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ABSTRACT

We propose a recurrent method to =simultaneously
calculate the characters and the irreducible representations of
finite solvable groups. The represzentations of a normal subgroup
are used as well as in the traditional induction procedure.
However, ocur method 1is applicable even when tLthe stabllizer of the
representations of the subgroup is the group itsealf and it has the
advantage that the representations cobtained are already symmetry
adapted to the composition series of the group.

‘Rey-words: Characters; IRREPS; Solvable groups.
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I. INTRODUCTION

A group structure is completely determined if we know the
multiplication table from which it is possible to obtain the
properties of the finite group and in particular its character
table and the correspondent unitary irreducible representations
Cirreps).

Burnside C1655), Dixon C1067>, Chen et al (1985) and Lee and
Chen (198680 have proposed some methods to obtain the character
tables of finite groups. Basically those methods 1nvolve the
=imultanecus diagonalisation of the structure constants of the
centre of the algebra of the finite group.

Similarly, in order to obtain the symmetry adapted irreps to
a canonical sequence, Chen et al (1985, Lee and Chen (1985) and
Nogueira et al ((1988) have proposed the diagonalisation of
different linear combinations of the elements of the algebra of
t.he centre of the nested groups in the series. '

These approaches are more convenient than the traditional
i nduction method when we are interested in calculate the symmetry
adapted irreps to a chain of subgroups as is the case of
spontaneous symmetry break. On the other hand, their application
implies a diagonalisation of at least one matrix of dimension
equal to the number of elements of the group. This fact limits
the application of these methods to groups of small order.

The purpose of this work is to give a recurrent method
applicable to solvable groups that will enabl e us Lo
simul taneously calculate the character table and the correspondent
irreps of the group. Moreover, the irreps obtained by this methed
will be already adapted to the composition series of the solvable
group.

In section I1 we give the method for a fundamental sequence
G b H such that G/AH == CP , where p is a prime number. Since the
factors of a composition series of a solvable group are
isomorphic to cyelic groups of prime order, the method can be

applied recurrently from the trivial subgroup of order ocne.
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As an example, we consider in section III the octahedral
group. We construct its irreps and compare them with those
obtained by the traditional induction method using the irreps of
normal subgroups.

Finally, in section IV we discuss the advantages in using
symmetry adapted irreps to composzition =series of solvable groups
and the extension of our method to groups which are not solvable.

II. CHARACTERS AND REPRESENTATIONS

let G be a finite group with a normal subgroup H such that
G/H = < tH | CLtHDP = H > and p is a prime number.

Let » € irrepl{H); the stabilizer Clittle groupd of » in & is
defined by SeCy? = € g6 | p%hd = pCghg™ = pchd > ¥ h e H.
First we want to express in a way applicable to our calculus two
resulis already known on the irreps of the group ¢

1> The induced representation » * 6 is irreducible in & Lif
the stabllizer of y in G is H,.

The matrix elements of the induced representation of ¢ are
given by

¥ 1+ &G Cf_:;l)i”‘j =

1>

retlg 79 if t'g Y e M
O otherwise

From this equatien, it is easy to find the characters z)’m of
rt6 ,

]
2 Ccn = Zx)’c\*."ht.“‘) v Tt =0, heH . Xn<p .
k=4

Using this result, we can calculate

P
cirjopy [ | = casjepY  § |Fet ™| = p |H|s|6] =1,
gt =1 helH
which allows us to conclude that the induced matrix »tG is

my Sos for axample Jansen and Boon, “Theory of finite groups.

Applications in Physics'', North Holland ow?,Ch. II. 6.
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irreducible in G , Q E D.

Now, since p 1l a prime number, the other alternative for
SGC;-') is &. Then,

22 When SGCyD =¢ , the induced representation p * 6 is

reducible in p irreps f‘k of & related by
re thh = & rcith.

