Non-Abelian (2,0)-Super-Yang-Mills Coupled to Non-Linear σ-Models

M.S. Góes-Negrão*, J.A. Helayël-Neto ${ }^{\dagger}$ and M.R. Negrão ${ }^{\ddagger}$
Centro Brasileiro de Pesquisas Físicas(CBPF-DCP), Universidade Católica de Petrópolis(UCP-GFT)

Abstract

Considering a class of (2,0)-super-Yang-Mills multiplets that accommodate a pair of independent gauge potentials in connection with a single symmetry group, we present here their non-Abelian coupling to ordinary matter and to non-linear σ-models in $(2,0)$-superspace. The dynamics and the couplings of the gauge potentials are discussed and the interesting feature that comes out is a sort of "chirality" for one of the gauge potentials whenever light-cone coordinates are chosen.

Key-words: Sigma-models; Supersymmetry; Killing vectors.
PACS numbers: $11.10 . \mathrm{Lm}, 11.15 .-\mathrm{q}$ and $11.30 . \mathrm{Pb}$

In a previous paper [1], we discussed the dynamics and the couplings of the Abelian vector potentials of a class of $(2,0)$-gauge super multiplets([2]-[8]) in connection with a single U(1)-symmetry group. Since a number of interesting features came out, it was a natural question to ask how these fields would behave if the non-Abelian version of the theory was to be considered.

We can see that indeed some subtle changes occur. As we wish to make a full comparison between the two aspects(Abelian and non-Abelian) of the same sort of theory, all the characteristics of the original formulation were kept, namely, the coordinates we choose to parametrise the $(2,0)$-superspace are given by:

$$
\begin{equation*}
z^{A} \equiv\left(x^{++}, x^{--} ; \theta, \bar{\theta}\right) \tag{1}
\end{equation*}
$$

where x^{++}, x^{--}denote the usual light-cone variables, whereas $\theta, \bar{\theta}$ stand for complex right-handed Weyl spinors. The supersymmetry covariant derivatives are taken as:

$$
\begin{equation*}
D_{+} \equiv \partial_{\theta}+i \bar{\theta} \partial_{++} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{D}_{+} \equiv \partial_{\bar{\theta}}+i \theta \partial_{++} \tag{3}
\end{equation*}
$$

where ∂_{++}(or ∂_{--}) represents the derivative with respect to the space-time coordinate x^{++}(or x^{--}). They fulfill the algebra:

$$
\begin{equation*}
D_{+}^{2}=\bar{D}_{+}^{2}=0 \quad\left\{D_{+}, \bar{D}_{+}\right\}=2 i \partial_{++} \tag{4}
\end{equation*}
$$

With these definitions for D and \bar{D}, one can check that:

$$
\begin{align*}
& e^{i \theta \bar{\theta} \partial_{+}} D_{+} e^{-i \theta \bar{\theta} \partial_{+}}=\partial_{\theta} \tag{5}\\
& e^{-i \theta \bar{\theta} \partial_{+}} \bar{D}_{+} e^{i \theta \bar{\theta} \partial_{+}}=\partial_{\bar{\theta}} \tag{6}
\end{align*}
$$

The fundamental non-Abelian matter superfields are the "chiral" scalar and left-handed spinor superfields, whose respective component-field expressions are given by:

$$
\begin{align*}
\Phi^{i}(x ; \theta, \bar{\theta}) & =e^{i \theta \bar{\theta} \partial_{++}}\left(\phi^{i}+\theta \lambda^{i}\right) \\
\Psi^{I}(x ; \theta, \bar{\theta}) & =e^{i \theta \bar{\theta} \partial_{++}}\left(\psi^{I}+\theta \sigma^{I}\right) \tag{7}
\end{align*}
$$

the fields ϕ^{i} and σ^{I} are scalars, whereas λ^{i} and ψ^{I} stand respectively for right- and left-handed Weyl spinors. The indices i and I label the representations where the correspondenting matter fields are set.

