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Non-Abelian (2,0)-Super-Yang-Mills Coupled to
Non-Linear �-Models
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Considering a class of (2,0)-super-Yang-Mills multiplets that accommodate a pair of independent
gauge potentials in connection with a single symmetry group, we present here their non-Abelian
coupling to ordinary matter and to non-linear �-models in (2,0)-superspace. The dynamics and the
couplings of the gauge potentials are discussed and the interesting feature that comes out is a sort
of \chirality" for one of the gauge potentials whenever light-cone coordinates are chosen.
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In a previous paper [1], we discussed the dynamics
and the couplings of the Abelian vector potentials of
a class of (2; 0)-gauge super multiplets([2]-[8]) in con-
nection with a single U(1)-symmetry group. Since a
number of interesting features came out, it was a natu-
ral question to ask how these �elds would behave if the
non-Abelian version of the theory was to be considered.

We can see that indeed some subtle changes occur.
As we wish to make a full comparison between the two
aspects(Abelian and non-Abelian) of the same sort of
theory, all the characteristics of the original formula-
tion were kept, namely, the coordinates we choose to
parametrise the (2; 0)-superspace are given by:

zA � (x++; x��; �; ��); (1)

where x++, x�� denote the usual light-cone variables,
whereas �, �� stand for complex right-handed Weyl
spinors. The supersymmetry covariant derivatives are
taken as:

D+ � @� + i��@++ (2)

and

�D+ � @�� + i�@++ ; (3)

where @++ (or @��) represents the derivative with re-
spect to the space-time coordinate x++ (or x��). They
ful�ll the algebra:

D2
+ = �D2

+ = 0 fD+; �D+g = 2i@++: (4)

With these de�nitions forD and �D, one can check that:

ei�
��@+D+e

�i���@+ = @�; (5)

e�i�
��@+ �D+e

i���@+ = @��: (6)

The fundamental non-Abelian matter super�elds
are the \chiral" scalar and left-handed spinor super-
�elds, whose respective component-�eld expressions are
given by:

�i(x; �; ��) = ei�
��@++ (�i + ��i);

	I(x; �; ��) = ei�
��@++ ( I + ��I ); (7)

the �elds �i and �I are scalars, whereas �i and  I stand
respectively for right- and left-handed Weyl spinors.
The indices i and I label the representations where the
correspondenting matter �elds are set.

We present below the gauge transformations of both
� and 	, assuming that we are dealing with a compact
and simple gauge group, G, with generators Ga that ful-
�ll the algebra [Ga; Gb]=ifabcGc. The transfomations
read:

�0i = R(�)ij�
j; 	0I = S(�)IJ	

J ; (8)

where R and S are matrices that respectively repre-
sent a gauge group element in the representations un-
der which � and 	 transform. Taking into account the
chiral constraint on � and 	, and bearing in mind the
exponential representation for R and S in terms of the
group generators, we �nd that the gauge parameter su-
per�elds, �a, must satisfy the same sort of constraint.
They can therefore be expanded as follows:

�a(x; �; ��) = ei�
��@++(�a + ��a); (9)

where �a are scalars and �a are right-handed spinors.

The kinetic action for �i and 	I can be made invari-
ant under the local transformations (8) by minimally
coupling gauge potential super�elds, �a

��
(x; �; ��) and

V a(x; �; ��), according to the minimal coupling prescrip-
tions:
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c

Sinv =

Z
d2xd�d��fi[ ��ehV (r���)� ( �r��

��)ehV �] + �	ehV 	g; (10)

d

where the gauge-covariant derivatives are de�ned in the
sequel.

