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1 Introduction

Recently there has been much interest in the phase structure of theories involving scalar

�elds presenting spontaneous symmetry breaking. Many aplications have been done in the

Weinberg-Salam model and in grand-uni�ed theories. The temperature generally is the

parameter whose variation induces the transition from the broken to the unbroken phase,

at least for the most current systems that develop �rst or second order phase transitions.

To describe a second order phase transition the variation of the mass with the tem-

perature is the most important fact. On the other hand the dependence of the coupling

constant with the temperature may induce a �rst order phase transition in the scalar

sector, as suggested by two of the authors in a recent work [1].

We start from the Yukawa model and we analyse the contribution coming from the

fermionic loops for the temperature dependent scalar e�ective potential. The ultraviolet

divergences are dealed with the method of analytic regularization [2]. We recall that the

basic idea of this technique is to replace the denominator of the propagator (p2�m2+ i�)

by (p2 � m2 + i�)1+� where � is the regulating parameter initially taken to be large

enough. Consequently in a open connected set of points in the complex plane � the

Feynman amplitudes are analytic. Then it is possible to analytically continue the Feynman

expressions to the whole complex plane. In the Laurent expansions of these expressions

we can identify the counterterms as the polar terms in the analytic extensions at some

points of the complex plane.

To deal with �nite temperature �eld theory using the imaginary time formalismwe will

have to use dimendional regularization in the momenta and deal with the Matsubara sums

using another method. The most popular method to deal with the Matsubara sum is an
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analytic extension away from the discrete complex energies down to the real axis, with the

replacement of the energies sums by countour integrals [3]. If we are interested in systems

at high temperature the decoupling theorem [4] allow us to use the dimension reduction

method (DR). This approach has been used by many authors [5]. The basic idea is that

in the imaginary time formalism the free propagator has a form (!2
n + p2 +m2)�1. The

Matsubara frequency act like a mass so in the high temperature regime the non-static

(n 6= 0) modes decouple, and we have a three dimensional theory. In other words, the only

modes whose contribution do not fall of exponentially at distances much greater than �

are the (n = 0) modes of the bosons. Integration over the fermionic modes and the non-

zero modes of the bosons result in a three dimensional theory. Of course this e�ective

model will describe the original model only for distances R >> ��1. As was stressed

by Landsman [6] the standard summation method [3] based on analytic continuation

do not work in the dimensional reduction approach. Instead, we have �rst to compute

momentum integrals using dimensional regularization and to deal with the Matsubara

sums, a inhomogeneous zeta function analytic regularization has to be performed.

Recently such technique has been used to study di�erent models at �nite temperature.

Ford and Svaiter [7] and Malbouisson and Svaiter [1] [8] studied the �'4 and the E�mov-

Fradkin (truncated or not) model at �nite temperature. The possibility of vanishing the

temperature dependent coupling constants in these models has been investigated. In the

�rst paper, assuming a non-simply connected spatial section, the thermal and topological

contributions to the renormalized mass and coupling constant in the (�'4)D=4 model

was obtained at the one-loop approximation. In the second one, the authors extend

the discussion of the massive self-interacting �'4 model to an arbitrary D-dimensional

spacetime with trivial topology of the spacelike sections. The main result is that the

possibility of a �rst order phase transition drived by the temperature dependent coupling
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constant, in the region where the model is super-renormalizable arises. The discussion in

the case of a scalar model with non-polynomial interaction Lagrange density (the E�mov-

Fradkin model) has been done in the third work. ForD > 2 it was proved that at least two

coupling constants of the truncated model may vanish and become negative by e�ect of

temperature changes, while in the non-truncated model all the coupling constants remain

positive for any temperature. The method used in the above quoted papers could provide

an almost natural way to investigate stability regimes in �nite temperature QFT models.