We present below the gauge transformations of both Φ and Ψ, assuming that we are dealing with a compact and simple gauge group, \mathcal{G}, with generators G_{a} that fulfill the algebra $\left[G_{a}, G_{b}\right]=i f_{a b c} G_{c}$. The transfomations read:

$$
\begin{equation*}
\Phi^{\prime i}=R(\Lambda)_{j}^{i} \Phi^{j}, \quad \Psi^{\prime I}=S(\Lambda)_{J}^{I} \Psi^{J} \tag{8}
\end{equation*}
$$

where R and S are matrices that respectively represent a gauge group element in the representations under which Φ and Ψ transform. Taking into account the chiral constraint on Φ and Ψ, and bearing in mind the exponential representation for R and S in terms of the group generators, we find that the gauge parameter superfields, Λ^{a}, must satisfy the same sort of constraint. They can therefore be expanded as follows:

$$
\begin{equation*}
\Lambda^{a}(x ; \theta, \bar{\theta})=e^{i \theta \bar{\theta} \partial_{++}}\left(\alpha^{a}+\theta \beta^{a}\right) \tag{9}
\end{equation*}
$$

where α^{a} are scalars and β^{a} are right-handed spinors.
The kinetic action for Φ^{i} and Ψ^{I} can be made invariant under the local transformations (8) by minimally coupling gauge potential superfields, $\Gamma_{--}^{a}(x ; \theta, \bar{\theta})$ and $V^{a}(x ; \theta, \bar{\theta})$, according to the minimal coupling prescriptions:

[^0]\[

$$
\begin{equation*}
S_{i n v}=\int d^{2} x d \theta d \bar{\theta}\left\{i\left[\bar{\Phi} e^{h V}\left(\nabla_{--} \Phi\right)-\left(\bar{\nabla}_{--} \bar{\Phi}\right) e^{h V} \Phi\right]+\bar{\Psi} e^{h V} \Psi\right\} \tag{10}
\end{equation*}
$$

\]

where the gauge-covariant derivatives are defined in the sequel.

The Yang-Mills supermultiplets are introduced by

$$
\begin{aligned}
\nabla_{+} & \equiv D_{+}+\Gamma_{+} \\
\nabla_{++} & \equiv \partial_{++}+\Gamma_{++}
\end{aligned}
$$

with the gauge superconnections Γ_{+}, Γ_{++}and Γ_{--}being all Lie-algebra-valued. Note that Γ_{++}does not enter the Lagrangian density of eq.10). The gauge couplings, g and h, can in principle be taken different; nevertheless, this would not mean that we are gauging two independent symmetries. There is a single simple gauge group, \mathcal{G}, with just one gauge-superfield parameter, Λ. It is the particular form of the $(2,0)$-minimal coupling (realised by the exponentiation of V and the connection present in ∇_{--}) that opens up the freedom to associate, in principle, different coupling parameters to the gauge superfields V and $\Gamma_{--} . \Gamma_{+}$and Γ_{++}can be both expressed in terms of the real scalar superfield, $V(x ; \theta, \bar{\theta})$, according to [1]:

$$
\begin{equation*}
\Gamma_{+}=e^{-g V}\left(D_{+} e^{g V}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{++}=-\frac{i}{2} \bar{D}_{+}\left[e^{-g V}\left(D_{+} e^{g V}\right)\right] \tag{14}
\end{equation*}
$$

To establish contact with a component-field formulation and to actually identify the presence of an additional gauge potential, we write down the θ-expansions for V^{a} and $\Gamma_{-_}^{a}$:

$$
\begin{equation*}
V^{a}(x ; \theta, \bar{\theta})=C^{a}+\theta \xi^{a}-\bar{\theta} \bar{\xi}^{a}+\theta \bar{\theta} v_{++}^{a} \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
\Gamma_{--}^{a}(x ; \theta, \bar{\theta}) & =\frac{1}{2}\left(A_{--}^{a}+i B_{--}^{a}\right)+i \theta\left(\rho^{a}+i \eta^{a}\right) \\
& +i \bar{\theta}\left(\chi^{a}+i \omega^{a}\right)+\frac{1}{2} \theta \bar{\theta}\left(M^{a}+i N^{a} \emptyset 16\right)
\end{aligned}
$$

