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ABSTRACT

-

In this paper we studied a neutral massive scalar
field in a bi-dimensional Milne space time. The quantization
is made on hyperboles which are Lorentz invariant surfaces.
The expansion for the field operator was carried on using a
complete set of orthonormal modes which have definite positive
and negative dilatation frequence.

We have calculated the advanced and retarded Gréen
function and proved that the Feynman propagator diverges in

the usual sense.

Key-words: Quantum-field theory; Curvilinear coordinates;

Green functions.
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1 - INTRODUCTION

Interesting possibilities were revealed when attempts
were made to quantize the gravitational field. Although up to
now these attempts have all failed, there have been other
important results in quantum field theory in curved space
and in curvelinear coordinate systems.

According to Fulling(l)

a uniformly accelerating
detector in a Minkovski space time observers é thermal
spectrum, while an inertial observer measure the field in its
vacuum state.

We will not go over the detector problem since this
subject has been widelly discussed in the 1iterature(2). We
will deal only with the formal part of the quantization of a
neutral scalar field.

This will be done in a two dimensional flat space
time using a particular curvilienar coordinate system.

In 1975 Kalnins(a) proved that in a two dimensional
flat space time there are only ten coordinate systems in
which the Klein-Gordon equation has separable variables.

In one of these systems, the Lorentz invariant
surfaces (x2 = cte} arise naturally.

(4)

Fubini, Hansen and Jackiw quantized a massless

neutral scalar field using this type of surface.

{5)

di Sessa "', Sommerfield(s) and Rothe(T) et al. did
the same with a massive neutral scalar field, but only di Sena
delas with the problem of the associated Green function.

In this paper we use the same coordinate system and

quantization as Sommerfield (massive neutral scalar field).The
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Pauli Jordan and the advanced and retarded Green functions will
be calculated and the divergence of the Feynman propagator will
be demonstrated.

In section 2 after a brief exposition of the two di-
mensional Milne and Rindler space times we display the Klein
Gordon equation in the Milne system. Two complete set of modes
solution‘hre presented.

In section 3 two criteria of choosing positive and
negative frequence mode are discussed and the Sommerfield
criterium is adopted.

In section 4 we calculate the Pauli Jordan functien,
the advanced and retarded Green function and we demonstrate
that the Feynman propagator diverge.

The convergence and evaluation of certain integrals
in the complex plane is discussed in Appendix A.

The additional theorem for the cylinder functions

will be generalized in Aﬁpendix B.

In this paper we use the convention ¥ = ¢ = kg = 1.

2 - MASSIVE SCALAR FIELD IN MILNE'S UNIVERSE

Let us consider a two-dimensional Minkovski space

time with line element

as® = @ay%? - (ayhH? . (2.1)

We shall use the feollowing coordinate transformation
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y® = n sinh £ 0 <n<w

1 -0 < [ < (2.2)
y = n cosh £ .,

In this case the line element (2.1) becomes

2 2

as? = n%at? - an . (2.3)
This transformation covers only‘the region yl > |y0|;
The (£,n) coordinate system is called Rindler's coordinates.
It can be shown that this system is one naturally suited to an
observer with constant proper acceleration(3,.
As this system does not cover the whole Minkovski
space time, we shall selected the following additional co-

ordinate transformation (see Fig. 1)

1 Region IXI (Rindler) (2.4a)

yo -n sinh §
-n cosh £

e
]

1 Region F (Milne) (2.4b)

yo n cosh §
n sinh §

g
it

1 Region P (Milne) (2.4¢c)

{ yo = =5 cosh £
y' = -n sinh £ .
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The four coordinate transformations (2.2), (2.4a), (2.4b) and
(2.4c) together cover all Minkovski space time.
The coordinate systems that cover the region inside
" the light cone are a two-dimensional Milne Universe.

Using the transformation (2.4b) the line element

(2.1) becomes

ds2

an? - nag? . (2.5)

Observers who perceive the universe expanding from
yo = 0 have world lines £ = cte. The surfaces n = cte are

hyperboles where we postulate the commutation relation between

the fields.

It is useful to define new variables Y, T 1in the

region (F)

g = ay . a>10 (2.63)
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® <Y, T <™ {2.6Db)

In order to quantize a neutral massive scalar field
it is necessary to solve the Klein Gordon equation in the Milne
Universe.

