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Abstract

We present an iterative algebraic formalism that contains the su(2) algebra as a

particular case. This algebra is written in terms of a functional of one generator of

the algebra, f(J0), that can be any analytical function. We construct the representa-

tion of the algebra for f(J0) = rJ0�s and build a map connecting this generalization

with suq(2) algebra. The algebra generated by the non-linear (quadratic) function

f is investigated as well. We study the representations of this algebra through the

dependence of these representations on the �xed points of the function f , and their

stability properties.
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1 Introduction

Recently, there has been intense activity in the study of deformed algebras. These

algebras recover known algebras when a parameter goes to a speci�c value [1]. Deformed

theories have been largely studied in both physics and mathematics with success [1, 2].

In physics one could interpret, for instance, special relativity and quantum mechanics as

very successful deformations (c ! 1 and �h ! 0 recovers classical physics). In the last

years there has been an increasing interest in the generalized statistical mechanics, which

is a deformation of the Boltzmann-Gibbs statistics [3].

Last year, a class of generalized Heisenberg algebras was introduced where, within this

class, we �nd deformed and non-deformed Heisenberg-type algebras [4, 5]. Associated

with this class of algebras there is a function, f , of one of the generators called the

characteristic function of the algebra. When f is linear this algebra becomes the well-

known q-oscillators [6]. Moreover, it was shown that this class describes the Heisenberg-

type algebraic structure of a family of one-dimensional quantum systems having any

two successive energy levels related by �n+1 = f(�n), where f is the above mentioned

characteristic function of the algebra [7]. Among the physical possible consequences of

this family of Heisenberg-type algebras, it was shown that it is possible to construct a non-

standard free quantum �eld theory based on this algebra [8]. Also, the representations of

the algebra are constructed using concepts of dynamical systems as attractors and their

stabilities [5].

Stimulated by the physical connection of the generalized Heisenberg algebra and its

algebraic richness, it was very recently introduced an analogous iterative generalization

of su(2) [9]. In this case there is also a characteristic function of one of the generators of

the algebra such that when f(x) = x� 1 the well-known su(2) algebra is recovered.

In this paper we apply this new approach to su(2), i.e., we construct an iterative

generalized su(2) algebra and discuss their representations. These representations are

constructed through their dependence on the �xed points of the function f , and their

stability properties. We construct a map connecting the linear case of this generalized

su(2) algebra with suq(2) and discuss some aspects of the generalized algebra when f is

non-linear.

In section II we introduce the iterative generalized su(2) algebra and study its rep-

resentation theory. In section III we establish the connection of this algebra with the

su(2) and suq(2) algebraic structures. In section IV we study the algebra for non-linear

functions f through their dependence on the �xed points of the function f , and their

stability properties. We construct the �nite dimensional representations associated with

the cycles and show the regions in the parameter space of the algebra where possibly these

representations occur. Section V is devoted to the conclusions.
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2 Iterative generalized su(2) algebra

Let us propose the following algebraic relations among the operators J0, J+ and J�:

J0 J� = J� f(J0) ; (1)

J+ J0 = f(J0)J+ ; (2)

[J+; J�] = J0(J0 + 1) � f(J0)(f(J0) + 1) ; (3)

where we are assuming J� = Jy+, J
y
0 = J0 and that f(J0) is an analytical function in J0.

This algebra satis�es, for all function f , the Jacobi identity

[J0; [J+; J�]] + [J�; [J0; J+]] + [J+; [J�; J0]] = 0 : (4)

The �rst term of the L.H.S., due to eq. (3), is identically null. To show that the sum of

the other two terms is equal to zero it is enough to expand them and use the property,

derived from eqs. 1 and 2 , that [J0; J+ J�] = 0 .

Using the algebraic relations in eqs. (1-3) it can be shown that the operator

C = 1=2 fJ+ J� + J� J+ + J0(J0 + 1) + f(J0)(f(J0) + 1)g (5)

satis�es the commutation relations

[C; J0] = [C; J�] = 0; (6)

i.e., C is one Casimir operator of the algebra.