In this case we have that »Cghg™ = UCyChdUCg ™, ¥ g € G with
UCg> the unitary matrix representing g. Then, g + UCg>, is a
projective irreducible representation of G, since UCh) = »Ch3. On
the other hand, we can write uwctlny = UCt)trCh). and the phase

factor of U(t.") can be expressed as a function of the phase factor

e'? of UCtd. If we write UCt) = Vctde'¥, we have
WCtdP = UCh ) = #Ch D = VCho)ei'p” - e@P? =1 . This defines e'*
up to a power m of w, with of =1 , m integer. Further, since
G/H Cp , & has at least p one-dimensional irreps given by
KkCtLh) = nkCt,"n-l) = o' where 1 <k <p and nkCtLI}D are the
irreps of G/H . Therefore, a particular choice of the exponent m

will only produce a rearrangement of the irreps l""c of G, which are
of the form T Ct'hd = UMW QED.

This result encouraged the search of a procedure to obtain
the representations of a group G in an irreducible form when the
stabilizer of the irreps of its normal subgroup is G itself.

Making use of the results above, it is immediate to obtain
the following relations for the characters of the irreps I"‘c within
a given coset t'H, for 0 < t £ p and I'Ch) = »Chd

"k z
Z (x et |? = |H|  if S0 =6 . 4=
heH

From this equation we see that there is at least one character
different from zeroc in each coset tm. On the other hand, if
A‘ € irrepCH> is not contained in the restriction of an irrep l"lc
of G on H , the following equality must hole

T
Z x ¥ct'md =0 . D

heH
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Equation (3> shows that if there are two or more classes of G
within the coset t."IH. at least two characters ertLh) must be
different from zero. On the other hand, if the coset t'H only
contains one complete class of G, the equality ert."h) = 0 must
hold, in contradiction with equation (23. Compatibllity between
these two results, impiies that if 'y = BCt,!'D. there are no
irreps l"k of & such that I"kCh:) = p{hd = A1Ch). This result, can
be shown using the following arguments :

As a first step, let us prove that the transversal t can
always be chosen such that its order o(t) is p® , a a positive
integer. Suppose that viH is the generator of G-/H. Then we have
wo= h,» h, € H If we take oCh)> = kp* t, with Ck.pd> =1 , and
since v ¥ 5 ¢vid  is an automorphism of G.H, we can always
write t = V¥ and therefore oft) = 1:)"’It QED.

Now we show that the cosets t.kﬂ-l contain elements in complete
clagses BLd of & and that elther all of them contaln only one
class or all of them contain two or more classes of G.

In order to prove this, it is convenient to write a generic

element of & as tkh. heH Since H is normal in G, we have

ctfroce et ™ = e et e T =t e

Suppose now that t'H contains only one class 8(*..".) of G. In
this case, the centralizer of Lt in @G, CGCt5 is < t | tP =1 >
and since Cl,p) =1, it follows that CgCth = €Ct™ ¥ 1 OED.
Then, equation €3> shows that if <t'sp = gtbd, and ir
A:.E irrepCH) is not contained in T &€ irrepl@G), xr(‘t."h) = O must
hold V< 1< p, h el

We have recently shown C(Nogueira et al 19885 that if
ert."hD = O , the restriction of "' of 6 on H is the direct sum of
p conjugate irreps v, of H. Therefore, all the irreps ' of & which
de not contain A’. of H can be calculated by the induction method
and those which contain A_ are given by A Ct'h) = W<t
The dihedral groups mznu and the tetrahedral group T are examples
of groups with these characteristics.

We are now ready to describa the procedure allowing the
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calculation of the characters and the irreps of the finite group &
as a function of the irreps of its subgroup H, if GAH = Cp and
SGC y) = 6. Our method is based on three fundamental equations
which are obtained from the orthogonality relationships for the
matrix elements of the irreps. The first fundamental relation
is +*

r T L I -1
X Cthd Cth D™ = []z|/|ecth ) 1) ¥ Chn D, (&)

where the sum is over every h such that th & ¥Cth)> and T runs
on the p irreps of &.