It becomes

The time dependent part of the Klein Gordon equation is a

Bessel equation

%)

2
d 1 4 2 1)
=5 +togntm + X) (mn) = 0 . (2.8)
[an n dn ni A
The set of solutions ¢, « eiJLE -iAg

X, (mn) and ¢} = e X% (mn)

is complete and the ¢ field can be expanded in the form
¢(n,E) = J dk[a(l)¢x + a+(1)¢;] . {2.9)
— 00

We shall take the scalar product

4

(¢1;¢2) = =i J /:EE az¥ ¢1(x)§:¢;(x) (2.;0)
L
where 4iV = nudE, with n"l a future directed unit vector ortho-
gonal to the space-like hypersurface I , and dr¥ is the
volume element in I.
The Klein Gordon equation (2.7) posesses two distinct
complete sets of orthornormal mode solutions (orthonormal under

the scalar product (2.10)).
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{u, ,u}} and {v,,v}} namely

u, (n,§) = - -2-‘1/—5 e"™/2 1A% §(2) () (2.11a)

af(n,E) = -2'1/—_2_ e™/2 o7iA% g 1) () (2.11b)
and ’

vy (n,&) = - % (sir1h1t|J\|)-1/2 eirt J;illl(mn)(z.lza)

vi(n,&) =3 (sinnm|r[)7Y/2 TiNE Jipajmn)  (2.12b)

-

H{i) and Hii) are the Bessel functions of the third kind oi

Hankel function of imaginary order. Jia is the Bessel funcﬁion
of first kind with imaginary order(g).

Positive and negative frequence modes must be
distinguished in the quantization in order to identify a(X)
and a*(l) as annihilation an creation operators of quanta of
the field. If the space time has a stationary geometry there
exist a time-like Killing vector K. Thils vector generates a

one parameter Lie group of isometries, and the orthonormal

modes satisfy

I.K u = =jwu . (2.13)

where LK is the Lie derivative with respecto to K. In this
case there is a natural way of defining QQSitive and negative

frequency modes.
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The vacuum associated with these modes is called
trivial or Killing vacuum(lo). However the line element
(2.5) is time (n) dependent, and there is no simple way of
defining positive and negative frequency modes. Different
solutions for this problem were presented by Sommerfield and

di Sessa. For each way of defining positive and negative modes

we have different quantizations.

3 - THE DI SESSA AND SOMMERFIELD QUANTIZATION

(a) di Sessa Criterion

This authors claims that the concept of positive fre-
quency requires for its definition a complexification of the
real Lorentzian manifold. In this situation the positive
frequency modes are those which vanishwhen t + -i», It is easy

to see that

lim Hﬁ) (mn) = 0 (3.1)

n+—iw

Then (2.1la} and (2.11b) are positive and negative
frequency modes respectively.

Ji, and J_,, do not vanish when n + -i», so (2.12a)
and (2.12b) do not have definite positive or negative frequency
in the di Sessa criterion.

The vacuum associated with (2.l1la) and (2.11b) will

be represented by |0>.
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(b} Sommerfield Criterion

The operator
1 (7 3 2 9 2 2at_2,2
D = .f J-w dy [(-a—;t- o) + ('a‘f %) + e m-¢ ] (3.2)

generates translation in 1, and is called dilatation genera-

tor. It satisfies the Heisenberg equation

I}(T,Y),IEI =iz 0 . (3.3)

Sommerfield use this fact and the additional fact

that in the light cone (n + ¢ or T + -®») we have

iait

lim J., (mn) « —_ €
~ qep P 2221 (1442)
..or nN+=0

(3.4)

to choose (2.12a) and (2.12b). as positive and negative
dilatation frequency modes respectiﬁely.

Using (2.9), (2.12a), (2.12b), (3.2) and (3.4) we
obtain

% J dl|l|[a(l)a+(l) + a*(l)a (l)] .

(3.5)

lim D(1) <=

T =0

So the Fock space can be constructed and the associated
vacuum will be represented by |0>. The problem is to find the
Green functions associated with the (2.12a), (2.12b) modes.

The Feynman propagator of the modes (2.11a) and

(2.11b) has already been calculated(s’.

