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Abstract

We extend the Kasteleyn-Fortuin formalism to the discrete N -vector ferromagnet. We

show that the free energy and the correlation functions of this model are related, when the

number of states tends to 1, to the mean number of clusters and to the pair connected-

ness of a polychromatic bond percolation type problem, which combines frustration and

connectivity features.
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1 Introduction

The establishment of connections between lattice statistical models and percolation

type problems(1�15) has proved to be very fruitful. On the one hand, it has enhanced the

understanding of critical phenomena in terms of geometrical concepts. On the other hand

it allows the various techniques developed in the theory of thermal critical phenomena to

be used in the study of percolation problems. Moreover, these geometric formulations of

thermal statistical models provide the basis of construction of cluster dynamics which can

drastically reduce the critical slowing down in Monte Carlo simulations of these models

(see(16);(17) and references therein). For example, in the case of the Potts ferromagnet(18),

Swendsen and Wang(16) have introduced such a cluster dynamics based on the Kasteleyn

and Fortuin (KF)(1) formalism. In this dynamics, all the spins belonging to the same

cluster are ipped in a single step, contrarily to single spin dynamics where the spins are

ipped one at a time. The above reduction of the relaxation time stems from the fact that

all the spins of such clusters are correlated and can, thus, be treated as single spins, with

no need of waiting for single spin uctuations to propagate over large correlated regions.

The mentioned percolation formulations of spin models have been developed, for ex-

ample, for the pure Potts model(1;2;5)(8�10), dilute Potts model(6;7), Potts model with mul-

tisite interactions(3;4), chiral Potts model types(11), q-state frustrated Potts model(12;13),

mixed ow models and mixed potential-di�erence models(14), XY (or more generallyO(n))

models(15). Many of these formulations involve two main steps. Firstly, the partition func-

tion and correlation functions of the considered spin model are written in terms of perco-

lation average types of quantities which depend on the number � of spin states. Secondly,

geometric properties of the corresponding percolation problem (such as the mean number

of clusters, pair connectedness, etc.) are derived from the above percolation averages in

the � ! 1 limit (or, � ! 0 when loops are not allowed). In some complex cases, one

does not succeed in accomplish the second step. In our knowledge, the global two-step

geometrical formulation for the discrete N-vector model has not, in our knowledge, been

reported in the literature. This model, also called the discrete N-component cubic model,

was �rstly introduced by Kim et al(19) in order to account for the unusually large speci�c

heat critical exponents which have been observed in phase transitions in cubic rare earth

compounds, like in HoSb. It has many other realizations such as the order-disorder tran-

sition in atomic oxigen on tungsten(20), the orientational ordering of diatomic molecules

adsorbed on a triangular lattice(21) (as observed in N2 adsorbed on graphite(22)), etc. This

model was, afterwards, extended(23) in order to include quadrupolar interactions, besides
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the dipolar ones. This generalized model, which we will simply refer to, henceforth, as

the cubic model is a discrete version of the continuous N -component cubic model. Un-

der the theoretical point of view, it has been studied through many di�erent methods

(see, for example,(24) and references therein) and it contains several important statistical

models, namely, the Ising model (N = 1), the Z(4) model (N = 2), the self-avoiding

walk (N ! 0)(25) and the Potts model. Furthermore, for a general value of N , the cubic

model is a particular case of the Z(�) model (� = 2N), which plays an important role in

both lattice gauge theory and statistical mechanics (see, for example,(26) and references

therein).

Herein, we develop a two-step geometrical formulation of the cubic model through a

procedure similar to the one introduced by Kasteleyn and Fortuin(1) for the Potts model.

We prove that, in the � = 2N ! 1 limit, the free energy and the correlations functions

of the cubic model are related to the mean number of clusters and pair connectedness of

a new kind of polychromatic bond percolation(27). In this problem there are three types

of present bonds, say green, yellow and blue ones, which can be conveniently pictured

as being negative (green) and positive (yellow or blue) bonds. The new feature of this

percolation is the fact that only the con�gurations which do not have any frustration are

allowed.

This paper is divided as follows. In section 2, we de�ne the model and summarize

previous results for both the Z(�) and cubic models which will be used in the subsequent

parts. In section 3, we express the partition function and the correlation functions of the

cubic model as polychromatic bond percolation averages containing two types of present

bonds. In section 4, we transform these averages in other ones in such a way that they

lead, in the � = 2N ! limit, to a new kind of percolation problem. We also show that

our results recover the KF ones in the appropriate limits corresponding to the Ising and

Potts models. The conclusions are given in section 5. Finally, we give in the Appendix

the proof of a fundamental relation necessary to transform the formulation of section 3

into that of section 4.

2 The Cubic and Related Models

2.1 The Discrete Cubic Model

Let us consider the discrete N -component cubic model on a graph G with vertex set

V , edge set E, number of vertices jV j and number of edges jEj. (We shall use throughout
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this paper the notation jAj to indicate the number of elements of a set A). We associate

with each vertex i of V a N -component vector ~Si which can point into one of the 2N

directions (positive and negative) of the Cartesian axes in a N -dimensional space, in other

words:

~Si = (�1; 0; � � � ; 0) or (0;�1; 0; � � � ; 0) or � � � (0; 0; � � � ; 0;�1) (1)

Then, one can describe the discrete cubic model by the following dimensionless

Hamiltonian(23):

�H(G) = �
X
e2E

n
NKe

~Si:~Sj +NLe(~Si:~Sj)
2
o

(� � 1=kBT ) (2)

where Ke and Le are the respective dimensionless coupling constants associated with the

dipolar and quadrupolar interactions between spins ~Si and ~Sj located at the vertices i

and j of the edge e. The above sum is over all interacting pairs of spins on G.

Notice that for a spin ~Si which lies along the Cartesian axis x` (` = 1; 2; � � � ; N), its

�th component Si� (� = 1; 2; � � � ; N) is given by:

Si� = �i �(`; �) (� = 1; 2; � � � ; N ;�i = �1) (3)

where �i = �1 speci�es the sense (x` >< 0) of the spin, and �(`; �) is the Kronecker

function. In fact, one can regard (see(23)) the discrete cubic model as that in which one

associates to each vertex i of the graph G two coupled variables: an Ising one (�i = �1)

and a N -state Potts one (�i = 1; 2; � � � ; N).

The discrete cubic model contains several particular cases. It becomes for N = 1 and 2

identical, respectively, to the Ising model and the symmetric Ashkin-Teller model(28) (or,

equivalently, the Z(4) model). It reduces, for Ke = Le, to a 2N -state Potts model (with

coupling constant 2NKe). Another special case occurs whenKe = 0, which corresponds to

a N -state Potts model (with coupling constant NLe) and jV j independent S = 1=2 spins.

