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We propose a topological Chern-Simons term in D = 5 dimensions coupled to Einstein Hilbert
theory. Hartree approximation for topological Lagrangian and the Chern-Simons term in D = 3 is
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Introduction

It's known that the theory of Quantum Gravity has
numerous problems. In particular the perturbative ap-
proach contains the insoluble conict between unitar-
ity and renormalizability in D = 4 dimensions. The
Einstein Hilbert theory, for example, is unitary but is
not renormalizable. Anyway the theory can be at least
seen as an e�ective theory. Many models for perturba-
tive quantum gravity have been constructed in D = 4
including theories with higher derivatives[4]. Another
interesting development occured with the discovery of
topological Chern-Simons term. That term despite hav-
ing some important geometric properties does't have
any physics associated with it. The Chern-Simons term
inD = 3 dimensions together with Einstein-Hilbert La-
grangian provides a rich array of physics. All problems
of Quantum Gravity in D = 4 disappear in D = 3. The
so called topological theory for gravitation or still the
Einstein-Hilbert-Chern-Simons theory is unitary and
�nite[2, 4].

It can be shown that the dynamics is given by a mas-
sive pole and the massless pole does't have propagation
in D = 3 [4].

Presently we know that in general it is possible to
have a topological term like Chern-Simons in odd di-
mensions [6], D = 3; 5; 7 � � � .

The question, however is what we might do to

make a perturbative attack on Einstein-Chern-Simons
in D = 3, but may we do the same approach for D = 5
dimensions?

Is it possible to carry out a perturbative approach
in 5-dimensions as was the case for D = 3?

To answer this question a convenient \Chern-
Simons" in D = 5 is needed and then to establish that
a perturbative approach on a background is possible.

It is possible [1] to �nd Chern-Simons term inD = 5
but there is no indication of a perturbative approach to
the problem. There is nothing to describe the free the-
ory for gravitation inD = 5 as in the case ofD = 3. It is
speculated that \Chern-Simons" in D = 5 is self inter-
acting and so would be impossible to write in analogy to
the Chern-Simons term in D = 3, where is possible to
have a part that describes the free theory and another
part that describes the gravitational interaction.

For calculation of the propagator in perturbation
theory the choice of background is shown to be impor-
tant.

Some possible topological terms in D = 5 go to zero
as the perturbation on a background is introduced. For
example in a at space time background, ��� , the bilin-
ear term in the topological Lagrangian, is not possible.

In D = 3 we can construct a topological free theory
for gravitation on at space time if we suppose that the
�eld variable h��(x) tranforms like a tensor.
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We wish to do a similar treatment for an Einstein-
Hilbert-\Chern-Simons" theory in D = 5.

We propose a topological Lagrangian in D = 5 sim-
ilar to the one given in [4]. Since the analysis in D = 3
are made with only the �rst part of the topological La-
grangian with the primary interest being in a free the-
ory; only a part of the topological Lagrangian in D = 5
is written here and the coupled Einstein-Hilbert La-
grangian is considered.

The Chern-Simons term in D = 3 has a global in-
variance by di�eomorphism, but the local invariance is
guaranteed because h�� transforms like a tensor.

The global covariance by di�eomorphism for
\Chern-Simons" in D = 5 is not known. The anal-
ogy from �rst part of Chern-Simons in D = 3 is used,
but it is assumed that the second term exists and that
the local covariance is assumed, since as before h�� is

a tensor.
Assume a topological term in D = 5 and a Hartree

approximation for our topological term and Chern-
Simons in D = 3 is considered.

Finally, the calculation of the propagator and an
analysis of unitarity in tree level is carried out. The
theory is seen as an e�ective theory. Thus there is no
problem with renormalizability.

The Lagrangian for Einstein-Chern-Simons theory
in D = 5 dimensions is given as

L = L
E�H

+ Lg�f + Lc�s (1)

where L
E�H

; Lg�f and Lc�s are respectively the Einstein
Hilbert Lagrangian, gauge �xing Lagrangian and the
topological Chern-Simons term in D = 5 dimensions.
These are
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In eq. (2) k is the gravitational constant. R is the
ususal scalar curvature and

p�g is the determinant of
the metric.

In equation (3) F� represents the De Donder gauge
�xing term given by

F� [h��] = @�

�
h�� �

1

2
���h

�
�

�
(5)

and � is the Feymann parameter. In eq. (4) "����

and ���� are Levi-Civita and Christo�el symbols respec-
tively.

The gauge �xing invariance is expressed as

�h��(x) = @���(x) + @���(x) (6)

The pertubation theory on at space time is consid-
ered such that

g��(x) = ��� + kh��(x) (7)

where h��(x) will be the gravitation �eld variable.
Then eq. (1) has a bilinear form like h�h, and � is an

operator associated with the spin projection operators
in rank-2 tensor space.

The Chern-Simons Lagrangian in D = 5 dimension
is not of the bilinear form in h��, but a square bilinear
like hh��hh. The Lagrangian can be written as

L = h�����;k�h
k� + hw�hk��w�k�; ���h

 �h�� : (8)

With this form it is di�cult to �nd the propagator.
However use of the Hartree approximation [5] between

Chern-Simons in D = 5 dimensions and Chern-Simons
in D = 3 dimensions is possible.

Chern-Simons in D = 3 is given by
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If Hartree approximation is assumed it can be shown
that

Lc:h(D = 5) ' �2Lc:h(D = 3)

where the left side means the Chern-Simons in D = 5,
the right side is the Chern-Simons inD = 3 dimensions.