As we have shown, there always exists an element t,ha_ e {(tH>
such that ert.ha) # 0. This allows us to define

r L r -4
¥ cthd = []yl/ISCt,hd) | |x Ct,h“)ll Z fChhi_ J, s
b,
i

wher e

!Tcihd = fcthd e'*, e
i.e, trCthD is related to the characters of the elements of the
coset tH by the phase factor

Ly = T r »
e x Cthﬁ)/|x Cth ) I (B8*>
The second relation is"h
et = cly[/|HPY 2Mctthpd ZMen™. 7
heH

If we use this equation recurrently starting by 1 =1, we can
define
eTethy = FMctthe™. Q)
Putting thls in equation C7), we obtain
ghet™ = Cy|sH]d Z ghct'nh ) ZTcLnt. <)
h
i
From equations (5> and (92 we can calculate Erctl'h) ¥V Op . 1In
order to calculate ¢¥ we put L=p -1, h = Chohg)-‘ in equation
C85:
ipe _ JT.,.p1 -4 r b <)
e = ¥ It Choha) P 4 Ct.ha) . h°== | S Ci0D

¢ See Appendix A.
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This determines ei"' up to a factor o™ CwP=1).
Note that the choice of a particular value of m will only

interchange the irreps l"lc and, therefore, we can calculate the

r

characters of any irrep l"k from relations C4>-(8). Then, if x k

is the character of a particular irrep T‘k » we have our third

r-elat.icn“h
k r -4
l"kCt.D = C|r|w /|[H|32 x Cth D yChd |, 11D
- h
i
&G xri..ax xrk,p
r '4
oty =) § r
H 2 x %t n th < fcmo
Jj=t
4]
L ro,
t"H o LIS Y AT
0
LITTLE _
GROUP SGCyu) H SGC?'PD—— G
ri.ot Ct’%mu = ‘.VaCZl) I?’p' rlc ¥ g -1
IRREPS ’ ’ r td=—— x TCth "Dy Chd
O(I'I'l<p k,P Iml #
r, ctd =g ctP) heH
i o P ™
|
Table I: Character table and irreps of & .
Ao and (7 label the irreps of H , k' is o fixed vatue of k and p is

a prime number such that wP=1,

Table I shows the characters of the irreps of the group 6
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calculated by this method, together with the correspondent
stabllizers.

III. THE IRREPS OF THE OCTAHEDRAL GROUP

As an 1llustration we calculate the irreps of O. This group
is of interest by several reasons :
1> It is one of the better known groups among the spectroscopists
and as it has only 24 elements its subgroups structure is very
simple.
iid Since the stabilizer of the irreps Bi.Ci=1.a.33 of I]:'tz in © is
$®CB£) = ID‘. in order te obtain the irreps of O, we must search
for the allowable representation of ID‘ . Therefore, this is a
typical example where the stabilizer is such that H & SG G .
1ii) The group ¢ is a monomial group (Robinson 1882>, 1.e. all the
representations can be induced from the ocne-dimensional irreps of
the subgroups. This makes easy the calculation using alternative
methods.

z Y x
[Dz 1 Cz Cz C:z SOC;O SUC;VD
A 1 1 1 1 © ]
B 1 1 -4 -1 D <c=,¢’> D
1 &+ 4 z z
B 1 =1 1 D <cY,c* D
2 -+ [ 2 2
B 1 -1 - 1 D <c*,c> D
a 4 4 z 2

Table II: Characters of the irreps of
II}z and their stabilizers.

First we obtain the irreps from the traditional induction
met.hod. Table II shows the character table of the group [Dz and
the stabilizers of the irreps. Using this table, we calculate
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the characters of the induced representation At O :

2 TPc1> = M™acy =6, A% 20 ¥V g {0 - D, }.

From the characters of O, it can be deduced that
A’.f © = A‘e Azc 2E . It should be noted that this illustrates
Lthe case in which the induction procedure breaks down, i.e., for
those irreps of 6 induced by allowable representations of a
stabilizer which is the same as G itgself. In order to caleculate
T; and T; from Bi<of Dz we need to know tLhe allogable irreps Pi of

D‘ which subduce B‘. i e, r1¢ D2= 81. From a character table of
Eu (see Table III) it 1s easy toc see that the allowable
representations are Az and Bz. and they give the induced

representations 1; and T; of © in an irreducible form.