Although these independent spins have been disregarded in the literature as they lead to

just a zero-energy shift, they are important herein for checking if our results recover, as

particular cases, the appropriate ones. The studied model contains also the self-avoiding

walk with fugacity Ke in the N ! 0 limit(25). Finally, when Le=jKej ! 1 all spins are

induced to be parallel or anti-parallel (~Si:~Sj = �1 8i;j) and the cubic model reduces to

N decoupled Ising models, each one being along one of the Cartesian axes and having

coupling constant NKe.
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2.2 Known Results for the Z(�) and Discrete Cubic Models

The Z(� = 2N) model, which is related to the N -component discrete cubic model, is

de�ned by the following dimensionless Hamiltonian for a graph G (with vertex set V and

edge set E):

�H(G) =
X
e2E

he(ni � nj) (4)

where ni is the state variable associated with each vertex i of V which can take on one

of the � = 2N integer values 0; 1; � � � ; � � 1. (ni � nj) is calculated mod-� and the pair

interaction energy depends only on the relative ordering of i and j, i.e.

he(� � �) = he(�) (8� = 0; 1; � � � ; � � 1) (5)

An useful variable which has been used in many RG calculations is the vector trans-

missivity (see the review of(29) and references therein). In the case of the Z(�) model it

is a �-dimensional vector ~te whose components te(�) are de�ned(30) by:

te(�) =
1

ze

��1X
�=0

e2�i��=� e�he(�) (� = 0; 1; � � � ; � � 1) (6.a)

where

ze =
��1X
�=0

e�he(�) (6.b)

Notice that only Int(�=2) (where Int stands for the integer part) components of ~te(�)

are independent since te(0) = 1 and te(� � �) = te(�).

If we associate a vector transmissivity ~te with each edge e of the edge set E of G,

we can de�ne an equivalent vector transmissivity ~T (1; 2;G) between the roots1 1 and 2 of

G as the vector transmissivity ~teff of a single e�ective edge between 1 and 2 having an

equivalent Hamiltonian heq(n1 � n2) given by:

Tr0
(
exp

"
�
X
e2E

he(ni � nj)

#)
= C exp[�heq(n1 � n2)] (7)

where C is a constant and Tr0 denotes the trace over all possible con�gurations of ni for

all vertices i which are distinct from the roots 1 and 2.

It has been shown(31) that this vector ~T (1; 2;G) is related to pair correlation functions.

These functions can normally be written as the thermal average of some function f(n1�n2)

1Roots are vertices of a graph which play a special role; in the considered case they are the chosen

vertices between which we calculate the equivalent vector transmissivity.
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depending only on the di�erence, mod-�, of the state variables n1 and n2. It can be Fourier

decomposed as(31):

f(n1 � n2) =
1

�

��1X
�=0

f��� T�(1; 2;G) (8)

where the bar indicates a thermal average (such notation will be used henceforth). T�(1; 2;G)

is the �-component of the equivalent vector transmissivity ~T (1; 2;G) which is equal to:

T�(1; 2;G) = exp[�2�i(n1� n2)=�] =
N�(1; 2;G)

D(G)
(9)

N�(1; 2;G) and D(G) = N0(1; 2;G) are the respective numerator and denominator of

T�(1; 2;G) whose de�nitions in terms of mod-� ows can be found in(31).

D(G), on the other hand, is related to the partition function Z(G) through(32):

Z(G) = �jV j�jEj(
Y
e2E

ze) D(G) (10)

where ze is de�ned in eq. (6b).

Let us now specialize the above results for the discreteN -component cubic model. The

latter corresponds to the particular case of the Z(2N) model in which he(ni)

(ni = 0; 1; � � � ; 2N � 1) become highly degenerate(24), namely:

he(1) = he(2) = � � � = he(N � 1) = he(N + 1) = � � � = he(2N � 1) (11)

and where the dimensionless coupling constants Ke and Le are related to the energy

di�erences through:

2NKe = he(N)� he(0) (12.a)

and

N(Ke + Le) = he(1) � he(0) (12.b)

The vector transmissivity (eq. 6) becomes in this case a two-component vector given

by(24;33):

te(�) =
1� e�2NKe

1 + 2(N � 1)e�N(Ke+Le) + e�2NKe
� te(1) (� = 1; 3; � � � ; 2N � 1) (13.a)

and

te(�) =
1 � 2e�N(Ke+Le) + e�2NKe

1 + 2(N � 1)e�N(Ke+Le) + e�2NKe
� te(2) (� = 2; 4; � � � ; 2N � 2) (13.b)
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Using eqs. (8) and (9) one can show(29) that the equivalent vector transmissivity

~T (1; 2;G) � fT1(1; 2;G); T2(1; 2;G)g between the roots 1 and 2 of G is:

T1(1; 2;G) =
N1(1; 2;G)

D(G)
= ~S1~S2 (14)

and

T2(1; 2;G) =
N2(1; 2;G)

D(G)
=

0
@N(~S1:~S2)2 � 1

N � 1

1
A (15)

One important property of N�(1; 2;G)(� = 1; 2) is the fact that it is zero whenever

there is no path connecting the roots 1 and 2. ~T (1; 2;G) can be calculated through the

traditional trace over con�gurations given by eq. (7) or, alternatively, through the break-

collapse method(24;33). This technique has the advantage of allowing the calculation of

~T (1; 2;G) (and hence of the above correlation functions) for cubic clusters for all values of

N simultaneously without having to examine con�gurations. At the heart of this method

is the e�ective break-collapse equation given by(24):

N�(1; 2;G) = N
(j)
1 N�(1; 2;G

cc
j ) + (D(j) �N

(j)
2 )N�(1; 2;G

bb
j ) +

+(N (j)
2 �N

(j)
1 )N�(1; 2;G

(bc)
j ) (� = 0; 1; 2) (16)

where Gbb
j , G

cc
j and Gbc

j are, respectively, the broken (where t(j)1 = t
(j)
2 = 0), the collapsed

(where t
(j)
1 = t

(j)
2 = 1) and the precollapsed (where t

(j)
1 = 0, t

(j)
2 = 1) graphs and the

edge j has a vector transmissivity ~tj � (t
(j)
1 = N

(j)
1 =D(j), t

(j)
2 = N

(j)
2 =D(j)). Gbb

j and Gcc
j

are obtained from the graph G by deleting the chosen edge j and contracting it (i.e.,

identifying the endpoints of j in Gbb
j ) respectively. In Gbc

j we do not change the topology

of G; we only alter the coupling constants associated with the edge j, setting them to

Ke = 0 and Le !1. Notice that N0(1; 2;G) = D(G).