It has been often sugested that the thermal contributions to the renormalized coupling

constants of quantum models may bring up non-trivial e�ects. For instance, Gross, Pis-

arski and Ya�e [9] argue that in �nite temperature (QCD)4 the e�ective coupling constant

g(�) decreases as the temperature or density is raised. In fact, they show in a perturbative

context that at the �rst non-trivial order (QCD)4 should be asymptotically free at high

temperature or pressure. In this approximation it is expected that at high temperatures

thermal excitations produce a plasma of quarks and gluons which screen all (color) eletric

ux. Such a transition from a low temperature con�ned phase to a high temperature

color screening phase has been also investigated by Polyakov [10] and Susskind [11] and

others in lattice gauge theories. Such results have important astrophysical applications

in the study of neutron stars or primeval universe models.

The main goal of this paper is to investigate the one-loop femionic contribution to the

scalar e�ective potential at �nite temperature assuming that bosons and fermions interact

via a Yukawa coupling. The outline of the paper is the following: in section II we briey

review the formalism of the e�ective potential. In section III the fermionic contribution to

the e�ective potential is obtained. In section IV the singularity structure of the one-loop

fermionic contribution to the scalar e�ective potential is studied Conclusions are given in

section V. In this paper we use �h = kB = c = 1.
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2 The e�ective action and the e�ective potential at

zero temperature.

In this section we will briey review the basic features of the e�ective potential associ-

ated with a real massive self-interacting scalar �eld at zero temperature. Although the

formalism of this section may be found in standard texbooks, we recall here its main

results for completeness. Let us consider a real massive scalar �eld '(x) with the usual

�'4(x) self-interaction, de�ned in a static spacetime. Since the manifold is static, there

is a global timelike Killing vector �eld orthogonal to the spacelike sections. Due to this

fact, energy and thermal equilibrium have a precise meaning. For the sake of simplicity,

let us suppose that the manifold is at. In the path integral approach, the basic object is

the generating functional,

Z[J ] =< 0; outj0; in >=

Z
D['] expfi[S['] +

Z
d4xJ(x)'(x)]g (1)

where D['] is an apropriate integration measure and S['] is the classical action associated

with the scalar �eld. The quantity Z[J ] gives the transition amplitude from the initial

vacuum j0; in > to the �nal vacuum j0; out > in the presence of some source J(x), which

is zero outside some interval [�T; T ] and inside this interval is switched adiabatically on

and o�. Since we are interested in the connected part of the time ordered products of

the �elds, we take the connected generating functional W [J ], as usual. This quantity is

de�ned in terms of the vacuum persistent amplitude by

eiW [J] = Z[J ]; (2)

and the connected n-point functions G(n)
c (x1; x2; ::; xn) are
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G(n)
c (x1; x2; ::; xn) =

�nW [J ]

�J(x1):::�J(xn)
jJ=0: (3)

Expanding W [J ] in a functional Taylor series, the n-order coe�cient of this series will

be the sum of all connected Feynman diagrams with n external legs, i.e. the connected

Green's functions de�ned by eq.(3). Then

W [J ] =
1X
n=0

1

n!

Z
d4x1::d

4xn G
(n)
c (x1; x2::::xn)J(x1)J(x2)::J(xn): (4)

The classical �eld '0(x) is given by the normalized vacuum expectation value of the

�eld

'0(x) =
�W

�J(x)
=
< 0; outj'(x)j0; in >J

< 0; outj0; in >J

; (5)

and the e�ective action �['0] is obtained by performing a functional Legendre transfor-

mation

�['0] = W [J ]�
Z
d4xJ(x)'0(x): (6)

Using the functional chain rule and the de�nition of '0 given by eq.(5) we have

��['0]

�'0
= �J(x): (7)

Just asW [J ] generates the connected Green's functions bymeans of a functional Taylor

expansion, the e�ective action can be represented as a functional power series around the

value '0 = 0, where the coe�cients are just the proper n-point functions �(n)(x1; x2; ::; xn)

i.e.,

�['0] =
1X
n=0

1

n!