If we substitute the speci�c function

f(J0) = J0 � 1 ; (7)

in eqs. (1-3), these relations can be written as,

[J0; J�] = �J� (8)

[J+; J�] = 2J0 ; (9)

reobtaining the well-known su(2) algebra. Thus, the algebraic relations proposed in eqs.

(1-3) contain, as a particular case, the su(2) algebra when we choose a speci�c linear

function of J0. To discuss this algebra and the role of the function f in it, we analyse its

respective representation theory.

Let us assume that we have an irreducible representation of the algebra given in

eqs. (1-3) such that the Hermitian operator J0 is diagonal. As C comutes with J0, the

eigenvectors of J0 are also eigenvectors of C. Let us label these eigenvectors as ja; �i,
where

J0ja; �i = �ja; �i (10)

Cja; �i = aja; �i ; (11)
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being a and � real numbers.

To examine the action of J� on these states, let us consider ja; �ii a normalized

eigenstate of J0 with respective eigenvalue �i, i.e.,

J0 ja; �ii = �i ja; �ii ; (12)

where i is an integer.

Applying eq. (1) to ja; �ii we have

J0 (J� ja; �ii) = J�f(J0)ja; �ii = f(�i)(J�ja; �ii) : (13)

Thus, we see that J� ja; �ii is also a J0 eigenvector with eigenvalue f(�i) that we call

from now on �i�1. Starting from ja; �ii and applying successively J� to ja; bii we create
di�erent states with J0 eigenvalues given by

J0
�
Jm
� ja; �ii

�
= fm(�i)

�
Jm
� ja; �ii

�
/ �i�mja; �i�mi ; (14)

where fm(�i) denotes them-th iterate of �i through f . We will consider from now on only

functions and initial values such that future iterations of these initial values are always

lower than the previous values. This means that the function f and initial value we are

assuming here satisfy �j > f(�j) > f(f(�j)) > : : : > fm(�j) > : : :, where fm means

the m-th iterate of �j through f and m is a positive integer. In a general case, however,

the only necessary condition on the function f is that any future iteration of the highest

weight, let us call it �j, is lower than itself.

Since the application of J� on j�ii creates a new vector, whose respective J0 eigenvalue

has iterations of �i through f increased by one unit, but lower in absolute value, it is

convenient to de�ne the new vectors Jm
� ja; �ii as proportional to ja; �i�mi, as was done

in eq. (14), and we then call J� a lowering operator. Note that

�i�m = fm(�i) = f(�i�m+1) ; (15)

where m denotes the number of iterations of �i through f . Notice that the structure of

the algebraic relations in eqs. (1, 2) yields the iterative eq. (15) among the eigenvalues

of J0; that is why we call iterative this algebraic structure.

Following the same procedure for J+, applying eq. (2) to ja; �ii, we have
J+J0ja; �ii = �i (J+ja; �ii)

= f(�i+1) (J+ja; �ii)
= f(J0) (J+ja; �ii) ; (16)

implying that J+ja; �ii is also a J0 eigenvector with eigenvalue �i+1. Then, J+ja; �ii is
proportional to ja; �i+1i showing that J+ is a raising operator.

Applying J+ to ja; �ii we will get states with increasing J0 eigenvalues. For a �nite

dimensional representation of the algebra given by the eqs. (1-3), there will be a highest

weight �j such that
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J+ja; �ji = 0 : (17)

Clearly then, J�J+ja; �ji = 0 . From eq. (3) we have that J+J� = J�J+ + J0(J0 + 1)�
f(J0)(f(J0) + 1). Substituting this expression in eq. (5), we see that C can be rewritten

as

C = J�J+ + J0(J0 + 1) : (18)

Using eq. (18) we have

J�J+ja; �ji = (C � J0(J0 + 1))ja; �ji = 0 : (19)

As Cja; �ji = aja; �ji, it follows that

a = �j(�j + 1) ; (20)

showing that if we write the eigenvalue of C as equal to �j(�j + 1) then �j will be the

highest possible value for J0. Note that the Casimir of this generalized algebra presents

the same formal expression as the Casimir of the angular momentum algebra.