During the iterative application of this equation one may arrive at a graph Gpr whose

edges are all precollapsed (we shall demoninate it a \precollapsed graph"). In this case, it

has been proved(24) that such a graph is precollapsed itself with the following equivalent

vector transmissivity:

N1(1; 2;Gpr) = 0 (17.a)

N2(1; 2;Gpr) = N c(Gpr)12(Gpr) (17.b)

and

D(Gpr) = N c(Gpr) (17.c)
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where c(Gpr) is the cyclomatic number (i.e., number of independent cycles) of Gpr, and

12(Gpr) is 1 if the roots 1 and 2 are connected and zero otherwise. The cyclomatic number

c(Gpr) can be calculated through the Euler relation valid for any graph G, namely:

c(G) = jEj � jV j+ w(G) (18)

where w(G) is the number of clusters in G (including the isolated vertices).

3 Polychromatic Percolation Average Forms for the

Partition and Correlation Functions

In this section we shall express the partition function and the correlation functions

of the discrete cubic model as standard polychromatic bond percolation averages. For

this, we shall follow along the lines of Kasteleyn and Fortuin(1) applying recursively the

e�ective break-collapse equation (eq. 16).

For convenience, we shall introduce an energy shift in eq. (2) such that the energy

between parallel spins becomes zero. We shall, thus, adopt the following form for the

Hamiltonian:

�H(G) = �
X
e2E

n
NKe(~Si:~Sj � 1) +NLe[(~Si:~Sj)

2 � 1]
o

(19)

One can rewrite eq. (10) for D(G) on Z(�) clusters as:

D(G) =
�jEj�jV j

Azj
Z(G) (20.a)

where j is the chosen edge to which the e�ective break-collapse will be �rst applied and

A is given by:

A =
Y
e2E
e6=j

ze (20.b)

where the above product is over all edges e of E excepting j.

Combining eq. (20) with the e�ective break-collapse equation (16) for D(G)(� = 0)

applied to the edge j whose vector transmissivity is t(j) = (t(j)1 ; t
(j)
2 ) we obtain that

1

z1
Z(G) =

t
(j)
1

zccj
Z(Gcc

j ) +
[1� t

(j)
2 ]

zbbj
Z(Gbb

j ) +
[t(j)2 � t

(j)
1 ]

zbcj
Z(Gbc

j ) (21)
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where, using eq. (5), (6b), (11), (12) and (19), zj and z`mj (`;m = b or c) are given by

zj = 1 + 2(N � 1) e�N(Kj+Lj) + e�2NKj (22.a)

zccj = zj
���K!1
L!1

= 1 (22.b)

zbbj = zj
���K!0
L!0

= 2N (22.c)

zbcj = zj
��� K!0
L!1

= 2 (22.d)

The combination of eqs. (13), (21) and (22) leads to the following break-collapse

equation for the partition function Z(G):

Z(G) = p
(j)
b Z(Gcc

j ) + p(j)r Z(Gbc
j ) + p

(j)
0 Z(Gbb

j ) (23)

with 8>>><
>>>:

p
(j)
b � 1 � e�2NKj (24a)

p(j)r � e�2NKj[1� e�N(Lj�Kj)] (24b)

p
(j)
0 � 1 � (p

(j)
b + p(j)r ) = e�N(Kj+Lj) (24c)

Notice that eq. (23) plays the same role as eq. (8) of KF(1). Applying recursively eq.

(23) until one arrives at graphs R which are null (i.e., graphs without edges constituted

exclusively by isolated vertices) and/or precollapsed, we obtain, for p(j)� 6= 0 (� = b; r; 0),

that:

Z(G) =
X
R

2
4 Y
j2Ecc

p
(j)
b

Y
j2Ebc

p(j)r

Y
j2Ebb

p
(j)
0 Z(R)

3
5 (25)

where Ecc, Ebc and Ebb are the sets of edges (contained in the edge set E of G) which

were respectively collapsed, precollapsed and broken in G in order to give origin to the

graph R. The above sum is over all the 3jEj graphs R generated by the application of one

of these 3 operations on each edge of E. Notice that jEccj+ jEbcj+ jEbbj = jEj.

Let us de�ne the graph ~R as the one obtained from R by deleting the jV0j isolated

vertices such that R = ~R [ V0, where V0 is the null graph with jV0j vertices. Thus, ~R

is a precollapsed graph, and we shall denote by E ~R and V ~R its edge set and vertex set

respectively. By construction, the number w(R) of clusters in R is given by:

w(R) = w( ~R) + jV0j (26)

Combining eqs. (10), (22d) and (17c) one gets that:

Z( ~R) = (2N)jV ~Rj�jE ~RjN c( ~R)2jE ~Rj (27)
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which together with eqs. (18) and (26) leads to

Z(R) = (2N)w(R)2jE ~Rj�c(
~R) (28)

If we add to R all the edges of Ecc that had been collapsed, we generate a partial2

graph G0 of G. Let us colour these edges, say, with blue, and the precollapsed edges, say,

with red and call such graphs G0 \2-coloured" partial graphs of G (not to be confused with

bichromatic graphs since herein no constraint on the colouring is implied). Observe that

the number of clusters w(G0) of G0 is the same as that of R. But the number of cycles of

only red edges in G0 can be di�erent from that of R if there are loops in R. In this case

a loop of a precollapsed edge (bc) of R will become an usual red edge which belongs to a

cycle with blue edges and eventually with other red edges. The number of cycles c(R) of

R is, thus, equal to the number of cycles formed only by red edges in G0 plus the number

c�(G0) of independent cycles in G0 which contain at least one red edge. Then, using eq.

(28) we can rewrite eq. (25) as:

Z(G) =
X
G0�G

G0=G0r[G
0
b

8><
>:
Y
j2E0

b

p
(j)
b

Y
j2E0r

p(j)r

Y
j2E0

�

p
(j)
0 �w(G

0)f(G0
r)g(G

0)

9>=
>; (29.a)

with f(G0
r) = 2jE

0
rj�c(G

0
r) (29.b)

g(G0) = 2�c
�(G0) (29.c)

� = 2N (29.d)

where the sum is over all the 3jEj 2-coloured partial graphs G0 of G. G0 is the union

of the two subgraphs G0
b and G0

r with respective edge sets E0
b and E 0

r which are disjoint

(hence jE0
bj + jE0

rj = jE 0j). E0
b (E

0
r) is constituted of blue (red) edges, each edge j being

associated with the variable p
(j)
b (p(j)r ). All the isolated vertices will be attributed to G0

b.