Z
d4x1d

4x2:::d
4xn �(n)(x1; x2; ::; xn) '0(x1)'0(x2)::'0(xn): (8)

The coe�cients of the above functional expansion are expressed in terms of the con-

nected one-particle irreducible diagrams (1PI). Actually, �(n)(x1; x2; :::; xn) is the sum of

all 1PI Feynman diagrams with n external legs. Writing the e�ective action in powers of
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momentum (around the point where all external momenta vanish) we have

�['0] =
Z
d4x

�
�V ('0) +

1

2
(@�')

2Z['0] + ::

�
: (9)

The term V ('0) is called the e�ective potential [12] .To express V ('0) in terms of the

1PI Green's functions, we write �(n)(x1; x2; ::; xn) in momentum space,

�(n)(x1; x2; ::; xn) =
1

(2�)n

Z
d4k1d

4k2::d
4kn(2�)

4�(k1+k2+::kn) e
i(k1x1+::knxn)~�(n)(x1; x2; ::; xn):

(10)

Assuming that the model is translationally invariant, i.e. '0 is constant over the

manifold, we have

�['0] =
Z
d4x

1X
n=1

1

n!

�
~�(n)(0; 0; :::)('0)

n + :::

�
: (11)

If we compare eq.(9) with eq.(11) we obtain

V ('0) = �
X
n

1

n!
~�(n)(0; 0; ::)('0)

n; (12)

then dnV

d'n
0

is the sum of the all 1PI diagrams carring zero external momenta. Assuming

that the �elds are in equilibrium with a thermal reservoir at temperature ��1, in the

Euclidean time formalism, the e�ective potential V (�; '0) can be identi�ed with the

free energy density and can be calculated by imposing periodic (antiperiodic) boundary

conditions on the bosonic (fermionic) �elds.

3 The one-loop e�ective potential of the Yukawa

model at zero and �nite temperature.

Let us consider a system consisting of bosons and fermions �elds interacting via a

Yukawa coupling in thermal equilibrium with a reservoir at temperature ��1. They are
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de�ned on a four dimensional at spacetime with trivial topology of the spacelike sections.

In the zero temperature case the generating functional for the scalar and fermionic �elds

correlation functions is given by:

Z[�; ��; J ] =
Z
D D � D' expfi[S[ � ; ; '] +

Z
d4x � � + �� + J']g (13)

where � (x),  (x), ��(x) and �(x) are elements of the Grassmann algebra and '(x) and

J(x) are commuting variables.

The perturbativelly renormalizable action has the form,

S[ � ; ; '] =
Z
d4x

�
1

2
(@�'b)

2 �
1

2
m2

0'
2
b + V ('b) + � b(i 6 @ �M0 � g0'b) b

�
(14)

where V ('b) =
�

4!'
4
b and m0, M0 are respectivelly the boson and the fermion bare masses

and �0 and g0 are the bare coupling constants. Of course 'b and  b are bare bosonic and

fermionic �eld.

The most general divergent terms are of the type [13]

��div =
R
d4x

�
1
2�Z'(@�')

2 � 1
2�m

2'2+

+�Z i � (i 6 @ � �M �  � g�Zg �  '+ 1
4��'

4 + 1
3��'

3 + �c'
� (15)

Although the action is renormalizable, the model is not multiplicatively renormaliz-

able. To circumvect this di�culty and to allow the theory to become multiplicatively

renormalizable we shall introduce at the tree level action all terms which we expect to be

generated by the renormalization procedure, i.e.

S( � ; ; ') =
Z
d4x

 
1

2
@�'@

�'�
4X

n=1

�n'
n + � (i 6 @ �M � g') 

!
+ counterterms; (16)

where �2 =
1
2m

2, �3 =
�
3! and �4 =

�
4! .
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As usual, perturbation theory is generated by,

Z(��; �; J) = expf�i
Z
d4x(i3g

�3

������J
+ V (

�

�J
))gZ0(��; �; J) (17)

where

Z0(��; �; J) = exp�i
Z
d4xd4y(��(x)�F (x� y)�(y) +

1

2
J(x)�(x� y)J(y)) (18)

with �F (x � y) and �(x � y) being respectively the fermionic and bosonic propagator

functions,

�F (x� y) = (i 6 @x +M)�(x� y); (19)

and

�(x� y) =
1

(2�)4

Z
d4p

e�ip(x�y)

p2 �m2 + i�
: (20)

>From the above formulas, following a porcedure entirely analogous to that described

in the preceding section for the pure scalar case it is easy to get the fermionic contribution

to the e�ective potential V ('0)