A_{--}^{a}, B_{--}^{a} and v_{++}^{a} are the light-cone components of the gauge potential fields; $\rho^{a}, \eta^{a}, \chi^{a}$ and ω^{a} are lefthanded Majorana spinors; M^{a}, N^{a} and C^{a} are real scalars and ξ^{a} is a complex right-handed spinor.
means of the gauge-covariant derivatives which, accord-

$$
\begin{equation*}
\text { and } \quad \nabla_{--} \equiv \partial_{--}-i g \Gamma_{--}, \tag{11}
\end{equation*}
$$ ing to the discussion of ref. [7], are defined as below:

are given by

$$
\begin{equation*}
\delta V^{a}=\frac{i}{h}(\bar{\Lambda}-\Lambda)^{a}-\frac{1}{2} f^{a b c}(\bar{\Lambda}+\Lambda)_{b} V_{c} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \Gamma_{--}^{a}=-f^{a b c} \Lambda_{b} \Gamma_{c--}+\frac{1}{g} \partial_{--} \Lambda_{a} \tag{18}
\end{equation*}
$$

No derivative acts on the $\Lambda)^{a}$'s in eq.(17), which suggests the possibility of choosing a Wess-Zumino gauge for V^{a}. It such a choice is adopted, it can be shown that the gauge transformations of the θ-component fields above read as follows:

$$
\begin{align*}
& =\frac{2}{h} \Im m \alpha, \\
\delta v_{++}^{a} & =\frac{2}{h} \partial_{++} \alpha^{a}-f_{a b c} \alpha^{b} v_{++}^{c}, \\
\delta A_{--}^{a} & =\frac{2}{g} \partial_{--} \alpha^{a}-f_{a b c} \alpha^{b} A_{--}^{c},, \\
\delta B_{--}^{a} & =-f_{a b c} \alpha^{b} B_{--}^{c}, \\
\delta \eta^{a} & =-f_{a b c} \alpha^{b} \eta^{c}, \\
\delta \rho^{a} & =-f_{a b c} \alpha^{b} \rho^{c}, \\
\delta M^{a} & =-f_{a b c} \alpha^{b} M^{c}+f_{a b c} \partial_{++} \alpha^{b} B_{--}^{c}, \\
\delta N^{a} & =\frac{2}{g} \partial_{++} \partial_{--} \alpha^{a}-f_{a b c} \alpha^{b} N^{c}-f_{a b c} \partial_{++} \alpha^{b} A_{--}^{c}, \\
\delta \chi^{a} & =-f_{a b c} \alpha^{b} \chi^{c}, \\
\delta \omega^{a} & =-f_{a b c} \alpha^{b} \omega^{c}, \tag{19}
\end{align*}
$$

and they suggest that we should take $h=g$, so that the v_{++}^{a}-component could be identified as the light-cone partner of A_{--}^{a},

$$
\begin{equation*}
v_{++}^{a} \equiv A_{++}^{a} \tag{20}
\end{equation*}
$$

this procedure yields two component-field gauge potentials: $A^{\mu} \equiv\left(A^{0}, A^{1}\right)=\left(A^{++} ; A^{--}\right)$and B_{--}.

It is interesting to point out here that the first difference between the Abelian and the non-Abelian version of the theory arises. In the Abelian version [1], it was shown that both fields χ and ω were gauge invariant and the fields M and N could be identified with a combination of A_{--}and B_{--}. This combination, which was naturally dictated by the form of the gauge trans-
formations, ensured the symmetry of the Lagrangian. In the present situation, the gauge transformations do not undertake that we express M and N in terms of A_{--}and B_{--}, as it was done before but; on the other hand, the χ-and ω-fields are no longer auxiliary fields as they were in the Abelian version.

To discuss the field-strength superfields, we start analysing the algebra of the gauge covariant derivatives. So, the field strengths are defined such that:

$$
\begin{align*}
\left\{\nabla_{+}, \nabla_{+}\right\} & \equiv \mathcal{F}=2 D_{+} \Gamma_{+}, \\
\left\{\nabla_{+}, \bar{\nabla}_{+}\right\} & \equiv 2 i \nabla_{++}, \\
{\left[\nabla_{+}, \nabla_{++}\right] } & \equiv W_{-}=D_{+} \Gamma_{++}-\partial_{++} \Gamma_{+}, \\
{\left[\nabla_{+}, \nabla_{--}\right] } & \equiv W_{+}=-i g D_{+} \Gamma_{--}-\partial_{++} \Gamma_{+} i g\left[\Gamma_{+}, \Gamma_{--}\right], \\
{\left[\bar{\nabla}_{+}, \nabla_{++}\right] } & \equiv U_{+}, \\
{\left[\bar{\nabla}_{+}, \nabla_{--}\right] } & \equiv U_{-}=-i g \bar{D}_{+} \Gamma_{--}, \\
{\left[\nabla_{++}, \nabla_{--}\right] } & \equiv \mathcal{Z}_{+-}=-i g \partial_{++} \Gamma_{--} \partial_{--} \Gamma_{++}-i g\left[\Gamma_{+}, \Gamma_{--}\right] . \tag{21}
\end{align*}
$$