The parameter �2 is a real parameter and it will
describe the physics in the model since some conditions
are necessary to achieve unitarity of the theory in the
tree level. Essentially what we are doing is to con-
sider the square bilinear hh��hh as an approximation
described by a real parameter times h�h, where h�h is
the linearized Chern-Simons in D = 3.

Then in the Hartree approximation

L =
1

2
h��

�
���;k� � ����;k�

�
hk� (10)

where ���;k� is the contribution from the Einstein-
Hilbert Lagrangian including the gauge �xing and
����;k� is the operator generated by the topological
Chern-Simons term in D = 3.

The operators � and �� are given respectively by
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Here
(2)
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(0)
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(0)

P sw are spin pro-
jection operators.

The two new operators are S1 and S2 and are given
by.
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We are looking for the propagator of Einstein Hilbert-
Chern-Simons in D = 5 dimensions, then we assume a

linear combination of the same spin projection opera-
tors

c
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(1)

Pm + Z
(0)
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d

Now we can calculate the propagator for the �eld
h��(x) in D = 5 by extending the algebra of Barnes
and Rivers [4] and the inverse operator given by eq.
(15).

When we take the complete operator from eq. (10)
and the inverse operator in eq. (15), the multiplica-
tion between them give us the identity in rank-2 tensor

space, as

� ��
�� (���k�)
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A system of equation are found from eq. (16) and
these are

c
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The coe�cients (X;Y; Z;W; T;R;M;N ) in the space of
coordinates are written as

X =
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�� �64�2k4�4
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;
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�
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The propagator of Einstein-Hilbert-\Chern-Simons"
theory in D = 5 can be written as

hhk�(x); h��(y)i = i��1��;k��
5(x� y) (19)

We can de�ne the transition amplitude as

A = ����(x)hh��(x); hk�(y)i�k�(y) (20)

The coupling between propagator and external cur-
rents like energy momentum tensor is compatible with
the gauge symmetry eq. (6).

Several coe�cients in (18) vanish due to the
transversality relation [4]. Only three coe�cients sur-
vive and are referred as X, Z and N .

These coe�cients in momentum space are
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In the spin two sector we can see two poles given by

k
2 = 0 and

k
2 =

� �

8k2�2

�2
: (22)

In the zero spin sector (Z coe�cient) and in the topo-
logical sector (N -coe�cient we �nd the same poles.

Observe that when we put � ! 1 we have the Z
and N coe�cients vanishing and the X coe�cient is
written as

X = � 2

k
2 : (23)

This means that the dominant term of the propagator
in D = 5 when the contribution from Chern-Simons
term is null is compatible with the result given by [3, 4].

We have pure Einstein theory in D = 5 dimensions

with a propagator hh; hi � 1

k
2
similar to the Einstein

case in D = 4.
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To verify the unitarity of the theory at tree level eq.
(19) is considered in momentum space. The imaginary
part of the residues of the amplitude at each pole lead
to the necessary unitarity condition.

In momentum space eq. (19) is given by

A = ����(~k)hh��(�~k); hk�( ~k)i�k�(~k) (24)

The theory will be free of ghost's if

ImResA
���
k
2

=0
> 0 (25)

and

ImResA
���
k
2

=( �

8k2�2
)2

> 0 : (26)

The equations are veri�ed if j�k�j2 < 0, and � or �2 < 0;

or if �
2

�
< 0.

The equation (25) will be true if j�k�j2 < 0 and

� > 0; or �2 > 0; or �2

�
> 0.

On taking �2 = [��; 0)U (0;+�], we have two pos-
sibilities for propagation of gravitons in the Einstein-
\Chern-Simons" theory in D = 5. Both poles are dy-
namical.

The situation here is di�erent from the pure Ein-
stein theory in D = 4 and Einstein-Chern-Simons in
D = 3 dimensions. In pure Einstein theory,D = 4 there
is only one pole or one massless graviton. The pole
k
2 = 0 has propagation in tree level and the Einstein-

Hilbert Lagrangian is free of ghost's. For the Einstein-
Chern-Simons theory in D = 3 we have two poles [3, 4]

given by k
2 = 0 and k

2 � �

8k2

�2
, but the dynamics is

given by the massive pole. There is no propagation
associated with the massless pole.

By taking �2 = 1, there is partial information from
Einstein-Chern-Simons in D = 3, but it should be em-
phasized that the propagators in D = 3 and D = 5 are
di�erent.

Finally, if we consider �2 = ��, in according with
the range given above, the pole will be located at

k
2 =

�
1

8k2

�2
and the dynamic propagation is guaran-

teed by unitarity in the tree level. The �nal result is
that the propagation of Einstein-\Chern-Simons" the-
ory in D = 5 dimensions is completely determined by
the massless graviton, because the gravitational inter-
action is a large scalar force. The massive pole has a
short range for propagating information.

Conclusions:

We have constructed an e�ective model for Einstein-
Chern-Simons theory in D = 5 dimensions.

This model has two dynamical poles and the uni-
tarity is analyzed in the tree level. The Lagrangian is
free of ghost's and tachyons.

As an objective to treat the problem in perturbative
approach, Hartree approximation was used and a con-
venient topological term like Chern-Simons in D = 3
dimensions was constructed unlike the case of pure
Einstein in D = 4 and the Einstein-Chern-Simons in
D = 3, here the propagation is associated with both
poles. There is no problem with the renormalizability
since the theory is an e�ective model for gravity.
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