Non-Abelian (2,0)-Super-Yang-Mills Coupled to
Non-Linear o-Models
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Considering a class of (2,0)-super-Yang-Mills multiplets that accommodate a pair of independent
gauge potentials in connection with a single symmetry group, we present here their non-Abelian
coupling to ordinary matter and to non-linear s-models in (2,0)-superspace. The dynamics and the
couplings of the gauge potentials are discussed and the interesting feature that comes out is a sort
of “chirality” for one of the gauge potentials whenever light-cone coordinates are chosen.
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In a previous paper [1], we discussed the dynamics
and the couplings of the Abelian vector potentials of
a class of (2,0)-gauge super multiplets([2]-[8]) in con-
nection with a single U(1)-symmetry group. Since a
number of interesting features came out, it was a natu-
ral question to ask how these fields would behave if the
non-Abelian version of the theory was to be considered.

We can see that indeed some subtle changes occur.
As we wish to make a full comparison between the two
aspects(Abelian and non-Abelian) of the same sort of
theory, all the characteristics of the original formula-
tion were kept, namely, the coordinates we choose to
parametrise the (2, 0)-superspace are given by:

A E(x""",x";ﬁ,é), (1)

where 71, 7~ denote the usual light-cone variables,

whereas 6, 6 stand for complex right-handed Weyl
spinors. The supersymmetry covariant derivatives are
taken as:

D_|_ = 69 + iéa++ (2)
and
Dy = 95+ 004+, (3)

where 044 (or O__) represents the derivative with re-
spect to the space-time coordinate z*% (or z77). They

fulfill the algebra:
Dy =Di =0 {Dy, Dy} =2i014.  (4)
With these definitions for D and D, one can check that:
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The fundamental non-Abelian matter superfields
are the “chiral” scalar and left-handed spinor super-
fields, whose respective component-field expressions are
given by:

' (x;0,0) =
Ul (x;0,0)

ei€§6++(¢i +9AZ),
ei€§6++(¢1 _1_90,[)’ (7)

the fields ¢° and o are scalars, whereas A? and ¢! stand
respectively for right- and left-handed Weyl spinors.
The indices 7 and I label the representations where the
correspondenting matter fields are set.

We present below the gauge transformations of both
® and V¥, assuming that we are dealing with a compact
and simple gauge group, G, with generators G, that ful-
fill the algebra [G4, Gy)=ifap-G.. The transfomations
read:

" = R(A). D7,

j v = S(A); (8)

where R and S are matrices that respectively repre-
sent a gauge group element in the representations un-
der which ® and ¥ transform. Taking into account the
chiral constraint on ® and ¥, and bearing in mind the
exponential representation for R and S in terms of the
group generators, we find that the gauge parameter su-
perfields, A% must satisfy the same sort of constraint.
They can therefore be expanded as follows:

AY@;0,0) = 70 (at 408, (9)

where a® are scalars and 3¢ are right-handed spinors.

The kinetic action for ® and ¥/ can be made invari-
ant under the local transformations (8) by minimally
coupling gauge potential superfields, I'* _(x;8,0) and
Ve(x;0, é), according to the minimal coupling prescrip-
tions:
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Siny = /dzxdadé{i[éehv(v_@) — (V__®)e"V @] + WV ¥}, (10)

where the gauge-covariant derivatives are defined in the
sequel.
The Yang-Mills supermultiplets are introduced by

Vi = Dy+1y,
Oyt +Tyy

<
+
+
Il

with the gauge superconnections I'y, I'yy and I'__ be-
ing all Lie-algebra-valued. Note that I'y; does not en-
ter the Lagrangian density of eq.10). The gauge cou-
plings, ¢ and h, can in principle be taken different; nev-
ertheless, this would not mean that we are gauging two
independent symmetries. There is a single simple gauge
group, G, with just one gauge-superfield parameter, A.
It is the particular form of the (2,0)-minimal coupling
(realised by the exponentiation of V and the connection
present in V__) that opens up the freedom to associate,
in principle, different coupling parameters to the gauge
superfields V and I'__. I'} and 'y can be both ex-
pressed in terms of the real scalar superfield, V(x; 8, é),
according to [1]:

[y =e 9V (Dyed) (13)
and

Ly = —%D+[6_9V(D+6gv)]~ (14)

To establish contact with a component-field formu-
lation and to actually 1dentify the presence of an addi-
tional gauge potential, we write down the #-expansions

for V* and I'® _:

Va(x;ﬁ,é) =C* 40 —§€a+9§vi+ (15)
and
a ) 1 a i »Y] . a - a
It _(a;0,0) = 5(14__ +iB2_)+if(p® + in®)
_ 1 _
+ A0 i) + S06(M7 +iNL6)
A*_ B?_ and vy, are the light-cone components

of the gauge potential fields; p*, n*, x* and w® are left-
handed Majorana spinors; M? N® and C'® are real
scalars and £¢ is a complex right-handed spinor.

means of the gauge-covariant derivatives which, accord-
ing to the discussion of ref. [7], are defined as below:

?-l- = D-I—a (11)
V__=0__ —igT__, (12)

The infinitesimal gauge transfomations for V¢ and
I'® are given by

o L abey
A= A)" = SF A+ ARV (17)
and

1
6T _ = —f9%A o + —0__A,. (18)
9

No derivative acts on the A)?’sin eq.(17), which sug-
gests the possibility of choosing a Wess-Zumino gauge
for V. Tt such a choice is adopted, it can be shown that
the gauge transformations of the #-component fields
above read as follows:

= Eﬁmoz,
a 2 a b ¢
vy, = E@_H_oz — fape@™ vy,
2
614(1_ = —0__a%— fabcabAc__a )
g
8B = —fa.a’B°_,
o = = faean",
5p" = —fapea’p”,
oM* = _fabcach+fabca++abBi_a
2
SN = _a++a——aa - fabcach - fabca++abAc——a
g
OX* = —fapeax",
bw? = —fapeaw’, (19)

and they suggest that we should take h = ¢, so that
the v§ , -component could be identified as the light-cone
partner of A% _|

vy = AL (20)
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this procedure yields two component-field gauge poten-
tials: A* = (A% A) = (At+; A=~ ) and B__.

It 1s interesting to point out here that the first differ-
ence between the Abelian and the non-Abelian version
of the theory arises. In the Abelian version [1], it was
shown that both fields x and w were gauge invariant
and the fields M and N could be identified with a com-
bination of A__ and B__. This combination, which
was naturally dictated by the form of the gauge trans-

formations, ensured the symmetry of the Lagrangian.
In the present situation, the gauge transformations do
not undertake that we express M and N in terms of
A__ and B__, as it was done before but; on the other
hand, the y-and w-fields are no longer auxiliary fields
as they were in the Abelian version.

To discuss the field-strength superfields, we start
analysing the algebra of the gauge covariant derivatives.
So, the field strengths are defined such that:

{Vi, Vil = F=2D,T0y,
(V4 Vil = 20V,
Vi, Vil = Wo=Dilgq — 0441y,
Vi, Vo] = Wi =—igDyePom =044 Ty —ig[l'y, T__],
Vi, Vsl = Uy,
Vi, V__] = U_=—igD,T__,
Vis, Vo]l = 24 =—igdp T —0__Tyq —idg[ly, I_]. (21)

The results obtained for the field-strengths are con-

sistent with the Bianchi identities. The identity for U,

Vi AV, Vil + Ve V4, Vil + [V V4, V41 = 0 (22)

gives immediately that Uy = 0. The Bianchi identity

for Z4_,

[v——a {V+, v-I-}] + {V+, [v-l-a v——]} - {v+a [v——a v+]} =0, (23)

allows us to express 7, _ as

Zpo = —%V+U_ - %mw_; (24)

and, finally, the Bianchi identity

VAV Vil + Ve AV 6, Vil + [V V4, V] = 0 (25)




leads to
1

W+I4

Dy F. (26)
These are the relevant results yielded by pursuing an
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investigation of the Bianchi identities.

The gauge field, 4,, has its field strength, F),,, lo-
cated at the #-component of the combination Q=W_ +
U_. This suggests the following kinetic action for the
Yang-Mills sector:

1 /dzl‘deéTTQQ

= /dszr[TFu,,F‘“’ + 18 04s 4 M7, (27)

where X =p+in+xy —iw and A 9 B = (0A)B —
A(0B).

Choosing now a supersymmetry-covariant gauge-
fixing, ins tead of the Wess-Zumino, we propose the
following gauge-fixing term in superspace:

= _%/d%{[(auA“)Z + (0, AMYN + %NZ]

+ SIM?—2MO4y Bo_ + (044 B--)"]

—

1
4
i(p+in) d44 (p— i)}, (28)

where I = —iDyI__ + 1D, 0__V.

1 _ _
Sgr = —Q—/dzxdﬁdﬁTr[HH] So, the total action reads as follows:
o
|
S = /dszr{—lF FH — L(a AM)? — L(a AM)N — 1y
4" 2000 200" 8ar
+ 1(1 L)M?Jr iM(a B__) i(a B__)?
4 20 4o NHETTT T g T
i e I RO
+ g p i) Ogg (P i) + X 044 B} (29)

Using eq.(29), we are ready to write down the prop-
agators for A* B®_ N* M?*, p* n% x® and w®:

?