V ('0)
Z
d4x = iln

Z 0

0

�d d expfi
Z
d4x � (i 6 @ �M � g') g (21)

After a Wick rotation to Euclidean space and using the rules for Grassmann integrals

we get the contribution from the single fermionic loops to the scalar e�ective potential

V ('0)
Z
d4x = �ln det(i 6 @E �M � g'0) (22)

Using a well known result
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log det(M + g'0) = tr log(M + g'0); (23)

we have,

ln det(i 6 @E �M � g'0) = tr log(i 6 @E)�
1X
s=1

(�i)s

s
(M + g'0)

str(
1

6 @E
)s: (24)

Using a Fourier representation for 1
6@E

and taking into account that the contributions

from odd values of s in the above sum vanish, it is possible to recast the fermionic

contribution to the e�ective potential in the form,

V ('0) = 4
1X
s=1

Z
d4p

(2�)4
(�1)s

2s

(M + g'0)2s

(p2E)
s

: (25)

In the �nite temperature case using the Matsubara formalism we have to perform the

replacements ! ! !n =
2�
�
(n+ 1

2) and
1
2�

R
dq0E = 1

�

P
n. Then the contribution from the

single fermionic loops to the e�ective potential is given by

V ('0; �) =
2

�

1X
s=1

+1X
n=�1

Z
ddp

(2�)d
(�1)s

s

(M + g'0)2s

(!2
n + q2)s

: (26)

Let us de�ne the quantities,

a = (
1

��
)2 (27)

� =
'0

2��
(28)

and

 =
M

2��
; (29)
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where � is a parameter with mass dimension introduced to deal with dimensionless quan-

tities performing analytic extensions. First we use dimensional regularization going to a

generic D-dimensional spacetime. Then eq.(26) becomes

V (�; �) = �D
1X
s=1

a
D

2
�sf(D; s)( + g�)2s

1X
n=�1

1

((n+ 1
2)

2)s�
d

2

: (30)

where f(D; s) is given by:

f(D; s) =
2�

d

2

�(s)
�(s �

d

2
)
(�1)s

(2�)2s
: (31)

Before going one some commments are in order. It is well known [14] that dimensional

regularization techniques for massless �elds can not led to de�nite results due to the

presence of infrared divergences. Since we are regularizing only a d = D � 1 dimensional

integral, this procedure is equivalent to inserting a mass into the d dimensional integral. In

other words, the Matsubara frequencies play the role of "masses" in the integral provided

that we exclude the limit � !1 which means that we must restrict ourselves to non-zero

temperatures. Another point is that in order to evaluate the one-loop �nite temperature

diagrams the usual approach is to express the integrand as a countour integral [3]. In this

paper we use another technique still aplying the principle of the analytic extension.

In the next section we will analyse the singularity structure of the inhomogeneous

Riemann zeta function and other factors appearing in eq.(30) in order to identify the

divergent terms in the fermionic contribution to the e�ective potential. We start by

analytically regularizing the model.
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4 The singularity structure of the fermionic con-

tribution to the e�ective potential.

As we remarked before the fermionic contribution to the e�ective potential is ill de�ned

due to the singularities of the gamma function that appears in f(D; s) and the singularities

in the Matsubara sum. The Matsubara sum may be expressed in terms of the generalized

inhomogeneous Riemann zeta function, which can be analytically extended to a mero-

morphic function in the whole complex s plane. The polar terms must be removed in the

renormalization procedure. In order to identify these poles let us �rst recall the de�nition

of the inhomogeneous Riemann zeta function or Hurwitz zeta function [15]

�(z; q) =
1X
n=0

1

(n+ q)z
; (32)

which is analytic for Re(z) > 1.

After some manipulations it is possible to express the Matsubara sum in eq.(30) in

terms of �(z; q) and write V (�; �) in the form,

V (�; �) = 2�D
1X
s=1

a
D

2
�sf(D; s)( + g�)2s�(2s � d;

1

2
): (33)

To analytically extend the inhomogeneous Riemann zeta function, we go along the

following steps: �rst using the Euler representation for the Gamma function we write it

as

�(z; q) =
1

�(z)

Z 1

0
dt tz�1

e
�t

2

1 � e�t
: (34)

Next, we split the integral from zero to in�nity in two integrals, from zero to one and

from one to in�nity. The second one is an analytic function of z, the divergences being
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associated to the zero limit of the �rst integral. Then using a Bernoulli representation

for the integrand it is possible to get the following expression to the analytic extension of

�(z; 12)

�(z;
1

2
) = g1(z) +

1

�(z)

1X
n=0

Bn(
1
2
)

n!