The results obtained for the field-strengths are consistent with the Bianchi identities. The identity for U_{+},

$$
\begin{equation*}
\left[\bar{\nabla}_{+},\left\{\nabla_{+}, \bar{\nabla}_{+}\right\}\right]+\left[\nabla_{+},\left\{\bar{\nabla}_{+}, \bar{\nabla}_{+}\right\}\right]+\left[\bar{\nabla}_{+},\left\{\bar{\nabla}_{+}, \nabla_{+}\right\}\right]=0 \tag{22}
\end{equation*}
$$

gives immediately that $U_{+}=0$. The Bianchi identity for Z_{+-},
\qquad

$$
\begin{equation*}
\left[\nabla_{--},\left\{\nabla_{+}, \bar{\nabla}_{+}\right\}\right]+\left\{\nabla_{+},\left[\bar{\nabla}_{+}, \nabla_{--}\right]\right\}-\left\{\bar{\nabla}_{+},\left[\nabla_{--}, \bar{\nabla}_{+}\right]\right\}=0 \tag{23}
\end{equation*}
$$

allows us to express Z_{+-}as and, finally, the Bianchi identity

$$
\begin{equation*}
Z_{+-}=-\frac{i}{2} \nabla_{+} U_{-}-\frac{i}{2} \bar{\nabla}_{+} W_{-} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\left[\bar{\nabla}_{+},\left\{\nabla_{+}, \nabla_{+}\right\}\right]+\left[\nabla_{+},\left\{\nabla_{+}, \bar{\nabla}_{+}\right\}\right]+\left[\nabla_{+},\left\{\bar{\nabla}_{+}, \nabla_{+}\right\}\right]=0 \tag{25}
\end{equation*}
$$

leads to

$$
\begin{equation*}
W_{+}=\frac{i}{4} \bar{D}_{+} \mathcal{F} \tag{26}
\end{equation*}
$$

These are the relevant results yielded by pursuing an
investigation of the Bianchi identities.
The gauge field, A_{μ}, has its field strength, $F_{\mu \nu}$, located at the θ-component of the combination $\Omega \equiv W_{-}+$ \bar{U}_{-}. This suggests the following kinetic action for the Yang-Mills sector:

$$
\begin{align*}
S_{Y M} & =\frac{1}{8 g^{2}} \int d^{2} x d \theta d \bar{\theta} \operatorname{Tr} \Omega \bar{\Omega} \\
& =\int d^{2} x \operatorname{Tr}\left[\frac{-1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{i}{4} \Sigma \stackrel{\leftrightarrow}{\partial}_{++} \bar{\Sigma}+\frac{1}{4} M^{2}\right] \tag{27}
\end{align*}
$$

where $\Sigma=\rho+i \eta+\bar{\chi}-i \bar{\omega}$ and $A \stackrel{\leftrightarrow}{\partial} B \equiv(\partial A) B-$ $A(\partial B)$.

Choosing now a supersymmetry-covariant gaugefixing, ins tead of the Wess-Zumino, we propose the following gauge-fixing term in superspace:

$$
S_{g f}=-\frac{1}{2 \alpha} \int d^{2} x d \theta d \bar{\theta} T r[\Pi \bar{\Pi}]
$$

$$
\begin{align*}
& =-\frac{1}{2 \alpha} \int d^{2} x\left\{\left[\left(\partial_{\mu} A^{\mu}\right)^{2}+\left(\partial_{\mu} A^{\mu}\right) N+\frac{1}{4} N^{2}\right]\right. \\
& +\frac{1}{4}\left[M^{2}-2 M \partial_{++} B_{--}+\left(\partial_{++} B_{--}\right)^{2}\right] \\
& \left.-i(\rho+i \eta) \stackrel{\leftrightarrow}{\partial}_{++}(\bar{\rho}-i \bar{\eta})\right\} \tag{28}
\end{align*}
$$

where $\Pi=-i D_{+} \Gamma_{--}+\frac{1}{2} D_{+} \partial_{--} V$.
So, the total action reads as follows:

$$
\begin{align*}
S & =\int d^{2} x \operatorname{Tr}\left\{-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 \alpha}\left(\partial_{\mu} A^{\mu}\right)^{2}-\frac{1}{2 \alpha}\left(\partial_{\mu} A^{\mu}\right) N-\frac{1}{8 \alpha} N^{2}\right. \\
& +\frac{1}{4}\left(1-\frac{1}{2 \alpha}\right) M^{2}+\frac{1}{4 \alpha} M\left(\partial_{++} B_{--}\right)-\frac{1}{8 \alpha}\left(\partial_{++} B_{--}\right)^{2} \\
& \left.+\frac{i}{2 \alpha}(\rho+i \eta) \stackrel{\leftrightarrow}{\partial}_{++}(\bar{\rho}-i \bar{\eta})+\frac{i}{4} \Sigma \stackrel{\leftrightarrow}{\partial}_{++} \bar{\Sigma}\right\} . \tag{29}
\end{align*}
$$

Using eq.(29), we are ready to write down the propagators for $A^{a}, B_{--}^{a}, N^{a}, M^{a}, \rho^{a}, \eta^{a}, \chi^{a}$ and ω^{a} :

$$
\begin{aligned}
\langle A A\rangle & =-\frac{i}{2 \square(1-\square)} \omega^{\mu \nu} \\
\langle B B\rangle & =-\frac{i(2 \alpha-1)}{4 \alpha(1-\alpha)} \frac{\partial_{--}^{2}}{\square^{2}} \\
\langle A N\rangle & =\frac{i \alpha}{\square(1-\square)}(1-\square+\alpha) \partial^{\mu} \\
\langle N A\rangle & =\frac{i}{(1-\square) \square} \partial^{\nu} \\
\langle N N\rangle & =-\frac{2 i \alpha^{2}}{(1-\square)} \\
\langle M M\rangle & =-\frac{i}{16 \alpha} \frac{1}{(1-\alpha)}
\end{aligned}
$$

$$
\begin{align*}
\langle M B\rangle & =-\langle B M\rangle=\frac{i}{8 \alpha(1-\alpha)} \frac{\partial_{--}}{\square} \\
\langle(\rho+i \eta)(\bar{\rho}-i \bar{\eta})\rangle & =-\frac{2 \alpha}{(\alpha-1)} \frac{\stackrel{\rightharpoonup}{\partial}--}{4 \square} \\
\langle(\rho+i \eta)(\chi+i \omega)\rangle & =-\frac{\alpha}{4} \frac{\stackrel{\rightharpoonup}{\partial}--}{\square} \\
\langle(\bar{\chi}-i \bar{\omega})(\bar{\rho}-i \bar{\eta})\rangle & =+\frac{\alpha}{4(\alpha-1)} \frac{\stackrel{\leftrightarrow}{\partial}--}{\square} \\
\langle(\bar{\chi}-i \bar{\omega})(\chi+i \omega)\rangle & =+\frac{(\alpha+2)}{4} \frac{\stackrel{\rightharpoonup}{\partial}}{\square} . \tag{30}
\end{align*}
$$

Expressing the action of equation (10) in terms of component fields, and coming back to the (2,0)-version of the Wess-Zumino gauge, the matter-gauge sector Lagrangian reads:

$$
\begin{align*}
\mathcal{L}_{\text {matter-gauge }} & =2 \phi^{* i} \square \phi_{i}-i g\left[\phi^{* i} A_{--}^{a}\left(G_{a}\right)_{i}^{j} \partial_{++} \phi_{j}-c . c\right]+\bar{\sigma}^{i} \sigma_{i}+ \\
& -i g\left[\phi^{* i} A_{++}^{a}\left(G_{a}\right)_{i}^{j} \partial_{--} \phi_{j}-c . c\right]-g \phi^{* i} M^{a}\left(G_{a}\right)_{i}^{j} \phi_{j}+ \\
& -\frac{i}{2} g^{2} \phi^{* i} A_{++}^{a} A_{--}^{b} \phi_{i} d_{a b c} G_{c}-g \bar{\lambda}^{i} A_{--}^{a}\left(G_{a}\right)_{i}^{j} \lambda_{j}+ \\
& -\frac{1}{2} \phi^{* i} A_{++}^{a} B_{--}^{b} \phi_{i} f_{a b c} G_{c}+2 i \bar{\lambda}^{i} \partial_{--} \lambda_{i}+ \\
& -i g \phi^{* i}\left[\left(\chi^{a}+\bar{\rho}^{a}+i \omega^{a}-i \bar{\eta}^{a}\right)\left(G_{a}\right)_{i}^{j} \lambda_{j}-c . c\right]+ \\
& -2 i \bar{\psi}^{i} \partial_{++} \psi_{i}-g \bar{\psi}^{i} A_{++}^{a}\left(G_{a}\right)_{i}^{j} \psi_{j} \tag{31}
\end{align*}
$$