By an analogous reasoning, for a �nite dimension representation there is also a lowest

J0 eigenvalue, let us call it �b, such that it satis�es

J�ja; �bi = 0 ; (21)

implying that J+J�ja; �bi = 0. Using a procedure similar to that developed just above

giving eq. (19), we get

J+J�ja; �bi = (C � f(J0)(f(J0) + 1)ja; �bi = 0 ; (22)

leading to the relation

a = f(�b)(f(�b) + 1) : (23)

Comparing eq. (20) with eq. (23) we get that

f(�b) = ��j � 1 ; (24)

and the allowed values of �i satisfy

�j � �i � �b (= f (�1)(��j � 1)) : (25)

If we start from ja; �bi and apply J+ to it we will reach ja; �ji after d � 1 steps, where d

is the dimension of the representation, a positive integer number. We then have

�b = fd�1(�j) : (26)

As the eigenvalue a is related to �j, we will denote in the following the orthonormal

eigenvectors ja; �j�mi � j�j; j�mi for simplicity and for easier comparison with standard
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su(2) notation. We also call, without loss of generality, the dimension d = 2j + 1. Note

that 2j is an integer, associated with the number of iterations (2j) of �j through f until

to reach �b and �j is, in this general case, a real number. Therefore, there is a hidden

symmetry in the sequence of eigenvalues of this generalized su(2) algebra.

In general, we obtain the following expressions for a general m lying between 0 and

2j:

J0j�j; j �mi = �j�mj�j; j �mi (27)

J+j�j; j �mi = Nm�1j�j; j �m+ 1i (28)

J�j�j; j �mi = Nmj�j; j �m� 1i (29)

Cj�j; j �mi = �j(�j + 1)j�j ; j �mi ; (30)

where N2
m = (�j ��j�m�1)(�j+�j�m�1+1) = �j(�j +1)��j�m�1(�j�m�1+1) and that

can be proved in a similar way to the proof made for the generalized Heisenberg algebra

in [5]. We observe that if we put m = 0 in eq. (28) then N�1 � 0, which is consistent

with eq. (17). Also, if we put m = d � 1 in eq. (29) we should have Nd�1 = 0, giving us

a cut condition on the eigenvalues, i.e,

�j + �j�d + 1 = 0 : (31)

The eq. (31) also gives us the condition the eigenvalues of C should satisfy. The only

�j values that allow us to have �nite dimension representations are those that satisfy eq.

(31), i.e., after some �nite number of iterations (say d), the d-th iteration of �j through

f gives exactly ��j � 1. Otherwise, the dimension of the representation will be in�nite.

This condition gives us the set of allowed values of �j ; this set consists in general of an

in�nitely enumerated number of values. Also, as �j � �j�d , from eq. (31) we have

�j � ��j � 1) �j � �1=2 ; (32)

a result that is valid for any function f and �j satisfying eq. (25). Clearly, once the value

of �j is chosen, this value will be the highest value of the operator J0 in the associated

�nite dimension representation.

Let us now analyse the algebraic relations given by eqs. (1-3) when the function f is

a linear one.

3 Linear functions

3.1 su(2)

Let us �rst study the su(2) case where f(J0) = J0 � 1 implying that f(�) = � � 1.