The last product in E0
� is over all the edges which belong to E but not to E0.

If 0 � K � L (which corresponds to a sub-region of the ferromagnetic case where

K � 0 and K + L � 0) then 0 � p
(j)
` � 1 (` = b; r; 0) and consequently eq. (29) can be

interpreted as a polychromatic bond percolation average, namely:

Z(G) = h�wfgiG;pb;pr (30)

where h� � �iG;pb;pr stands for an average over all the bond con�gurations in a polychromatic

bond percolation problem(27) with 2 types of present bonds on the graph G, where the

2A partial graph G0 of G is a subgraph of G which has the same vertex set as that of G, i.e., V 0 = V

and E0 � E.
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blue bonds (b) and the red bonds (r) occur with independent respective probabilities p
(j)
b

and p(j)r (which are related to Kj and Lj through eqs. (24a) and (24b)).

Now let us focus on the correlation functions. Let us de�ne �1(1; 2;G) and �2(1; 2;G)

by:

�1(1; 2;G) �
X
f~Sig

n
e��H(G)~S1:~S2

o
(31)

and

�2(1; 2;G) �
X
f~Sig

8<
:e��H(G)

2
4N(~S1:~S2)2 � 1

N � 1

3
5
9=
; (32)

where the sum is over all possible con�gurations of the spins f~Sig (i = 1; 2; � � � ; jV j).

Combining eqs. (9), (14), (15), (31) and (32) one gets that:

��(1; 2;G) = Z(G)T�(1; 2;G) =
X
fnig

e�2�i�(n1�n2)=�
Y
e2E

e�he(ni�nj) (33)

(� = 1; 2)

Using the results of(31) (see their eqs. (2.16), (2.17) and (2.18)) one can show that:

��(1; 2;G) = �jV j�jEj
 Y
e2E

ze

!
N�(1; 2;G) (34)

(� = 1; 2)

which is similar to eq. (10) that relates Z(G) with D(G). Repeating the same procedure

used for deriving eq. (23) from eq. (10), we obtain that:

��(1; 2;G) = p
(j)
b ��(1; 2;G

cc
j ) + p(j)r ��(1; 2;G

bc
j ) + p

(j)
0 ��(1; 2;G

bb
j )

(� = 1; 2) (35)

Applying recursively eq. (35) for � = 2 and using eqs. (17b), (18), (22d), (26) and

(34) one gets, similarly to the expression (29), that:

�2(1; 2;G) =
X
G0�G

G0=G0r[G
0
b

8><
>:
Y
j2E0

b

p
(j)
b

Y
j2E0r

p(j)r

Y
j2E0

�

p
(j)
0 �w(G

0)
(G`)
12 (G0)f(G0

r)g(G
0)

9>=
>; (36)

where the superscript (G`) stands for global since both blue and red edges can contribute

for a path between 1 and 2. Eq. (36), for 0 < K � L, can be written as a polychromatic

bond percolation average, namely:

�2(1; 2;G) = h�wfg
(G`)
12 iG;pb;pr (37)
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Concerning the other correlation function �1(1; 2;G), due to its special property (17a),

one has to apply eq. (35) iteratively until one arrives at graphs which contain isolated

vertices, only one root, and edges which are all precollapsed ones, except the eventual

loops of collapsed edges. This unique root arises from the collapse of the two roots, which

will give origin to a factor 12(G0
b) after adding the previously collapsed (blue) edges.

Similarly, to eq. (29a) one gets that:

�1(1; 2;G) =
X
G0�G

G0=G0r[G
0
b

8><
>:
Y
j2E0

b

p
(j)
b

Y
j2E0r

p(j)r

Y
j2E0

�

p
(j)
0 �w(G

0)
(b)
12 (G

0
b)f(G

0
r)g(G

0)

9>=
>; (38)

which, for 0 < K � L, leads to

�1(1; 2;G) = h�w fg
(b)
12 iG;pb;pr (39)

where the superscript b stands for blue since there must be, at least, one path of solely

blue bonds connecting 1 and 2 in order that (b)12 (G
0
b) = 1 (otherwise (b)12 (G

0
b) = 0).

It is worth stressing that alternative polychromatic bond percolation average forms

for D(G), N1(1; 2; G) and N2(1; 2; G) have been obtained by Arrowsmith and Essam(14).

Their averages are expressed in variables di�erent from our p(j)b and p(j)r ones, the quantities

to be averaged have no simple formulae and no relations are given between the thermal

properties and the geometrical ones in the �! 1 limit.

4 The � ! 1 limit case: A new kind of percolation

problem

4.1 General Results

In the previous formulation it appeared a factor fg in the percolation averages which

prevents us to accomplish the second step mentioned in section 1, i.e., we failed to relate

the thermal properties of the cubic model with the geometric ones of the polychromatic

bond percolation problem when the number of states � = 2N tends to 1. In this section

we shall present a two-step geometrical formulation in which this is possible provided that

certain bond con�gurations are avoided, similar to what happens in the bond frustrated

percolation (BFP) problem(12;13).

The central point for obtaining this new formulation consists in noticing that in one

precollapsed edge ebc (characterized by Ke = 0 and Le ! 1), which links the vertices i
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and j, the spins ~Si and ~Sj must be such that (~Si:~Sj)2 = 1 (see eq. 19), i.e. ~Si = �~Sj.

Therefore one can split its partition function Z(ebc) into two parts: one corresponding to

~Si = ~Sj (becoming a collapsed edge) and the other to the case where ~Si = �~Sj (generating

what we shall call an \anti-collapsed" edge eac), namely:

Z(ebc) = Z(ecc) + Z(eac) (40)

Therefore one can generate 2jE ~Rj graphs from a precollapsed graph ~R (de�ned in the

previous section) by attributing to each of its jE ~Rj precollapsed edges one of the two

possibilities: either an yellow edge (corresponding to the condition Si = Sj of a collapsed

edge) or a green edge (corresponding to the condition Si = Sj of an anti-collapsed edge).

Then, one can show (see the proof in the Appendix) that from these 2jE ~Rj graphs only

f( ~R) = 2jE ~Rj�c(
~R) graphs do not contain any cycle with an odd number of green edges.