The Yang-Mills supermultiplets are introduced by

means of the gauge-covariant derivatives which, accord-
ing to the discussion of ref. [7], are de�ned as below:

c

r+ � D+ + �+; �r+ � �D+; (11)

r++ � @++ + �++ and r�� � @�� � ig���; (12)

d

with the gauge superconnections �+, �++ and ��� be-
ing all Lie-algebra-valued. Note that �++ does not en-
ter the Lagrangian density of eq.10). The gauge cou-
plings, g and h, can in principle be taken di�erent; nev-
ertheless, this would not mean that we are gauging two
independent symmetries. There is a single simple gauge
group, G, with just one gauge-super�eld parameter, �.
It is the particular form of the (2; 0)-minimal coupling
(realised by the exponentiation of V and the connection
present inr��) that opens up the freedom to associate,
in principle, di�erent coupling parameters to the gauge
super�elds V and ���. �+ and �++ can be both ex-
pressed in terms of the real scalar super�eld, V (x; �; ��),
according to [1]:

�+ = e�gV (D+e
gV ) (13)

and

�++ = �
i

2
�D+[e

�gV (D+e
gV )]: (14)

To establish contact with a component-�eld formu-
lation and to actually identify the presence of an addi-
tional gauge potential, we write down the �-expansions
for V a and �a

��
:

V a(x; �; ��) = Ca + ��a � ����a + ���va++ (15)

and

�a
��

(x; �; ��) =
1

2
(Aa

��
+ iBa

��
) + i�(�a + i�a)

+ i��(�a + i!a) +
1

2
���(Ma + iNa):(16)

Aa
��

, Ba
��

and va++ are the light-cone components
of the gauge potential �elds; �a; �a; �a and !a are left-
handed Majorana spinors; Ma; Na and Ca are real
scalars and �a is a complex right-handed spinor.

The in�nitesimal gauge transfomations for V a and
�a are given by

�V a =
i

h
(��� �)

a
�

1

2
fabc(�� + �)bVc (17)

and

��a
��

= �fabc�b�c�� +
1

g
@���a: (18)

No derivative acts on the �)a's in eq.(17), which sug-
gests the possibility of choosing a Wess-Zumino gauge
for V a. It such a choice is adopted, it can be shown that
the gauge transformations of the �-component �elds
above read as follows:

=
2

h
=m�;

�va++ =
2

h
@++�

a � fabc�
bvc++;

�Aa
��

=
2

g
@���

a � fabc�
bAc

��
; ;

�Ba
��

= �fabc�
bBc

��
;

��a = �fabc�
b�c;

��a = �fabc�
b�c;

�Ma = �fabc�
bM c + fabc@++�

bBc
��
;

�Na =
2

g
@++@���

a � fabc�
bN c � fabc@++�

bAc
��

;

��a = �fabc�
b�c;

�!a = �fabc�
b!c; (19)

and they suggest that we should take h = g, so that
the va++-component could be identi�ed as the light-cone
partner of Aa

��
,

va++ � Aa
++; (20)
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this procedure yields two component-�eld gauge poten-
tials: A� � (A0; A1) = (A++;A��) and B��.

It is interesting to point out here that the �rst di�er-
ence between the Abelian and the non-Abelian version
of the theory arises. In the Abelian version [1], it was
shown that both �elds � and ! were gauge invariant
and the �elds M and N could be identi�ed with a com-
bination of A�� and B��. This combination, which
was naturally dictated by the form of the gauge trans-

formations, ensured the symmetry of the Lagrangian.
In the present situation, the gauge transformations do
not undertake that we express M and N in terms of
A�� and B��, as it was done before but; on the other
hand, the �-and !-�elds are no longer auxiliary �elds
as they were in the Abelian version.

To discuss the �eld-strength super�elds, we start
analysing the algebra of the gauge covariant derivatives.
So, the �eld strengths are de�ned such that:

c

fr+;r+g � F = 2D+�+;

fr+; �r+g � 2ir++;

[r+;r++] � W� = D+�++ � @++�+;

[r+;r��] � W+ = �igD+��� � @++�+ � ig[�+;���];

[ �r+;r++] � U+;

[ �r+;r��] � U� = �ig �D+���;