(14) = g
(pr) = 2=
(UN) = gtg(- o+
(NA) = ﬁav

NNy = _(fia;)

My = -

(MB) = ~(BM) = o= T
(o +in)p—in) = —(%Ui—m
((p+im(x+iw) = —%gf
(X —iw)(p—in) = +ﬁ§—;
(C-oi) = +@FDI=

Expressing the action of equation (10) in terms of
component fields, and coming back to the (2, 0)-version
of the Wess-Zumino gauge, the matter-gauge sector La-
grangian reads:
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Ematter—gauge =

20706, — igle™ AL _(Ga)l 04405 — .+ 5'0s +

— ig[e™ AL (Ga)l0__¢j — c.c] — g¢™ M*(Ga)loj +
= S0P AL AL gidaneGe — gN AL (G +

1 .. _.
- §¢MA1+Bi_¢meGc+2LV6__Ai+

— g (x4 0+ iw® — i) (Ga)l A — e +

— 20Oy — gt AL L (Ga)lYy, (31)

where dgp. are the(representation-dependent) symmet-
ric coefficients associated to {Gg, Gy }.

One immediately checks that the extra gauge field,
B__, does not decouple from the matter sector. Our
point of view of leaving the superconnection I'__ as
a complex superfield naturally introduced this extra
gauge potential in addition to the usual gauge field, A,:
B__ behaves as a second gauge field. The fact that
it yelds a massless pole of order two in the spectrum
may harm unitarity. However, the mixing with the M-
component of I'__ | which is a compensating field, indi-
cates that we should couple them to external currents
and analyse the imaginary part of the current-current
amplitude at the pole. In so doing, this imaginary part
turns out to be positive-definite, and so no ghosts are
present. It is very interesting to point out that, in the
Abelian case, B__ showed the same behaviour [1]. Tt
coupled to C' instead of M, but these two fields show
the same kind of behaviour: C' (in the Abelian case)
and M (in the non-Abelian case) are both compensat-
ing fields. This ensures us to state that B__ behaves
as a physical gauge field: it has dynamics and couples
both to matter and the gauge field A*. Its only pe-
culiarity regards the presence of a single component in
the light-cone coordinates. The B-field plays rather the
role of a “chiral gauge potential”. Despite the presence
of the pair of gauge fields, a gauge-invariant mass term
cannot be introduced, since B does not carry the By -
component, contrary to what happens with A*.

Let us now turn to the coupling of the two gauge po-
tentials, A, and B__, to a non-linear o-model always
keeping a sypersymmetric scenario. It is our main pur-
pose henceforth to carry out the coupling of a (2,0)
o-model to the relaxed gauge superfields of the ref. [7],
and show that the extra vector degrees of freedom do
not decouple from the matter fields (that is, the target
space coordinates)[9][10][11][12]. The extra gauge po-
tential, B__, obtained upon relaxing constraints can
therefore acquire a dynamical significance by means of
the coupling between the o-model and the Yang-Mills
fields of ref.[7]. To perform the coupling of the o-model
to the Yang-Mills fields we reason along the same con-
siderations as i ref.[1] and find out that:

Le = O[K(D,8)— (@) — {(d)V__0' +

- 52 [[{((I)’ i)) - 5((1)) - é(&))]v——él’ (32)

where £(®) and £(®) are a pair of chiral and antichiral
superfields, ®; = exp(iLy 7)®; and V__ &’ and V__&’
are defined in perfect analogy to what is done in the
case of the bosonic o-model:

V__® =0__®; — gT°_k'(®) (33)

——Py

and

V__® =0__®; — gT°_koi(P). (34)

The interesting point we would like to stress is
that the extra gauge degrees of freedom accommodated
in the component-field B__ () of the superconnection
I'__ behave as a genuine gauge field that shares with
A# the feature of coupling to matter and to o-model
[7]. This result can be explicitly read off from the
component-field Lagrangian projected out from the su-
perfield Lagrangian L£;. We therefore conclude that
our less constrained (2,0)-gauge theory yields a pair
of gauge potentials that naturally transform under the
action of a single compact and simple gauge group and
may be consistently coupled to matter fields as well as
to the (2, 0) non-linear o-models by means of the gaug-
ing of their isotropy and isometry groups. Relaxing
constraints in the N = 1-and N = 2—- D = 3 su-
persymmetric algebra of covariant derivatives may lead
to a number of peculiar features of the gauged O(3)-o-
model[13] in the presence of Born-Infeld terms for the
pair of gauge potentials; of special interest are the self-
dual equations[14].
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discussions; CNPq and Capes are acknowledged for the
invaluable financial support.
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