Let us denote by ~Rnf each of such graphs (the subscript nf stands for non-frustrated

for reasons which will become clear later on). Notice that the other graphs (i.e., the

\frustrated" ones) do not contribute for Z( ~R), and hence:

Z( ~R) =
X
~Rnf

Z( ~Rnf ) (41)

If the state of ~Si located on one of the vertices of a cluster of a given ~Rnf is �xed, then, the

states of the spins on the other vertices of this cluster become automatically determined

without any incompatibility. Therefore its partition function is given by

Z( ~Rnf ) = (2N)w(
~Rnf ) (8 ~Rnf) (42)

Observe that in the generation of ~Rnf from ~R there is no alteration in the number of

clusters, i.e.

w( ~Rnf ) = w( ~R) (43)

Combining this eq. with the previous results, one obtains that

Z( ~R) = (2N)w(
~R)2jE ~Rj�c(

~R) (44)

Adding thus the jV0j isolated vertices to ~R in order to form R, and using eq. (26),

one �nally arrives to eq. (28). If one attributes a zero weight to the frustrated graphs

Rf (i.e., Z(Rf ) = 0), then this shows that the replacement of each graph R by the 2jERj

new graphs (where each of its red edges have been substituted, say, by either an yellow or

green edge) does not alter the original partition function Z(R) of the graph R. Now, let us
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add all the edges e 2 Ecc of G which had been collapsed during the process of generating

R, and colour them with blue. If one considers all the 3jEj original bond con�gurations

(where each edge can be blue, red or absent) and then replace each red edge by either,

say, a green or yellow one, it will be generated, at the end, 4jEj bond con�gurations where

each edge can be blue, green, yellow or absent. This can be easily seen if one considers

all the combinations of jEj with ` (` = 0; 1; � � � ; jEj) red bonds giving 3jEj =
jEjX
`=0

C
jEj
` 2jEj�`

con�gurations and, after substitution of the red edges by the green and yellow bonds,

one obtains
jEjX
`=0

C
jEj
` 2jEj�` = 2jEj

jEjX
`=0

C
jEj
` = 4jEj con�gurations. From these 4jEj possibilities

(which constitute all the \3-coloured" partial graphs G0 of G), only those in which each

cycle has an even number of green edges contribute to the partition function Z(G).

Taking into account all the above considerations, one can rewrite eq. (25) as:

Z(G) =
X
G0�G

G0=G0
b
[G0gr[G

0
y

?
8><
>:
Y
j2E0

b

p
(j)
b

Y
j2E0gr

p(j)gr

Y
j2E0y

p(j)y

Y
j2E0

�

p
(j)
0 �w(G

0)

9>=
>; (45.a)

with

p(j)gr = p(j)y = p(j)r (45.b)

where the star means that the sum in the \3-coloured" partial graphs G0 of G must

be taken only over those con�gurations in which each cycle has an even number of green

bonds. G0 is the union of the three subgraphs G0
b, G

0
gr and G

0
y with respective disjoint edge

sets E0
b (with blue edges), E0

gr (with green edges) and E 0
y (with yellow edges). Observe

that jE0
bj+ jE

0
grj+ jE

0
yj = jE0j, and that the last product is over the absent edges E0

� (they

belong to E but not to E0 = E0
b [ E 0

gr [ E0
y). Notice that with each type � of edge j

(�=Blue (b), green (gr) or yellow (y)) is associated a weight p(j)� , but an absent edge j is

associated with a weight p(j)0 = 1 � (p(j)b + p(j)r ) which is di�erent from the complement

of the others (i.e., p(j)0 6= 1 � (p(j)b + p(j)y + p(j)gr )). This inconvenience can be overcome by

dividing and multiplying eq. (45a) by the factor
jEjY
j=1

(p(j)b +p(j)gr +p(j)y +p
(j)
0 ) and using that

jEj = jE0
bj+ jE0

grj+ jE0
yj+ jE0

�j (46)

One can, thus, rewrite eq. (45a) as:

Z(G) =
jEjY
j=1

(p
(j)
b +p(j)gr +p(j)y +p

(j)
0 )

?X
G0�G

G0=G0
b
[G0gr[G

0
y

8><
>:
Y
j2E0

b

�
(j)
b

Y
j2E0gr

�(j)
gr

Y
j2E0y

�(j)
y

Y
j2E0

�

�
(j)
0 �w(G

0)

9>=
>;

(47)
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with

�
(j)
` �

p
(j)
`

p
(j)
b + p

(j)
gr + p

(j)
y + p

(j)
0

(` = b; gr; y or 0 (absent)) (48)

which are given in terms of K and L as (see de�nitions (24)):

�
(j)
b =

1� e�2NKj

1 + e�2NKj � e�N(Kj+Lj)
(49.a)

�(j)
gr = �(j)

y =
e�2NKj � e�N(Kj+Lj)

1 + e�2NKj � e�N(Kj+Lj)
(49.b)

and

�
(j)
0 = 1� (�

(j)
b + �(j)

gr + �(j)
y ) =

e�N(Kj+Lj)

1 + e�2NKj � e�N(Kj+Lj)
(49.c)

When 0 � K � L then 0 � �
(j)
` � 1 (` = b; gr; y or 0) and we can write eq. (47) as

the following special percolation (SP) type average:

Z(G) = A(fKjg; fLjg) h�wiG;SP (50)

with

A(fKjg; fLjg) =
jEjY
j=1

h
1 + e�2NKj � e�N(Kj+Lj)

i
(51)

h� � �iG;SP stands for an average over all the bond con�gurations in a new kind of poly-

chromatic bond percolation problem in which there are 3 types of present edges fjg (say,

the blue (b), the yellow (y), and the green (gr) ones) on the graph G with the constraint

that each cycle of a con�guration contains only an even number of green edges. Each

edge j(j = 1; 2; � � � ; jEj) has probabilities �(j)
b , �(j)

y , �(j)
gr = �(j)

y and 1� (�(j)
b +�(j)

y +�(j)
gr )

(de�ned in eq. (49)) of being blue, yellow, green or absent, respectively. Notice that if

we associate with a green edge j a value "j = �1 (playing the role similar to that of

an antiferromagnetic AF bond) and if we associate the value "j = +1 (playing the role

similar to that of a ferromagnet F bond) with a blue or yellow edge j, then the only

allowed con�gurations are those which are not frustrated. In other words, the frustrated

cycles `f , characterized by

`f =
Y
j2`f

"j = �1 (52)

are forbidden in the above percolation problem and, within the above convention, the

symbol star can be interpreted as a sum over con�gurations of positive and negative

bonds which do not contain any frustrated cycle. A similar fact occurs in the BFP

model(12;13) which is related to spin glasses and glasses. But in the BFP, the lattice
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(or any graph G) is �rst prepared by randomly assigning to each edge j the variable

"j = �1 with equal probabilities and, only after �xing the distribution of f"jg, the bonds

are randomly introduced onto the edges (regardless of the sign of "j) with the constraint

of not giving origin to any frustrated cycle. This procedure generates, at each time

the bonds are thrown without frustration, a \2-coloured" partial graph G0 of G whose

edges are positive, negative (with equiprobability) or absent and such that each cycle has

an even number of negative bonds. Therefore, the set �(G; f"jg) of all possible bond

con�gurations G0 � G with no frustration which appear in the BFP problem contains

only con�gurations compatible with a given distribution of f"jg, constituting thus only a

subset of the set �(G) of all non-frustrated con�gurations of G. Furthermore, the union

of the sets �(G; f"jg) over all the possible distributions f"jg is di�erent from �(G) since

there are bond con�gurations compatible with distinct distributions f"jg. This is the

reason why our percolation problem does not reduce, for �
(j)
b = 0 (where the positive and

negative bonds become equiprobable), to the BFP model. In a similar way, our result eq.