[r++;r��] � Z+� = �ig@++��� � @���++ � ig[�+;���]: (21)

d

The results obtained for the �eld-strengths are con- sistent with the Bianchi identities. The identity for U+,

c

[ �r+; fr+; �r+g] + [r+; f�r+; �r+g] + [ �r+; f�r+;r+g] = 0 (22)

d

gives immediately that U+ = 0. The Bianchi identity for Z+�,

c

[r��; fr+; �r+g] + fr+; [ �r+;r��]g � f �r+; [r��; �r+]g = 0; (23)

d

allows us to express Z+� as

Z+� = �
i

2
r+U� �

i

2
�r+W�; (24)

and, �nally, the Bianchi identity

c

[ �r+; fr+;r+g] + [r+; fr+; �r+g] + [r+; f�r+;r+g] = 0 (25)

d
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leads to

W+ =
i

4
�D+F : (26)

These are the relevant results yielded by pursuing an

investigation of the Bianchi identities.
The gauge �eld, A�, has its �eld strength, F�� , lo-

cated at the �-component of the combination 
�W�+
�U�. This suggests the following kinetic action for the
Yang-Mills sector:

c

SYM =
1

8g2

Z
d2xd�d��Tr
�


=

Z
d2xTr[

�1

4
F��F

�� +
i

4
�

$

@++ �� +
1

4
M2]; (27)

d

where � = �+ i� + ��� i�! and A
$

@ B � (@A)B �
A(@B).

Choosing now a supersymmetry-covariant gauge-
�xing, ins tead of the Wess-Zumino, we propose the
following gauge-�xing term in superspace:

Sgf = �
1

2�

Z
d2xd�d��Tr[���]

= �
1

2�

Z
d2xf[(@�A

�)2 + (@�A
�)N +

1

4
N2]

+
1

4
[M2 � 2M@++B�� + (@++B��)

2]

� i(� + i�)
$

@++ (�� � i��)g; (28)

where � = �iD+��� + 1

2
D+@��V .

So, the total action reads as follows:

c

S =

Z
d2xTrf�

1

4
F��F

�� �
1

2�
(@�A

�)2 �
1

2�
(@�A

�)N �
1

8�
N2

+
1

4
(1�

1

2�
)M2 +

1

4�
M (@++B��) �

1

8�
(@++B��)

2

+
i

2�
(� + i�)

$

@++ (�� � i��) +
i

4
�
$

@++ ��g: (29)

d

Using eq.(29), we are ready to write down the prop-
agators for Aa, Ba

��
, Na, Ma, �a, �a, �a and !a:

hAAi = �
i

22(1 �2)
!�� ;

hBBi = �
i(2�� 1)

4�(1� �)

@2
��

2
2
;

hAN i =
i�

2(1 �2)
(1� 2+ �)@�;

hNAi =
i

(1 �2)2
@�

hNN i = �
2i�2

(1�2)

hMM i = �
i

16�

1

(1� �)

hMBi = �hBM i =
i

8�(1� �)

@��

2

h(� + i�)(�� � i��)i = �
2�

(�� 1)

$

@��

42

h(� + i�)(� + i!)i = �
�

4

$

@��

2

h(��� i�!)(�� � i��)i = +
�

4(�� 1)

$

@��

2

h(�� � i�!)(�+ i!)i = +
(�+ 2)

4

$

@��

2

: (30)

Expressing the action of equation (10) in terms of
component �elds, and coming back to the (2; 0)-version
of the Wess-Zumino gauge, the matter-gauge sector La-
grangian reads:

c
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Lmatter�gauge = 2��i2�i � ig[��iAa
��

(Ga)
j
i@++�j � c:c] + ��i�i +

� ig[��iAa
++(Ga)

j
i@���j � c:c]� g��iMa(Ga)

j
i�j +

�
i

2
g2��iAa

++A
b
��
�idabcGc � g��iAa

��
(Ga)

j
i�j +

�
1

2
��iAa

++B
b
��

�ifabcGc + 2i��i@���i +

� ig��i[(�a + ��a + i!a � i��a)(Ga)
j
i�j � c:c] +

� 2i � i@++ i � g � iAa
++(Ga)

j
i j ; (31)

d

where dabc are the(representation-dependent) symmet-
ric coe�cients associated to fGa; Gbg.

