�(D=2)

 
m`2

2��h2

!D=2 "
�D=2

D
+

1X
n=1

gn(�;D)(kBT )
2n

#
; (B9)
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where

gn(�;D) = (D=2 � 1)(D=2 � 2) � � � (D=2 � 2n + 1)(1� 21�2n)�D=2�2n�(2n); (B10)

and �(2n) is the Riemann function:

�(�) =
1X

m=1

1

m�
:

In the same approach, the average energy U1 is given by

U1 =

 
`

2�

!D Z
dD~k

�~k
exp(�(�~k � �)) + 1

; (B11)

then, we obtain

U1 =
2

�(D=2)

 
m`2

2��h2

!D=2 "
�D=2+1

D + 2
+

1X
n=1

hn(�;D)(kBT )
2n

#
; (B12)

where

hn(�;D) = (D=2)(D=2 � 1) � � � (D=2 � 2n + 2)(1 � 21�2n)�D=2�2n+1�(2n): (B13)
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FIGURES

FIG. 1.

Contour C in the complex plane.

FIG. 2.

Chemical potential for (a) Fermi-Dirac and (b) Bose-Einstein cases for D = 1 and

typical values of N1 within Boltzmann-Gibbs statistics (q = 1). The thermodynamic

limit is shown in each case.

FIG. 3.

Chemical potential for the (a) Fermi-Dirac, (b) Bose-Einstein cases for D = 1, typical

values of Nq and q = 0:8 within generalized statistics. The thermodynamic limit is

extrapolated in (a) by standard method.
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