(50) does not recover, for �(j)
b = 0, that of Coniglio(13) for the partition function of the

frustrated q-state Potts model (with q = 2N).

Following a procedure similar to the one used for deducing eq. (50), we can derive

from eq. (35) the following eqs. for ��(1; 2;G)(� = 1; 2):

�2(1; 2;G) = A(fKjg; fLjg)�

�
?X

G0�G

G0=G0
b
[G0gr[G

0
y

8><
>:
Y
j2E0

b

�
(j)
b

Y
j2E0gr

�(j)
gr

Y
j2E0y

�(j)
y

Y
j2E0

�

�
(j)
0 �w(G

0)
(G`)
12 (G0)

9>=
>; (53)

and

�1(1; 2;G) = A(fKjg; fLjg)�

�
?X

G0�G

G0=G0
b
[G0gr[G

0
y

8><
>:
Y
j2E0

b

�
(j)
b

Y
j2E0gr

�(j)
gr

Y
j2E0y

�(j)
y

Y
j2E0

�

�
(j)
0 �w(G

0)
(b)
12 (G

0
b)

9>=
>; (54)

which can be rewritten, for 0 � K � L, as the respective special percolation averages:

�2(1; 2;G) = A(fKjg; fLjg) h�w(G`)12 iG;SP (55)

and

�1(1; 2;G) = A(fKjg; fLjg) h�w
(b)
12 iG;SP (56)

Following along the lines of Wu(5), we can now accomplish the mentioned second step

of our formulation, establishing the relations in the �! 1 limit, between Z(G) (eq. 50),
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�2(1; 2;G) (eq. 55), �1(1; 2;G) (eq. 56) and respective characteristic quantities of the

above special percolation, namely:

i) the mean number of clusters per site n(G)

n(G) � limjV j!1
1

jV j
hwiG;SP = lim�!1

@F (G)

@�
(57.a)

where F (G) is proportional to the free energy per site given by

F (G) = limjV j!1
1

jV j
ln

"
Z(G)

A(fKjg; fLjg)

#
(57.b)

ii) the global pair connectedness C
(G`)
12 (G), i.e., the probability that the sites 1 and 2

are connected through any types of edges

C
(G`)
12 G � h(G`)12 iG;SP = lim�!1

@~�2(1; 2;G)

@�
(58.a)

where ~�2(1; 2;G) is proportional to a pair correlation function given by

~�2(1; 2;G) =
(2N � 1)

(2N)2
T2(1; 2;G) (58.b)

with T2(1; 2;G) being de�ned by eq. (15) (see also eq. 33)

iii) the blue pair connectedness C
(b)
12 (G), i.e., the probability that the sites 1 and 2 are

connected through exclusively blue bonds:

C
(b)
12 (G) � h

(b)
12 iG;SP = lim�!1

@~�1(1; 2;G)

@�
(59.a)

where ~�1(1; 2;G) is proportional to the other pair correlation function, namely:

~�1(1; 2;G) =
(2N � 1)

(2N)2
T1(1; 2;G) (59.b)

with T1(1; 2;G) being de�ned by eq. (14) (see also eq. 33).

4.2 Particular Cases

Now let us show that our general expressions eqs. (50), (55) and (56) reproduce correctly

the expected results in di�erent particular cases of the cubic model.

i) Kj = 0
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Our Hamiltonian (eq. 19) reduces, for Kj = 0, to that of a N -state Potts model (with

coupling constant NLj) together with jV j independent S = 1=2 spins. In this case, the

probabilities �(j)
` (eqs. 49) become:

�
(j)
b = 0 (60.a)

�(j)
gr = �(j)

y =
1� e�NLj

2� e�NLj
(60.b)

and

�
(j)
0 = 1� (�(j)

gr + �(j)
y ) =

e�NLj

2� e�NLj
(60.c)

and the factor A(fKjg; fLjg) (eq. 51) becomes

A(Kj = 0; fLjg) =
jEjY
j=1

(2� e�NLj) (61)

The vanishment of �
(j)
b does not imply that Z(G) = 0 since eq. (50) was derived by

the recursive application of eq. (23) assuming that each of its three terms is non null. In

the case Ke = 0, the collapsed graphs do not contribute to Z(G) since p
(j)
b vanishes. In

this situation, the iteration of eq. (23) leads to a modi�cation of eq. (25), namely, the

absence of the product of p
(j)
b over the collapsed edges Ecc. Consequently, the product of

�
(j)
b over the blue edges contained in the de�nition of the special percolation type average

(see eq. 47) disappears and all the subgraphs G0
b are null ones. Taking this into account

and combining eqs. (60), (61) and (50), the partition function becomes:

Z(G) =
?X

G0�G

G0=G0
b
[G0gr[G

0
y

Y
j2E0

(E0=E0gr[E
0
y)

p(j)
Y
j2E0

�

(1� p(j))�w(G
0) (62.a)

with

p(j) = 1� e�NLj (62.b)

Notice that p(j) is equal to the probability of a red edge p(j)r when Kj = 0 (see eq.

24b). If we invert the reasoning which led us to derive eq. (50) from eq. (29), i.e., if we

think that a green or yellow edge was originated by a red one and remember that from

the 2jE
0j possible graphs with jE 0j red edges (notice that jE0j = jE 0

rj since jE
0
bj = 0) only

2jE
0j�c(G0) graphs are not frustrated, then we get that:

Z(G) =
X
G0�G

G0=G0r[G
0
b

Y
j2E0

�

(E0=E0r )

p(j)
Y
j2E0

�

(1� p(j))�w(G
0)2jE

0j�c(G0) (63)
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which is equal to eq. (29a) specialized to the case where there are no blue edges (since

the �rst product of eq. (29a) would be absent when p
(j)
b = 0 for the reasons explained

above).