One immediately checks that the extra gauge �eld,
B��, does not decouple from the matter sector. Our
point of view of leaving the superconnection ��� as
a complex super�eld naturally introduced this extra
gauge potential in addition to the usual gauge �eld, A�:
B�� behaves as a second gauge �eld. The fact that
it yelds a massless pole of order two in the spectrum
may harm unitarity. However, the mixing with the M -
component of ���, which is a compensating �eld, indi-
cates that we should couple them to external currents
and analyse the imaginary part of the current-current
amplitude at the pole. In so doing, this imaginary part
turns out to be positive-de�nite, and so no ghosts are
present. It is very interesting to point out that, in the
Abelian case, B�� showed the same behaviour [1]. It
coupled to C instead of M , but these two �elds show
the same kind of behaviour: C (in the Abelian case)
and M (in the non-Abelian case) are both compensat-
ing �elds. This ensures us to state that B�� behaves
as a physical gauge �eld: it has dynamics and couples
both to matter and the gauge �eld A�. Its only pe-
culiarity regards the presence of a single component in
the light-cone coordinates. The B-�eld plays rather the
rôle of a \chiral gauge potential". Despite the presence
of the pair of gauge �elds, a gauge-invariant mass term
cannot be introduced, since B does not carry the B++-
component, contrary to what happens with A�.

Let us now turn to the coupling of the two gauge po-
tentials, A� and B��, to a non-linear �-model always
keeping a sypersymmetric scenario. It is our main pur-
pose henceforth to carry out the coupling of a (2; 0)
�-model to the relaxed gauge super�elds of the ref. [7],
and show that the extra vector degrees of freedom do
not decouple from the matter �elds (that is, the target
space coordinates)[9][10][11][12]. The extra gauge po-
tential, B��, obtained upon relaxing constraints can
therefore acquire a dynamical signi�cance by means of
the coupling between the �-model and the Yang-Mills
�elds of ref.[7]. To perform the coupling of the �-model
to the Yang-Mills �elds we reason along the same con-
siderations as i ref.[1] and �nd out that:

L� = @i[K(�; ~�)� �(�)� ~�(~�)]r���
i +

� ~@i[K(�; ~�) � �(�) � ~�(~�)]r��
~�i; (32)

where �(�) and ��(��) are a pair of chiral and antichiral

super�elds, ~�i � exp(iLV:�k)��i and r���i and r��
~�i

are de�ned in perfect analogy to what is done in the
case of the bosonic �-model:

r���i � @���i � g��
��
ki�(�) (33)

and

r��
~�i � @��~�i � g��

��

�k�i(~�): (34)

The interesting point we would like to stress is
that the extra gauge degrees of freedom accommodated
in the component-�eld B��(x) of the superconnection
��� behave as a genuine gauge �eld that shares with
A� the feature of coupling to matter and to �-model
[7]. This result can be explicitly read o� from the
component-�eld Lagrangian projected out from the su-
per�eld Lagrangian L�. We therefore conclude that
our less constrained (2; 0)-gauge theory yields a pair
of gauge potentials that naturally transform under the
action of a single compact and simple gauge group and
may be consistently coupled to matter �elds as well as
to the (2; 0) non-linear �-models by means of the gaug-
ing of their isotropy and isometry groups. Relaxing
constraints in the N = 1- and N = 2 � D = 3 su-
persymmetric algebra of covariant derivatives may lead
to a number of peculiar features of the gauged O(3)-�-
model[13] in the presence of Born-Infeld terms for the
pair of gauge potentials; of special interest are the self-
dual equations[14].

The authors would like to thank M. A. De Andrade,
A. L. M. A. Nogueira and O. Del Cima for enlightening
discussions; CNPq and Capes are acknowledged for the
invaluable �nancial support.
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