1

z + n� 1
(35)

where g1(z) is given by

g1(z) =
1

�(z)

Z 1

1
dt tz�1

e
t

2

et � 1
; (36)

and the Bn(x) are the Bernoulli coe�cients [15]. We remark that in the literature

there is another formula for the analytic extension of the inhomogeneous Riemann zeta

function; the Hermite formula [16] given by

�(z; q) =
1

2qz
+

q1�z

z � 1
+ 2

Z 1

0
(q2 + y2)

�z

2 sin(z arctan
y

q
)

1

e2�y � 1
dy: (37)

Of course the analytic extension must be uniquely de�ned and these are only di�erent

representation of the same analytic extension. Substituting the analytic extension given

by eq.(35) in the fermionic contribution to the e�ective potential V (�; �) we get,

V (�; �) = �D
P1
s=1 a

D

2
�sh(D; s)( + g�)2s 1

�(�D

2
+s+1)�R1

1 dt t2s�D e
t

2

et�1
+
P1
n=0

Bn( 1
2
)

n!
1

2s�D+n

�
:

(38)

where the regular function h(D; s) is given by,

h(D; s) = 2
(�1)s

s

(2�
1

2 )D�4s

�(s)
: (39)

Let us analyse the two cases D = 3 and D = 4 separately. For the case D = 3 we have

V (�; �) = �3
P1
s=1 a

3

2
�sh(3; s)( + g�)2s 2

�(� 3

2
+s+1)�R1

1 dt t2s�3 e
t

2

et�1 +
P1
n=0

Bn(
1

2
)

n!
1

2s�3+n

� (40)
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The fermionic contibution to the e�ective potential is �nite. There is no ultraviolet

divergences in D = 3. One would not normally expect this since the tadpole graph is

ultraviolet divergent (s = 1).

For the case D = 4 we have

V (�; �) = �4
P1
s=1 a

2�sh(4; s)( + g�)2s 1
�(s�1)�R1

1 dt t2s�4 e
t

2

et�1
+

B0(
1

2
)

2s�4
+

B2(
1

2
)

4s�4
+
P1
n=3

Bn(
1

2
)

n!
1

2s�4+n

�
:

(41)

Note that the factor ��1(s� 1) just cancels the pole from the term n = 2 in the sum

over n. The pole comming from the term n = 0 in the sum must be canceled by the

introduction of a suitable counterterm. All other terms s � 3 are �nite.

5 Conclusion

The aim of this paper is to discuss an alternative method to deal with the Matsubara sum

in a �nite temperature �eld theory with bosons and fermions in interaction. We use this

method to calculate the one-loop fermionic contribution to the scalar e�ective potential

assuming the Yukawa coupling between fermions and bosons. Note that we are using a

BPHZ scheme with subtraction at zero momentum of the Feynman integrals. Matsumoto,

Ojima and Umezawa [17] claims that tha Matsubara method seems to produce temper-

ature dependent divergences which disapear only after a summation over the Matsubara

sums. We showed that the countertems are temperature independents.

A curious observation is in order. We note that eq.(38) does not contains singularities

for any odd space time dimension D, due to the fact that the sum is over integer values of

s, and the Bernouilli coe�cients Bn(
1
2) = 0 for n odd. For even values of D the fermionic

contribution to the e�ective potential (see eq.(38)) has only a divergence due to the term

s = D

2 , n = 0.
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It would be interesting to generalize the method if we consider that there is a total

conserved number of fermions [18]. This can be done introduzing a chemical potential �.

At �nite temperature the chemical potential will change the Matsubara frequencies by

!n ! !n+ i� [19]. In this case we have to analytically extend the inhomogeneous Epstein

zeta function �(z; q) for complex q. This subject is under invetigation.
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