It will be shown that the Feynman propagator associated
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with the modes (2.12a) and (2.12b) diverges. The others pro-

pagators, the retarded and advanced Green functions Gp and

GA are defined respectively by

g (x,x') = -0(x%-x%")G(x,x") (3.6)

- Gy (x,x") = 0(x® —x¥)G(x,x") (3.7)

where G(x,x') is known as the Pauli Jordan funétion which is

defined as the expected value of the commutator of the field

in the vacuum state.

iG(x,x") = <0} 10 (x),®(x")]|0> (3.8)

The Feynman propagator Gp is defined as the time

ordered product of fields

iGF(x,x') = <O|To(x)®(x")|O> =
= O(xo—xo')G*(x,x') + G(xol-xO)G-(x,x')
(3.9)
where
6 1 x% > 0
O({x") = 0 (3.10)
0 X" <90

and G+(x,x') and G (x,x') are the Wightman functions.
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4 - THE GREEN FUNCTION OF THE FIELDS

The Pauli Jordan function of the fields will be cal-
culated in this section using the complete set (2.12a), (2.12b)
and the result is the same as that obtained using the set
(2.11a), (2.11b) (di Sessa modes).

“The coincidence of the Pauli Jordan function when
calculated using the modes (2.12a) and (2.12b) or (2.1la) and
(2.11b) can also be demonstrated using the fact that both modes
are related by an Bogoliubov transformation (auv # 0, Buv # Q).
It seems useful to calculate directly the Pauli Jordan function,
using the modes (2.12a) and (2.12b). If the Feynman's propa-
gator divergence can be eliminated, the calculi shall be done
using those modes.

The Pauli Jordan function can be split into its

positive and negative frequence parts as

iG(x,x') = G (x,x') -~ G (x,x") (4.1)
where

ctix,x') = r; ar v (vt (4.2a)
and

G (x,x') = j a vox) (v x' " (4.2Db)

Substituting (2.12a), (2.12b) in (4.2a) and (4.2b)

we have
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11~
+ ey py 2 X [T @ _ir(E-E") - ,
G (ﬂoE-T’l IE ) 4 J-m senhTr|l| e J_illl(mn)ailhl(mn )
(4.3a)
- oo L [T _ar  _ix(g-g") \
{4.3b)

The Feynmen propagator (3.9) diverge because the integrals
(4.3a) and (4.3b) calculated individually are divergent since
+ - . 1 '
when A = 0 ,0 the integrand behaves like TIAT Jo(mn)Jo(mn )
(zero order) + r, |r| < ® near the origin (A = 0), but this
divergence can be eliminated if we calculate G+—G- toghether.

If is straightforward to conclude

ctn,Esnt,E') - 6T (N, EMEY) =

=1 ar ir(E-E'), .
] —® sinhmi e J-i'l (mn)"J'il (mn') +
_1 (T _ax  _ix(E-gE") ,
4 | __ sinh® e Ji(mn)Jd_., ') . (4.4)
Defining

1Az
o 142
£,(2,¢2,,235) = sThhTx © J_jaimz,)3,, (mz,)  (4.5)

The expression (4.4) can be written as

1 (4.6)

+ . T = -
G ~= G ; 12

where
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—12-—
1, =3 J.@ arf, (E-E*,n,n*) (4.7a)
I, = % J_m dka(E-E',nf,n) . (4.7b)

When mn and mn' are not roots of J,, |f,| tends to infinity
in the order A~L, when A + 0. However, the integrals are
finite if we adopt the principal value in the origin (A = 0).
The function fA is analytic with respect to ~ A in the whole
complex plane except in the points XA =ni (n € 2Z). We have
and infinite number of first order poles, and the residue of
£, in these points is

1 "hZp o '
Res(f,;ni) = T e Jn(m2z5) 3, (mz4) e (4.8)

Two distinct contour ¢ and C' will be used to

calculate I, and I, (see Fig. 2).

ImA

Re)




C., and C

2

4

ImA
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FIG.2

Re )

cross the imaginary axis at the middle point of the

adjacent poles i.e.

then

and

N
Q
o
A

R=g+

lim j dlfk(zl,zz,z3) = 0
C,
qu + % - 0O

lim J dkfl(zl,zz,z3) = 0
s

1

2

- o

R=q +

Z, Z

if e12—3
2

z2, Z

if e12—3
2

In the Appendix A we demonstrate (4.%a) and (4.9b).

By the Cauchy theorem
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-14=
I fl(zi'ZZ'ZB)dA = 27i g Res (f, ;ni) (4.10)
C n=1
%1 %3
If e . > 1, and we take the limit of the equation
2

(4.10) when € + 0, g - * we get

o
= 2ni ] Res(fy;ni) . (4.11)

n=1

Therefore using (4.8)

[- -]
J_w dlfk(zl,zz,ZB) =1 Jo(mzz)Jo(mzs) +

®  -nz, Z, 24
+2i ] e J_ (mz,)J_(mz,) if e~ =>1
=1 2 (4.12)
%1 %3
Similarly, when e 7 < 1 starting from
2
L] -q | -
JC' £,(2),2,,25)d) = -27i £-1 Res (£, ;ni) (4.13)
we get taking the limit
©
J-m fl(zl,zz,z3)dk + Wi Res(fA;O)
= -21i ] Res(fyini) . (4.14)

n=1
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Therefore using (4.8)

o

J-wfl(zl,zz,z3)dk = =i Jolmzz)Jo(mz3) +

T® -nz zZ, 2
- 2i 1 ; 1°%3
2i n£-1 e Jn(mzz)Jn(mz3) if e z, < 1.