where $d_{a b c}$ are the(representation-dependent) symmetric coefficients associated to $\left\{G_{a}, G_{b}\right\}$.

One immediately checks that the extra gauge field, B_{--}, does not decouple from the matter sector. Our point of view of leaving the superconnection Γ_{--}as a complex superfield naturally introduced this extra gauge potential in addition to the usual gauge field, A_{μ} : B_{--}behaves as a second gauge field. The fact that it yelds a massless pole of order two in the spectrum may harm unitarity. However, the mixing with the M component of Γ_{--}, which is a compensating field, indicates that we should couple them to external currents and analyse the imaginary part of the current-current amplitude at the pole. In so doing, this imaginary part turns out to be positive-definite, and so no ghosts are present. It is very interesting to point out that, in the Abelian case, B_{--}showed the same behaviour [1]. It coupled to C instead of M, but these two fields show the same kind of behaviour: C (in the Abelian case) and M (in the non-Abelian case) are both compensating fields. This ensures us to state that B_{--}behaves as a physical gauge field: it has dynamics and couples both to matter and the gauge field A^{μ}. Its only peculiarity regards the presence of a single component in the light-cone coordinates. The B-field plays rather the rôle of a "chiral gauge potential". Despite the presence of the pair of gauge fields, a gauge-invariant mass term cannot be introduced, since B does not carry the B_{++-} component, contrary to what happens with A^{μ}.

Let us now turn to the coupling of the two gauge potentials, A_{μ} and B_{--}, to a non-linear σ-model always keeping a sypersymmetric scenario. It is our main purpose henceforth to carry out the coupling of a (2,0) σ-model to the relaxed gauge superfields of the ref. [7], and show that the extra vector degrees of freedom do not decouple from the matter fields (that is, the target space coordinates) $[9][10][11][12]$. The extra gauge potential, B_{--}, obtained upon relaxing constraints can therefore acquire a dynamical significance by means of the coupling between the σ-model and the Yang-Mills fields of ref.[7]. To perform the coupling of the σ-model to the Yang-Mills fields we reason along the same considerations as i ref.[1] and find out that:

$$
\mathcal{L}_{\xi}=\partial_{i}[K(\Phi, \tilde{\Phi})-\xi(\Phi)-\tilde{\xi}(\tilde{\Phi})] \nabla_{--} \Phi^{i}+
$$

$$
\begin{equation*}
-\quad \tilde{\partial}_{i}[K(\Phi, \tilde{\Phi})-\xi(\Phi)-\tilde{\xi}(\tilde{\Phi})] \nabla_{--} \tilde{\Phi}^{i} \tag{32}
\end{equation*}
$$

where $\xi(\Phi)$ and $\bar{\xi}(\bar{\Phi})$ are a pair of chiral and antichiral superfields, $\tilde{\Phi}_{i} \equiv \exp \left(i \mathbf{L}_{V \cdot \bar{k}}\right) \bar{\Phi}_{i}$ and $\nabla_{--} \Phi^{i}$ and $\nabla_{--} \tilde{\Phi}^{i}$ are defined in perfect analogy to what is done in the case of the bosonic σ-model:

$$
\begin{equation*}
\nabla_{--} \Phi_{i} \equiv \partial_{--} \Phi_{i}-g \Gamma_{--}^{\alpha} k_{\alpha}^{i}(\Phi) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{--} \tilde{\Phi}_{i} \equiv \partial_{--} \tilde{\Phi}_{i}-g \Gamma_{--}^{\alpha} \bar{k}_{\alpha i}(\tilde{\Phi}) \tag{34}
\end{equation*}
$$