As we have seen, with this function we reproduce the commutation relations of the su(2)

algebra. It is straightfoward to verify that a general eigenvalue �j�m can be written as:

�j�m = fm(�j) = �j �m: (33)
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Table 1: (C; J0) and (J2; Jz) similarities

C J2 (su(2) algebra)

[C; J0] = 0 [J2; Jz] = 0

Cj�j; j �mi = �j(�j + 1)j�j ; j �mi J2jj;mi = j(j + 1)jj;mi
J0j�j; j �mi = �j�mj�j; j �mi Jzjj;mi = mjj;mi

�j (real) is the highest J0 eigenvalue j (semi-integer) is the highest

Jz eigenvalue

C = J2 (if f(J0) = J0 � 1)

Using eq. (33) in eq. (31) and remembering that d = 2j +1, i.e., �j�d = �j � (2j+1)

we have

�j + (�j � 2j � 1) + 1 = 2�j � 2j = 0 ; (34)

implying that �j � j. As 2j +1 is an integer, this means that j and consequently �j can

be an integer or a semi-integer, as it is well-known. Also, from eq. (26), we see that the

lowest eigenvalue is �b = f2j(�j) = �j � 2j = �j, and the eigenstates can be written as

jj; j �mi, where m goes from zero to 2j.

The operator C turns out to be

Csu(2) = (1=2)fJ+J� + J�J+g+ J2
0 ; (35)

which is exactly the expression for the squared total angular momentum operator J2 =

J2
x + J2

y + J2
z if we write J+ = Jx + iJy, J� = Jx � iJy and J2

z = J2
0 . It can be imediately

seen that the eq. (20) can be written now in the usual way j(j + 1). It is interesting

to note that this form is preserved even for the general case where �j is real. There

are interesting analogies between the operator J2 of the angular momentum algebra and

our C operator that is shown in table I. This suggest that this generalized algebra could

describe, for at least some f , a generalized angular momemtum algebra.

In general, in order to see the iterations through a graphical analysis of the function f

we graph y = f(x) together with y = x. Where the lines intersect we have x = y = f(x),

so that the intersections are precisely the �xed points. Now, for a point x0, di�erent

from the �xed point, in order to follow its path through iterations with the function f we

perform the following steps

1. move vertically to the graph of f(x),

2. move horizontally to the graph of y = x, and

3. repeat steps 1, 2, etc.

A graphical representation of the su(2) algebra can be seen in �g. (1) where we plot the

function f(�) = �� 1 versus � for �j = j = 2. We also plot the vertical line representing

the cut condition given by eq. (31), i.e., �j�d = ��j � 1 = �j � 1 = �3.
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Figure 1: Five dimensional representation of the su(2) algebra for �j = 2. The dashed line

(�j�d = �3) is the cut condition. The iterations are indicated by the arrows. The thinner line

is the function f(�) = � and the thicker one is the function f(�) = �� 1.

We see that the iterations of j through f reach exactly the intersection of the vertical

line given by the cut condition and the function itself. If the starting point �j is not an

integer or semi-integer, the future iterations of this value will never reach the intersection

with the cut line and the iterations will evolve forever. There is no lower bound. The

dimension of this representation is in�nite. Note, also, that there is no �xed point in

this case. In this way, a graphical analysis of the function f gives us a quickly and very

useful information about the representation of the algebra, without need to use extensive

calculation. It is also easy to see in this graph that the eigenvalues always decrease in

absolute value when the iterations of the function f increase.

3.2 Linear deformations of su(2)

Let us consider the function f as

f = rJ0 � s ; (36)

where r and s are real numbers. The eqs. (1-3) can be written as:

[J0; J�]r = �sJ� (37)

[J0; J+]r�1 = (s=r)J+ (38)

[J+; J�] = (1 � r2)J2
0 + (1 + 2rs � r)J0 � s(1� s) ; (39)

where [A;B]r = AB � rBA is the r-deformed commutation of two operators A and B.