(4.15)

Using {4.7a) and (4.7b) we have

J . (mn)J (mn') + 2 J
[:0 0 n=1

o e

e-n(E-E ' )Jn(mn’Jn (mn°? )]

if el878") {-}':' 1 (4.16a)

- %Eo(mnwo(mn') + 2 n£_1 e N{E-E") Jn(mn)an(mn')]'

» if ef&°8") %'—< 1 (4.16b)

r _
'%[éo(mn)Jo(mn') +2 } e_n(g-E')Jn(mn)J

n=1
1f e lE-EY)

(mn* )]

>1 (4.17a)

o

:-I:!

- %[§o(mn)Jo(mn') + 2 nz-l e'n(g-E')Jn(mn)Jn(mn'i}

if e(5-8") 1r <1 (4.17b)
o 0.2 1 1v2
The space time interval o = (y -y ) =-(y"=-y" ) in

the coordinates (n,£) can be written as

o = n%4n'? - 2nn'cosh(E-£') =
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~16-
. -nnt e (") [ e(c-a'),%;._ 1][3(5-5') o - 1] .

(4.18)

If 0 < 0 ({which correspond to space-like separated events)

there are two possibilities

o (E-E") %; >1 and el&-&") > (4.19%a)
or
L {E-E") _'r_|1_< 1 anga el6-8") e <. (4.19Db)

In the cases (4.19a) and (4.19b) I, = I, 80
G(xrx') = 0.
If o > 0 (which correspond to time-like separated

events) there are again two possibilities

e(g-sl.) %'_ > 1 and E(E-a" Dﬁ_r < 1 (4.203)
‘or
e(a—a'):%1;< 1 ana el8-8") > (4.20Db)

It should be noted that in (4.20a) n' > n and in
(4.20b) n > n'.

In the case (4.20a) (¢ > 0; n* > n)
-1, =% 1 %) 5 @ ) . (4.21a)

In the case (4.20b) (o > 0, n > n')
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-1, =-3% 1 &) 5 @ma ey . 4.21b)

n==mw

Thus using (4.6), (4.2la) and (4.21b)

¢t¢” = - -;- E%(o)e(n-n') nz_w e“‘g"g')Jn(mn)Jn(mn')]
- . (4.22)
11 no>0
where e(n) = ¢
-1 n<2o e

The addition theorem of the Bessel functions states that

D0

Joms) = | J (mn)J (mn') e

=00

in® (4.23)

where

8 = (nzfn'z - 2n7n' c¢:>se)]'/2

Taking the analitic extension of © = i{E-E') we get,

using (4.18)

-}

) = 3 Jn(mn)Jn(mn')e“(E'E') (4.24)

==

1/2
Jo(mo

{see Appendix B for a more detailed demonstration).

Finally substituting (4.24) in (4.22}) and using
(4.1) we get

ic = 6¢*-¢" = -1 [%(o;e(q—n')ao(mzo)lfz:] . (4.25)
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APPENDIX A

It is known that

(_1)k (2/2)2k+v |
k! T (v+k+1) *

«J (2) = ¥
v k=0

Defining

(a)0= 1

we get

_(z/2)” 5§ (-z%ra)k

J. {z) = _—t
v T {v+l) k=0 kl(v+1)k

(A.2)

The same formula can also be expressed using the hipergeometric

functions(ll’

_ (z/2)" . 1
Jv(z) = Tvl) OFI {v+l; 72

Suposing (and that is most important) 3 n, > 0 such that

Vn € Z |ven| 2 n, .

Using the definition {A.2)

v+, | 2 m* v ke m (a.3)

Now using (A.2) and (A.3)
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[T (v+1) | k=0 k"‘“*l’k]

- 22 x
Ltz/2¥] 3 171

IT(v+1)| k=0 kin

k -
0

This inequality can be simplified

|J (z) s lizi!l_l exp (___)

| T (v+1) |

if [vén| 2 n; ¥ n e z.