The interesting point we would like to stress is that the extra gauge degrees of freedom accommodated in the component-field $B_{--}(x)$ of the superconnection $\Gamma_{\text {_ }}$ behave as a genuine gauge field that shares with A^{μ} the feature of coupling to matter and to σ-model [7]. This result can be explicitly read off from the component-field Lagrangian projected out from the superfield Lagrangian \mathcal{L}_{ξ}. We therefore conclude that our less constrained $(2,0)$-gauge theory yields a pair of gauge potentials that naturally transform under the action of a single compact and simple gauge group and may be consistently coupled to matter fields as well as to the $(2,0)$ non-linear σ-models by means of the gauging of their isotropy and isometry groups. Relaxing constraints in the $N=1$ - and $N=2-D=3$ supersymmetric algebra of covariant derivatives may lead to a number of peculiar features of the gauged $O(3)-\sigma$ model[13] in the presence of Born-Infeld terms for the pair of gauge potentials; of special interest are the selfdual equations[14].

The authors would like to thank M. A. De Andrade, A. L. M. A. Nogueira and O. Del Cima for enlightening discussions; CNPq and Capes are acknowledged for the invaluable financial support.

References

[1] A. B. Penna-Firme, M. S. Góes-Negrão and M. R. Negrão, "(2,0)-Super-Yang-Mills Coupled to NonLinear σ-Models", hep-th/9903126, submitted for publication
[2] C. M. Hull and E. Witten, Phys. Lett.160B(1985) 398.
[3] P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys.B258(1985) 46; C. M. Hull, Nucl. Phys.B260(1985) 182 and Nucl. Phys.B267(1986) 266;
A. Sen, Phys. Rev.D32(1985) and Phys. Rev. Lett.55(1985) 1846.
[4] M. Sakamoto, Phys. Lett.B151(1985) 115.
[5] D. J. Gross, J. A. Harvey, E. J. Martinec and R. Rohm, Phys. Rev. Lett.54(1985) 502.
[6] M. Porrati and E. T. Tomboulis, Nucl. Phys.B 315(1989) 615;
J. Quackenbush, Phys. Lett.B234(1990) 285;
H. Oguri and C. Vafa, Mod. Phys. Let.A5 (1990) 1389; Nucl. Phys.B361 (1991) 469;Nucl. Phys.B367 (1991) 83;
S. J. Gates Jr. and H. Nishino, Mod. Phys. Lett.A7 (1992) 2543;
S. J. Gates Jr. S. V. Ketov and H. Nishino, Phys. Lett.B307 (1993) 323;
S. J. Gates Jr. S. V. Ketov and H. Nishino, Phys. Lett.B297 (1992) 99; Nucl. Phys.B393 (1993) 149;
M. A. De Andrade, O. M. Del Cima and L. P. Colatto, Phys. Lett.B370 (1996) 59.
[7] N. Chair, J. A. Helayël-Neto and A. William Smith, Phys. Lett.B 233(1989) 173.
[8] M. Dine and N. Seiberg, Phys. Lett.180B(1986) 364.
[9] J. Bagger and E. Witten, Phys. Lett.118B(1982) 103.
[10] C. M. Hull, A. Karlhede, U. Lindström and M. Roc̆ek, Nucl. Phys.B266(1986) 1;
M. Carvalho, J. A. Helayël-Neto and M. W. de Oliveira, Phys. RevD55 (1997) 7574;
M. Carvalho, J. A. Helayël- Neto and M. W. de Oliveira, hep-th/9811103, submitted for publication; M. Carvalho, J. A. Helayël-Neto and L. C. Q. Vilar, Helv. Phys. Acta71 (1998) 184.
[11] R. Brooks. F. Muhammad and S. J. Gates Jr., Nucl. Phys.B268(1986) 599.
[12] C. A. S. Almeida, J. A. Helayël-Neto and A. William Smith, Mod. Phys. Lett.A6(1991) 1397 and Phys. Lett.279B(1992) 75.
[13] P. K. Tripathy, Phys. Rev.D59 (1999) 085004.
[14] M. S. Góes-Negrão, J. A. Helayël-Neto and M. R. Negrão, work in progress.

[^0]: *negrao@cbpf.br and mauro.negrao@inf.ucp.br
 ${ }^{\dagger}$ helayel@cbpf.br and jose.helayel@inf.ucp.br
 \ddagger guida@cbpf.br and margarida.negrao@inf.ucp.br