Dz a D
D, 1 c* ol oid 2¢. 2¢
2 2 2 2 &
A 1 1 1 1 1
‘ I
A, 1 ) -1 -1 1
B 1 1 1 -1 -1
i
B, 1 1 -1 1 -1
E 2 -2 o o o

Table III: Characters and irreps of D
Ca = C:@yb

Now, using that

¢D=ﬂ>‘a{?ﬂ)‘cﬁzﬂ)‘. D, =D, ®ab, ,

M-y}
z

\ 010 010
TCO =~4{100 TCR = {001 .
001 100

where a = C , = c:"" with flafl = o ,we obtain for T, of O,
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B!C h) O 0
T’.Ch) = 0 BaCh) 0 ’ BtChD < irreps(ﬂ)z)
&) o B’.C hd

Finally, if A2 is the one-dimensional irrep of © with Kernel
T, it must be¢ T_ = A_ T . Then,
2 2 1

TZCaD = —T‘Ca'.’) N Tzcm = 'rlcm ’ TzCh) = T’_(‘.'h) Vhe [Dz .

In order to calculate the character table and the irreps of ©
by our method, we first make the calculations for the group T,
starting with the irreps of Dz and after that we obtain the irreps
and characters of © from those of T. Since the tetrahedral group
is T=D,ep3D, @ 3 D, . where 3 D, = 8D, the character table
for T can be calculated in the following form. From equation (4D
we obtain x"Ct,h) = ei'p. where A is one of the one-dimensional
irreps kk of T. Using equation (7)) we have katﬁo = e''?. But
if we set \ = 3, we see Lhat e®'? = 1. Then, since the stabilizer
of the irreps of I])2 in T i T itself only for p = A‘. there are
only three one-dimensional irreps feor T. Finally, since the
irreps Bi of Dz are conjugate representations, the other irrep of
T is three-dimensional, and its characters can be calculated from

3 g
2Ch) = zx ‘) , x'Cgd) =0 Vge{l -D}

i=4

i D, AD, A*D,

T z 2 S _Cpd

1 3¢ 4C AC o
8 - ]

" Ai 1 1 1 1 O

E, 1 1 @ w” T

E 1 1 w? @ T

2
T 3 -1 0 o) o

Table IV : Characters and irreps of T and
their stabilizers

o C:yz. W = expZrism)
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The result is= given in Table IV, which also shows the stabilizers
of the irreps of T in ©. The rapresentation T of T is given using
equation (1> by
o Bzcw 0 o
T = {0 }. TChd = O B’Ch) 6] ’ Bi.ChD € irrapsCDz).
1 © 0 BCh

oor
o®o0

I T all
© 1 3¢ s8c BC? 6C
2 k- *
A 1 1 1 1 1
i
| a, 1 1 1 1 -1 -1
E 2 & -1 0 o
T 3 - o -1 1
4
T, 3 -1 0 1 -1

Table V: Characters and irreps of ©
Ca = Yy
2

We must now calculate the table of characters of O and its irreps
E, T‘ and Tz. Using table I, equations C4) and (7>, and knowing
that © =T @ a T , where the coset a T contains the ambivalent
classes GC; and SC:‘ » we obtain Table V. This table shows the
characters of the irreps of © arnd, in order to colncide with

Muliiken's nomenclature, we have taken x“CBC‘) = 1.

Now, using equation C1), it immediately follows

ECod = o 1 e _ EzCh) 0
1 0 » hy = » ELCh) L -] ir‘repsC'ﬂ').
0 E’.Ch)

Finally, we calculate T‘ and 'I‘z using equation (C11D. The
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elements of © for the correspondent classes are

[ z Yy
6C, =a{ 1, Co, Al . CD. AL ,CD }

= z ¥ Y. %
6C, = a {1, C, XCY , €D, /1 ., } .