Using the Euler relation (eq. 18) and incorporating all the isolated vertices (which

belong to G0
b) to G

0
r such that G0 = G0

r (and, hence, jV
0j = jV j) we, �nally, arrive at

Z(G) = 2jV j
X
G0�G

Y
j2E0

p(j)
Y
j2E0

�

(1� p(j))Nw(G0) (64)

or, equivalently,

Z(G) = 2jV jZKF (G) (65.a)

with

ZKF (G) = hNwiG;p(j) (65.b)

where h� � �iG;p(j) stands for the usual bond percolation average on a graph G in which

the occupancy probability of an edge j is p(j) de�ned in eq. (62b). ZKF (G) is the result

obtained by KF(1) for the q-state (q = N) Potts model described by the dimensionless

Hamiltonian

�HKF (G) = �
X
e2E

qLe[�(�i; �j)� 1] (�i = 1; 2; � � � ; q) (66)

where �i is the Potts variable associated with each vertex i of G and �(�i; �j) is the

Kronecker function.

Therefore, our result eq. (65) corresponds to the partition function of the N -state

Potts model (with coupling constant NLe) and jV j independent S = 1=2 spins (the latter

has 2jV j con�gurations with zero energy leading, thus, to the factor 2jV j in eq. (65a)),

recovering the expected results for Kj = 0.

Similarly, we obtain that �2(1; 2;G), (eq. 55) reduces, for Kj = 0, to:

�2(1; 2;G) = 2jV j�KF (1; 2;G) (67.a)

with

�KF (1; 2;G) = hNw12iG;p(j) (67.b)

where, again, �KF (1; 2;G) is the result obtained by KF(1) for the N -state Potts model

in what concerns the correlation function �12(G), i.e.

�KF (1; 2;G) = Z(G)�12(G) = Z(G)

 
q�(�1; �2)� 1

q � 1

!
(68)
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The factor 2jV j in eq. (67a) comes from the jV j independent S = 1=2 spins and we

get, again, the recovering of the expected results for Kj = 0.

Concerning �1(1; 2;G) (eq. 56), it vanishes when Kj = 0 due to the absence of blue

edges (since in that case 
(b)
12 (G

0
b) = 0). This is in agreement with the fact that N1(1; 2;G)

becomes null whenever Kj = 0(24), which renders �1(1; 2;G) = 0 (cf eq. (34)).

ii) Kj = Lj

When Kj = Lj the studied model reduces to a 2N -state Potts model with coupling

constant 2NKj . In this situation �
(j)
` (eqs. 49) become

�
(j)
b = 1� e�2NKj (69.a)

�(j)
gr = �(j)

y = 0 (69.b)

and

�
(j)
0 = 1� �

(j)
b = e�2NKj (69.c)

while A(fKjg; fLjg) (eq. 51) reduces to

A(fKj = Ljg) = 1 (70)

The vanishment of �(j)
gr and �(j)

y implies that p(j)r = 0 (cf eq. 48) and, therefore, the

precollapsed edges do not contribute to Z(G). The iteration of eq. (23) for p(j)r = 0 would

lead, at the end, to a special percolation type average (eq. 47) without the products of

�(j)
gr and �(j)

y over the respective green and yellow edges. Furthermore, the restriction of

summing only on subgraphs with an even number of green edges becomes une�ective (as

there are no green edges) and the star sum equals the usual one over all the subgraphs

G0 (whose edges are all blue, i.e., G0 = G0
b) of G. Eqs. (50), (55) and (56) reduce in this

case to:

Z(G) =
X
G0�G

G0=G0
b

Y
j2E0

�
(j)
b

Y
j2E0

�

(1� �
(j)
b )�w(G

0) = h�wi
G;p(j)=�

(j)
b

(71)

and

�2(1; 2;G) = �1(1; 2;G) = h�w12iG;p(j)=�(j)
b

(72)

which recover the expected results(1) for the �-state Potts model with coupling constant

2NKj . Combining eqs. (34) and (72) we obtain that N1(1; 2;G) = N2(1; 2;G) as it should

be(24).
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iii) Lj=jKj j ! 1

The case Lj=jKj j ! 1 corresponds to N decoupled Ising models, each of which has

coupling constant NKj . In this situation eqs. (49) and (51) reduce to

�
(j)
b =

1� e�2NKj

1 + e�2NKj
(73.a)

�(j)
gr = �(j)

y =
e�2NKj

1 + e�2NKj
= 1� �

(j)
b (73.b)

�
(j)
0 = 0 (73.c)

and

A(fKjg; fLj !1g) =
jEjY
j=1

(1 + e�2NKj) (74)

The vanishment of �(j)
0 and, consequently, of p(j)0 (cf eq. (48)) indicates that there

are no absent edges. Therefore the broken edges do not contribute, in this case, to the

partition function, and the iteration of eq. (23) for p
(j)
0 = 0 would lead, at the end, to an

SP average without the product in �
(j)
0 . Eq. (50) becomes, after using eqs. (73) and (74):

Z(G) =
?X

G0�G

G0=G0
b
[G0gr[G

0
y

8<
:
Y
j2E0

b

p
(j)
b

Y
j2E0gr[E

0
y

(1� p
(j)
b )�w(G

0)

9=
; (75)

where p(j)b is the occupancy probability of a blue edge j de�ned in eq. (24a). Similarly to

the particular case (i), we can replace the green and yellow edges by red ones, transforming

the above star sum into an usual one, namely:

Z(G) =
X
G0�G

G0=G0
b
[G0r

8<
:
Y
j2E0

b

p
(j)
b

Y
j2E0r

(1 � p
(j)
b )�w(G

0)2jE
0
rj�c(G

0
r)�c

�(G0)

9=
; (76)

Due to the lack of absent edges it follows that:

w(G0) = w(G) (77.a)

and

jE0
rj+ jE0

bj = jEj (77.b)

and using the Euler relation eq. (18), we can rewrite eq. (76) as:

Z(G) = Nw(G)
X
G0�G

G0=G0
b
[G0r

Y
j2E0

b

p
(j)
b

Y
j2E0r

(1� p
(j)
b )2jV j�jE

0
b
j+c(G)�c(G0r)�c

�(G0) (78)
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Constructing graphs G00 by deleting the red edges of G0, it follows that all the edges

of the edge set E00 of G00 are blue and that:

jV j = jV 00j (79.a)

jE0
bj = jE00j (79.b)

and

c(G00) = c(G) � [c(G0
r) + c�(G0)] (79.c)

The combination of eqs. (18), (78) and (79) leads, �nally, to:

Z(G) = Nw(G)
X

G00�G

Y
j2E00

p
(j)
b

Y
j2E00

�

(1� p
(j)
b )2w(G

00) = Nw(G)ZIs
KF (G) (80)

where ZIs
KF (G) is the KF

(1) result for the Ising model with coupling constant NKj . Our

result eq. (80) corresponds, thus, to N decoupled Ising models, recovering the appropriate

one.