There are three important cases to be analysed: (I) r = 1 and s > 0; s 6= 1, (II)

r > 1 and (III) jrj < 1. In the �rst case we consider only positive (unlike s = 1) values

of s because negative values of s will not satisfy the condition given by eq. (25). The

r-commutator in eqs. (37-39) turns out to be real commutators and the eigenvalues of J0
will be:

�j�m = �j �ms : (40)
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The cut condition given by eq. (31) leads to the following value of �j once the dimension

(d) of the representation is chosen:

�j =
sd� 1

2
: (41)

For a �xed value of s and for each di�erent dimension of the representation we want, we

have a di�erent initial value allowed. As s can be any positive real number ( 6= 1), this

implies that �j can also be a real number. Note that the transformed operators ~J� = J�=s

and ~J0 = J0=s+(s� 1)=(2s2) obey the su(2) algebra, while J� and J0 satisfy the algebra

given by eqs. (37-39) for r = 1 and s > 0; s 6= 1. The graphical representation of this

case is similar to the su(2) case, with constant spacing s between the eigenvalues. The

generalized Casimir operator for this case is

Cs = (1=2)fJ+J� + J�J+ + 2J2
0 + (1 � s)J0 + s(s� 1)g : (42)

In case (II), r > 1 and thus exists a �xed point �� where the function f crosses the

diagonal y = �,

�� = s=(r � 1) : (43)

This �xed point is unstable, ((@f=@�)j�� = r > 1), showing that only points below �� are

allowed if we obey the condition given by eq. (25). Also, eq. (32) shows that �j � �1=2,
a necessary condition to have �j � �j�d. Then, s and r should satisfy the inequality

�� � �1=2 and �j lies within �1=2 < �j < ��. But even in this interval only those values

of �j that satis�es eq. (31) are allowed. The eigenvalues of J0 can be written as:

�j�m = fm(�j) = rm�j � s [m]r ; (44)

where [m]
r
� (rm � 1)=(r � 1) is the Gauss number. The cut condition given by eq. (31)

and the eq. (44) yield us an expression for �j once the function f has been given (this

means that r and s are given) and the dimension of the representation is chosen. We have

for �j:

�j = (s[d]r � 1)=(rd + 1) : (45)

For each dimension we want, we have a di�erent starting point, generally a real number.

In �g. (2) we show an example of this case.

There is also a marginal two dimensional representation for r = �1. The case r < �1
is not allowed because it is not possible to obtain a highest weight representation.

In case (III), there is also a �xed point with the same formal expression for ��, but

in this case jrj < 1. This �xed point is stable (@f=@�)j�� = r; jrj < 1), indicating

that only the region with �j > �� is allowed (since �j is the highest value). The formal

expressions given by eqs. (44) and (45) are still valid here, but with r < 1. However, as

in this case we are only considering �j > ��, the iterations of f will approach the �xed

point. Yet, note that in order to have a �nite dimension representation we must have

�� < ��j�1, otherwise the dimension of the representation will be in�nite. Also, the eq.
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Figure 2: Case II; 4-dimensional representation for r = 2, s = 1, �j = 14=17 and �? = 1. The

dashed line is the cut condition �j�d = �31=17. The thinner line is the function f(�) = � and

the thicker one is the function f(�) = 2�� 1.

(45), under the restriction given by eq. (32) yields, in this case, �� < �1=2. Obviously,

the cut condition given by eq. (31) should be obeyed by the allowed values of �j. For a

�xed function, there are in�nitely countable possible values of �j, one for each respective

dimension. A graphical representation of this case can be seen in �g. (3).
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Figure 3: Case III; 4-dimensional representation for r = 0:7, s = 1, �j = 1:23619 : : : and

�? = �3:33333 : : :. The dashed line is the cut condition �j�d = �2:23619 : : :. The thinner line

is the function f(�) = � and the thicker one is the function f(�) = 0:7�� 1.