Let us suppose

vl =q+3 g€ N
then

|v+k| 2 3 x €2

and using (A.4) we get

Y 2
| (z/2) ex z

|g.(2)]| s p (5
v [T (v41) | 2

if
v =q+-1- for some q € N
2

In the article (4.5) is

1 ilzl
£3121025023) = oy © J_ja(m2zy) 35, (mz5)

(A.4)

{A.5)
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In the contour Cz.and C4

|*iA]| = q + q €N (A.6)

N -

Using (A.5) and (A.6), we get

2
| g (z3/2,) 1" B (z2+22)
|£3 (230250230 S ooy @ ||r(11+1)r(-11+1) e

in C2 and C4.
Because

T (iA+1)T (~iA+1) = 31%{

the inequality becomes.

m 2, 2
1 23,10 1 2 (%2*%3)

1
1£) (210250230 S | (e Z,

in C2 and C4.

The expression

2
m 2, .2
=3 (2+z3)

1
- e

do not change in the contour C2 and C4 so we call it M, and

we get

%1 Z3,4r| M

{(A.7)
Z, [ 2]

IfA(21’22'23)| s (e

in ¢, and C,.

2 4
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In our problem z, = £E=-£' 1is a real number and Zys
Z4 {n or n') are positive .

Than there exist K € IR such that

z. 2
2
2
zy 23
Let studie the case e ~ >1 (K > 0}.

Z2
Using (A.7) and (A.8)

CE (B ,24,2.)dA) S I £, (z,2,,2) | |AA] S J Mleilkllgll
o, AlE1rE2e23 c. 17ATF1r%2073 c Ial
2 2 2

We can chose the parametrization

C. t A(Q) = (g + %)eie

2 0 SO Snn

The inequality above becomes

: l, .
_ m T =k{g + %)sin®
I I fldk| S M J leit*X|g0 = M J e 2 a0 =
C2 0 0
n/2 ~{(q + %]sine
= 2M J e de (A.9)
0

If 0 S0 S 7/2 then 20/7 S sind .
We are studing the case K > 0, So

1 ©
-K(q + 3) sen® -K{q + %J %F

e Se 0 s 51
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and

12 -2q + Do

|I fde| S 2M J e ae =
C 0
2
1
-K(g + 3)
e o) s M a0
K(q + f) K{g + 7) '
Thus using (A.10)
zZ, 2
lim|J fAdJ\|=0 if el 32>1
C2 2 '
q+00
geN
21 %3
For the case e 7= < 1 (K < 0) the contour C4 is
2
the adequated one.
Similar calculations give us
% 23
C 2

4

g+

gEN
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APPENDIX B

We will define

“glz) = g, En(n2+n'_2.-nn'(z +-§-))”2]

To[mtntzy tn + ﬂz-'-n”"‘f]' . (B.1)

Ja is analitic in the whole complex plane and its
expantion in power serie centered at zero contains only even
powers. Then the square rot above can be naturally eliminated

and g(z) is analitic in whole complex plane except the origin.

We will define "another" function

-

h(z) = [ J_(mn)J (mn')z" (B.2)

= D

The serie {(B.2) is convergent if 2z # 0. Than h(z) is analitic

in the whole complex plane except at z = 0.

I1f we take |z| =1,
z = t-z:"O © eRr
© ino
h(z) = | J (mn)Jd_(mn')e =
N==x

= Jo(mn)Jo(mn') + 2 nzl J, (M) J_(mn')cos nd .

Using the addition theorem for cilinder function we get
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h(z)

JD En(n2+n'2-2nn'cose)1/2]
Now

g(z) = gte*% = JoEn(n2+n'2-2nn'cose)1/2] -

we obtain-g(z) = h(z) if |z| = 1.

g(z)-h(z) is analitic in € - {0} and vanish in |z| = 1, than
it must be equal zero in € - {0} .

This occurs because the zeros of any analityc function are
isclated inside its domain (open and conected) or the function

vanish in all the domain. What we obtained is that

JOEn(nz+n'2-nn' {(z + %})1/2] =

o0

= 7 I, @mn)J_(mn')z" z # 0 . (B.3)

n=-o

If

io
e

than

z(0) # 0 voer and using (B.3) we get

Jo[§(n2+n'2-2nn'cose)1/2:] - nz_w Jn(mn)Jn(mn')eine
g erc
If @ = i(§-£') we find

Jo[m(c)I/Z] = 7 'Jn(nn)Jn(mn')en(E-E')

N==%

where o = (n%4n'2-2nn'cosh(E-E')) .
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