Concerning the function �2(1; 2;G) (eq. (55) since, in the considered situation, there

are no absent edges, then the following equality holds:

G`12 (G
0) = G`12 (G) (81)

which would lead to a result similar to eq. (80), namely

�2(1; 2;G) = Nw(G)12(G)Z
Is
KF (G) (82)

and, consequently (cf eq. (33)),

T2(1; 2;G) = 12(G) (83)

Although, in this case, �2(1; 2;G) does not provide any useful information about the

correlation function, this does not occur with �1(1; 2;G) (eq. 56). Following the previous

procedure, we would arrive at an equation similar to eq. (78) except by the additional

factor 
(b)
12 (G

0
b) which becomes, after the deletion of the red edges, identical to 12(G00).

Hence we get that:

�1(1; 2;G) = Nw(G)
X

G00�G

Y
j2E00

p
(j)
b

Y
j2E00

�

(1� p
(j)
b )2w(G

00)12(G
00) = Nw(G)h2w12iG;p(j)

b

(84)

which, combined with eqs. (33) and (80), leads to the expected result, namely:

T1(1; 2;G) =
h2w12iG;p(j)

b

h2wi
G;p

(j)
b

= �Is12(G)
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where �Is12(G) is the correlation function of the Ising model with coupling constant NKj
(1).

iv) N = 1 (Ising Model)

In the N = 1 case, which corresponds to the Ising Model, it has been shown(24) that

the vector transmissivity has only one component (~te = te(1) = tghKe) and that

D(Gbc
j ) = D(Gbb

j ) (85.a)

and

N1(G
bc
j ) = N1(G

bb
j ) (85.b)

Combining the above equations with eqs. (20)-(22) we obtain, instead of eq. (23), the

following break-collapse equation for Z(G) when N = 1:

Z(G) = p
(j)
b Z(Gcc

j ) + (1 � p
(j)
b )Z(Gbb

j ) (86.a)

with

p
(j)
b = 1 � e�2Kj = 1� (p(j)r + p

(j)
0 ) (86.b)

which coincides with eq. (8) of(1). Since there are no broken-collapsed edges and, there-

fore, no green and yellow edges, eqs. (50) and (56) would reduce, similarly to the particular

case (ii), to:

Z(G) = h2wi
G;p

(j)
b

(87.a)

and

�1(1; 2;G) = h2w12iG;p(j)
b

(87.b)

which recover the KF results(1) for the Ising model with coupling constant Kj , as it

should be.

5 Conclusions

We prove, herein, that the discrete N -component cubic model is related, in the � =

2N ! 1 limit, to a new kind of percolation problem in the same way as standard bond

percolation is connected to the q! 1 limit of the Potts model. Despite this relation occurs

only for the ferromagnetic case of the cubic model, this new percolation can be regarded

as one in which there are negative bonds and two types of positive bonds subjected to the

constraint that the only allowed con�gurations are those without frustration. Although
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this restriction appears also in the bond-frustrated percolation, which was introduced(12)

in the context of spin glasses and glasses, our percolation problem is essentially di�erent

from it (where a further restriction of the quenched type on the allowed con�gurations is

imposed).

We hope that, as the Kasteleyn and Fortuin(1) percolation formulation was successfully

used by Swendsen and Wang(16) in the construction of a cluster Monte Carlo algorithm

for the Potts ferromagnet, our results are used for the development of a cluster dynamics

which would considerably reduce the critical slowing down in Monte Carlo simulations of

the cubic model. Work along this line is in progress.
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Appendix

Proof of the equality f( ~R) = 2jE ~R
j�c( ~R)

In this appendix we prove that, from the 2jE ~Rj graphs generated from a connected

precollapsed graph ~R by attributing to each of its jE ~Rj edges either an yellow or a green

color, only f( ~R) graphs do not contain any cycle with an odd number of green edges.

Let us consider a fundamental cycle basis constituted by the independent cycle vectors

~�(1); ~�(2); � � � ; ~�(c) associated with some spanning tree(34) of the graph ~R (whose cyclomatic

number c( ~R) we shall simply denote by c). ~�(i) is an jE ~Rj-dimensional vector whose

components �(i)� (� = 1; 2; � � � jE ~Rj) are 1 or 0 depending if the edge e� belongs or not,

respectively, to the cycle �(i) (i = 1; 2; � � � ; c). Let us denote by ki the number of edges

that belong exclusively to the cycle �(i) (notice that ki 6= 0 8i for any basis associated

with a spanning tree). Since every edge of ~R must belong to one of the c independent

cycles, it follows that

k + ` = jE ~Rj (1.a)

with

k =
cX

i=1

ki (1.b)

where ` � 0 is the number of edges of ~R which belong to two or more cycles �(i). We

shall denote these edges by a1; a2; � � � ; a`.

Let us consider a �xed color con�guration � for the edges a1; a2; � � � ; a`. This �xed

con�guration, together with the fact that each cycle �(i) must have an even number of

green edges, lead to the following number N� of possible con�gurations:

N� =
cY

i=1

2ki�1 = 2k�c (A.2)

as, once we choose the con�gurations of any (ki� 1) edges of a cycle �(i), the color of the

remaining edge of this cycle is automatically determined by the mentioned restriction.

Since the constraint of having an even number of green edges in each cycle was already

taken into account in eq. (A.2), there are 2` possible con�gurations �'s for the edges

a1; a2; � � � ; a`. Therefore the total number f( ~R) of graphs which do not contain any cycle

with an odd number of green edges is given by

f( ~R) = 2`+k�c = 2jE ~Rj�c(
~R) (A.3)

where we have used relation (A.1a)
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Notice that if we had considered a cycle basis which is not associated with some

spanning tree of ~R, then it could eventually happen that one or more ki's vanish. But if

ki = 0 then all the edges of cycle i would belong to the set fa1; a2; � � � ; a`g. Consequently,

we should replace the factor 2ki�1 = 2�1 by just 1, and we should also substitute the 2`�'s

con�gurations by 2`�1 (since, in this case, the edges ai which belong to the cycle i must

satisfy the restriction of having an even number of green edges). In this case N� would

become 2k�(c�1) and f( ~R) = 2`�1�2k�(c�1) = 2`+k�c would coincide with the result (A.3).

If there were more cycles with null ki's, this reasoning would apply for each such cycle

and we would recover, at the end, eq. (A.3).

We can, therefore, conclude that the result (A.3) is true for any cycle basis, or in other

words, this formula depends only on the topology of the graph ~R, as it should be.
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