3.3 Connection with suq(2)

In this section we are going to show the connection of the generalized su(2) algebra for

linear f(J0), eqs. (1-3), with the deformation of su(2) found in the literature as suq(2)

[1]. The suq(2) operators, let us call them S3 and S�, have the following commutation

relations among them [1]:

[S3; S�] = �S� (46)

[S+; S�] = [S3] ; (47)
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where [x] � (qx � q�x)=(q � q�1). The parameter q is a real number and is called the

deformation parameter of the algebra. When q ! 1 the above commutation relations

recover the su(2) relations. A simple transformation shows that [x] = q�x+1[x]q2, where

[x]q2 = (q2x � 1)=(q2 � 1). The action of these operators on the states of an irreducible

representation of the suq(2) algebra, whose dimension is 2j + 1, can be written as [1]:

S�jj; j �mi =
q
q�2j+1[j � (j �m)]q2[j � (j �m) + 1]q2 jj; j �m� 1i

S3jj; j �mi = (j �m)jj; j �mi (48)

where 2j + 1 is a positive integer and m = 0; 1; 2; : : : ; 2j.

In general it can be found explicit functionals that map generators of an speci�c

algebra to another one [10]. In particular, there is a speci�c map that convert the su(2)

generators into the generators of suq(2) [10]. The relevance of these maps is that they

allow to construct di�erent co-algebra structures based on a known co-algebra.

In our case, if we remember the action of the J0 operator in a space of dimension

2j + 1, eq. (27), and use the expression of �j�m given by eq. (44) with r � q2, we see

that expressing the operator J0 as:

J0 = q2(j�S3)�j � s [j � S3]q2 ; (49)

this operator acts on the 2j + 1 states of the representation of the suq(2) algebra exactly

as it does on its own space of same dimension.

If we identify

J+ =

q
(Q1�j �Q2[j � S3 + 1]q2)(Q3 �j + 1 +Q2[j � S3 + 1]q2)q

q�2j+1[j � S3 + 1]q2[j + S3]q2
S+ ; (50)

where Q1 � (q2�2)=(q2�1), Q2 � (q2�1)�j� s and Q3 � q2=(q2�1), this operator also

acts on the 2j+1 states of the suq(2) algebra exactly the same way it does on its own 2j+1

space of states as given by eqs. (28) and (44). As J� = Jy+, the transformations given by

eqs. (49, 50) connect the suq(2) algebra with the r 6= 1 linear case of our formalism.

Applying the same procedure just described above, we can compute the inverse map,

i.e., to express the suq(2) generators in terms of J(�; 0), that could be used to obtain the

co-algebra structure of the generalized su(2) algebra given by eqs. (37-39).

Therefore, we have shown that this linear case is connected to the suq(2) algebra.

Moreover, this formalism allows generalizations of su(2) to more complex algebras ob-

tained by considering non-linear functions f in eqs. (1-3). These algebras, depending on

the function f , will not be simply deformations of su(2). For each non-linear function f

the representation theory should be constructed following the scheme presented in [5].
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4 Non-linear functions

In this section we consider some elementary aspects of the representation theory of the

algebra de�ned by eqs. (1-3) for f(x) = t x2 + r x� s . In this case the algebra becomes

[J0; J+]r�1 = �r�1 (tJ2
0 � s)J+ ; (51)

[J0; J�]r = J� (tJ
2
0 � s) ; (52)

[J+; J�] = �t2J4
0 � 2trJ3

0 + (1� (1 � s)t� r2 + st)J2
0 (53)

+(1� r(1 � 2s))J0 � s(1� s) :

Of course, for t = 0 we recover the linear (or r-deformed) su(2) algebra given in eqs.

(37-39). For t = 0 and r = s = 1 we recover the standard su(2) algebra.

We focus now on the analysis of the �nite dimensional representations of the above

quadratic su(2) algebra 1. To this aim we have to look for the �nite dimensional repre-

sentation solutions of eqs. (27-30). Since we are starting from a highest weight vector and

in order to have a �nite representation we must �nd the conditions where the eq. (29) is

identically null. This is obtained analysing the zeros of the equation

N2
d�1 = (�j � �j�d)(�j + �j�d + 1) = 0 : (54)

In eq. (54), the zeros of the term �j ��j�d can be obtained through the analysis and the

stability of the �xed points of f(x) = t x2+ r x� s and their composed functions [5]. The

other term, �j + �j�d + 1, is the cut condition.