If we put the expression of T & irrep(T) obtained from IDz in
equation Ci1), we have the following result for the element a,
which is in accordance with that obtained by the induction method,

0
TCod = - { 1
t o

oo

0
0} and T_= AT.
1 z 21

IV. CONCLUSIONS

Ac we have mentioned for ©, there is a subclass of solvable
groups, the monomial M—group=s, for which the traditional method of
induction gives all the ilrreps of order greater than one. Theze
groups have subgroups [Hi. such that, every I' € irreptiMd can be
induced from a one-dimensicnal irrep of IHi. and 1ts dimension is
given by |I'| = |D1:B-Ii_|. However, in problems where we need the
symmetry adapted irreps to a chain of mawimal subgroups, the
irreps obtained by that method are not convenient since Lhey are
adapted to a different sequence given by G b B-I‘_:or.. with
HET® = negmnH g'V¥geG. The octahedral group ©, which we took
as example, is monomial and if we calculate the irreps using that
property we will find the irrep E adapted to the sequence & b T
and 'I" and Tz adapted to O© b ﬂ)for. = [Dz' A further adaptation of
Tx and Tz to the sequence © > T b [Dz s would destroy the monomial
form.

It is important to bear in mind that if we have a solvable
group & = Gn » the symmetry adapted irreps to the composition
series are completely determined, given only the matrices

i
Ly | = [ né Fg SO, » LSk c12d

. . ‘.] 7
j=n ¥ k
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where u = pn...pi...;.z‘ U ERY T RRY CN and p numbers the
irreps of the subgroup Gk in the composition series of Gn.

This simplification is due to the fact that, since the cosets
t.’_: Gt_‘ are disjoint, every element g € Gn can be written in the
form of a product " .
g = t'n“"' t'i.l-"' 1

of powers of transversals t ., where O < k < p,. Then, equation
€12) not only allows a drastic simplification in the expression of
the irreps of Gh. but at the same time shows the descent in
symmetry of the irreps of the subgroups that occur in the
compogition series of Gn.

Finally, our method is also applicable to every finite group
for which the irreps of the tail group in its derived series are
known. This is so because every finite group has a derived series
that can be refined to another in a way that the factor groups in
the chain are ecyclic groups of prime order. Examples of tvthis
might be, for instance, those groups with derived series ending in

simple groups as is the case of &n for n = 5,



CBPF-NF-042/88
-13-

APPENDIX A

Let & be a finite group with an invariant subgroup H such
that G/H = CP = ¢ tH | CtHDP = H >. An element g € G can always
be written as t“h with O <k <p , tP=h eH and h eH
Since for different values of k, the cosets tﬁH are disjoint,
tn. covers all the elements of &  Ct*h # t"hj if x#1l or
hi. L hj).

If T € irreps(G> and I'Cthd = »(h), h € H and y € irreps(Hd,
from the orthogonality relationships for y(h)aé matrix elements,

it is quite easy to see that
FCt'hd  FCht™ = |T|/|H]d Z FCthpd , MCht™™ - cw
heaH
Making some substitutions in this relation we can ocbtain equations
Céd, C7) and €115 of section II.
Setting T=a , ©o=f , h =h* , 1=1 , m=-1 and

-
summing over a and {3, equation CAd becomes,

r r » r -1, -1
X Cth)> x'Cth)>™ = C|T|/|H[> Z x {th hCth >™h™1
heH

But,, since hthg{i = thL. and remembering that erh) = erh). wo
obtain equation €43,

r r » r -1
X Cth) X Cth)d” = [|F|/]ecth) 1 ) 2 Ch k™ , th e &th)
i

Now, if we gset S =a , 7 =¢ , hs =1 , m=1 and sum over a

and 3 in CA), we directly obtain equation (7D
ety = cjrisfH)d Z et an™
heH

Finally, setting m=p , h_ = tP , p=a and summing

aover o in CA), we obtain equation (11D

l Eeetnhy yen
rethd = c|r|/|mp. Z x “CLh R pChTHD

heH
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