In order to analyse the stability of the �xed points of f(x) it is convenient to discrim-

inate three cases: (I) � < 0, (II) � = 0 and (III) � > 0, for � = (r � 1)2 + 4 t s. In

the �rst case there is no �xed point and we see, by a graphical analysis similar to that

discussed in subsection 3.1, that there is no �nite dimensional representation; in case (II),

we have one �xed point given by �? = (1�r)=2t. This �xed point corresponds to a trivial

one-dimensional representation of the algebra for �j = �? since N0 = 0 (�j�1 = �j = ��).

Case (III) is less trivial. In this case it is also possible to have attractors of period 1,

2, 4, � � � and even a chaotic region in the space of parameters (t, r, s, �0) where, as it is

well-known, there are cycles associated with all integer numbers.

For 0 < � < 4 there is only trivial one-dimensional representations associated to the

�xed points �? = f(�?), with highest weight:

�?
� =

1� r �p�
2 t

: (55)

At � = 4 the one-cycle looses stability and a stable two-cycle appears, solution of �? =

f2(�?), where it is considered solutions di�erent from the previous one (attractors of

period 1), where f2(x) means f(f(x)). They are

�?
� =

�1� r �p�1

2 t
; (56)

1From now one we are considering t > 0; the analysis of negative values of t is similar.
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where �1 = �3 � 2 r + r2 + 4 t s. In this case, � > 4, we have a two-dimensional rep-

resentation of the algebra simply choosing the highest weight, �j , as the highest element

of the two cycle, i.e, �?
+. Note that in eq. (54) the term �j � �j�d becomes, in this

two-dimensional case, �?
+ � f2(�?

+), that is identically zero. The matrix representation is

given by

J0 =

 
�?
+ 0

0 �?
�

!
; J+ =

 
0 0

N0 0

!
; J� = Jy+ ; (57)

where N0 is computed for � > 4 and �j = �?
+.

For � > 6 we will have other cycles, of length 4, 8, . . . , 2k . . . , entering then in

the chaotic region where all cycles will be present. In general, for a d-cycle we have a

d-dimensional representation where the highest weight of the representation is the largest

element of the cycle. The term �j � �j�d of eq. (54) is identically null for this cycle.

There are also �nite dimensional representations coming from the zeroes of the cut

condition �j+�j�d+1 = 0 in the expression of Nd�1. For example, the regions associated

with the possible highest weight vector solutions for the �rst cycles are better understood

studying the corresponding � intervals. For the one-cycle, the following region

0 < � < 4 ; ��� < �j < ��+ ; (58)

is the only region in the � real axis where it is possible to �nd highest weight vectors, apart

the trivial one-dimensional case already mentioned. In order to select �nite d-dimensional

representations we must pick up the points (if they exist) in this interval that satisfy the

cut condition �j + �j�d + 1 = 0.

For the two-cycle, the following region

4 < � < 6 ; �?
+ < �j < �?

+ ; (59)

is the only region in the � real axis where it is possible to �nd highest weight vectors,

apart the two-dimensional representation (�j = ��+). In order to select �nite dimensional

representation we have to �nd the points (if they exist) in this interval that satisfy the

cut condition. For higher cycles the analysis is similar. In all cycles the allowed regions

to get possible �nite dimensional representations range from the largest element of the

cycle up to ��+.

5 Conclusion

We have developed and extended the study of the algebraic structure of a su(2) gen-

eralized algebra introduced in [9]. We have constructed the representations of this gen-

eralized algebra for the linear case, f(J0) = rJ0 � s, and also for the quadratic case,

f(J0) = tJ2
0 + rJ0 � s. These representations are constructed using their dependence on

the �xed points of f , and their stability properties.
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The connection with the suq(2) has also been established. We have constructed a map

connecting the generators of the generalized algebra for the linear case, to the generators

of the well-known deformation suq(2). This map could be useful to construct the co-

multiplication rule for the generalized algebra in the linear case f(J0) = rJ0 � s.
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